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1 The matrix formulation (Heisenberg)

dÂ(t)

dt
= − i

h̄
[Â(t), Ĥ].



2 The wavefunction formulation (Schrödinger)

For a two-particle non-relativistic system neglecting spin,

∂ψ(x1,x2, t)

∂t
= − i

h̄

[
− h̄2

2m1

∇2
1ψ(x1,x2, t) −

h̄2

2m2

∇2
2ψ(x1,x2, t) + V (x1,x2)ψ(x1,x2, t)

]
.



3 The path integral formulation (Feynman)

Suppose, for example, that a single particle is located at point xi when the time is ti, and we

wish to find the probability that it will be located at xf when the time is tf . This probability

is calculated as follows:

• Enumerate all classical paths from the initial to the final state.

• Calculate the classical action S =
∫
(Lagrangian) dt for each path.

• Assign each path a “transition amplitude” proportional to eiS/h̄. (The proportionality

constant is adjusted to assure normalization.)

• Sum the amplitude over all paths. (Because there is a continuum of paths, this “sum”

is actually a particular kind of integral called a “path integral.”)

• The resulting sum is the transition amplitude, and its square magnitude is the transi-

tion probability.

For different problems — such as a particle changing from one momentum to another, or for

an initial state that has neither a definite position nor a definite momentum — variations

on this procedure apply.



4 Phase space formulation (Wigner)

For a single particle restricted to one dimension, the Wigner phase-space distribution function

is

W (x, p, t) =
1

2πh̄

∫ +∞

−∞
ψ∗(x− 1

2
y, t)ψ(x+ 1

2
y, t)e−ipy/h̄dy.

It evolves in time as

∂W (x, p, t)

∂t
= − p

m

∂W (x, p, t)

∂x
−

∫ +∞

−∞
K(x, p′)W (x, p+ p′, t) dp′

where the kernel K(x, p) is

K(x, p) =
1

2πh̄2

∫ +∞

−∞
[V (x− 1

2
y) − V (x+ 1

2
y)] sin(py/h̄) dy.



5 Density matrix formulation

The density matrix corresponding to a pure state |ψ〉 is the outer product

ρ̂ = |ψ〉〈ψ|.

It evolves in time as
dρ̂(t)

dt
= +

i

h̄
[ρ̂(t), Ĥ].



6 Second quantization formulation

You know this one.



7 Variational formulation

The central entity in this formulation remains the wavefunction ψ(x1,x2, t), but the rule for

time evolution is no longer the Schrödinger equation. Of all possible normalized wavefunc-

tions ψ(x1,x2, t), the correct wavefunction is the one that minimizes the “action integral”

over time and configuration space, namely∫
dt

∫
d3x1

∫
d3x2 L(x1,x2, t),

where the “Lagrangian density” is

L(x1,x2, t) = h̄=m
{
ψ∗
∂ψ

∂t

}
+

h̄2

2m1

∇1ψ
∗ · ∇1ψ +

h̄2

2m2

∇2ψ
∗ · ∇2ψ + V (x1,x2)ψ

∗ψ.



8 The pilot wave formulation (de Broglie-Bohm)

For a two-particle system, there is a “pilot wave” in configuration space as well as two

particles with definite positions in real space.

ψ(x1,x2, t) = R(x1,x2, t)e
iS(x1,x2,t)/h̄.

If one defines the state-dependent “quantum potential”

Q(x1,x2, t) = − h̄2

2m1

∇2
1R

R
− h̄2

2m2

∇2
2R

R
,

then the pilot wave evolves in time according to

∂S

∂t
= −(∇1S)2

2m1

− (∇2S)2

2m2

− V (x1,x2) −Q(x1,x2, t)

and
∂P

∂t
+

1

m1

∇1 · (P∇1S) +
1

m2

∇2 · (P∇2S) = 0,

where

P (x1,x2, t) = R2(x1,x2, t).

The two point particles move with accelerations

m1
dv1

dt
= −∇1V −∇1Q and m2

dv2

dt
= −∇2V −∇2Q.



9 The Hamilton-Jacobi formulation

ψ(x1,x2, t) = exp[iS(x1,x2, t)/h̄].

∂S

∂t
= i

h̄

2m1

∇2
1S − 1

2m1

∇1S · ∇1S + i
h̄

2m2

∇2
2S − 1

2m2

∇2S · ∇2S − V (x1,x2).



Summary and conclusions

We have discussed nine distinct formulations of quantum mechanics. Did we learn anything

in the process? The most profound lesson is already familiar from classical mechanics,

and indeed from everyday life: “There is no sliver bullet.” Each of these formulations can

make some application easier or some facet of the theory more lucid, but no formulation

produces a “royal road to quantum mechanics.” Quantum mechanics appears strange to our

classical eyes, so we employ mathematics as our sure guide when intuition fails us. The

various formulations of quantum mechanics can repackage that strangeness, but they cannot

eliminate it.

The matrix formulation, the first formulation to be discovered, is useful in solving har-

monic oscillator and angular momentum problems, but for other problems it is quite difficult.

The ever-popular wavefunction formulation is standard for problem solving, but leaves the

conceptual misimpression that wavefunction is a physical entity rather than a mathematical

tool. The path integral formulation is physically appealing and generalizes readily beyond

the domain of non-relativistic quantum mechanics, but is laborious in most standard appli-

cations. The phase space formulation is useful in considering the classical limit. The density

matrix formulation can treat mixed states with ease, so it is of special value in statistical

mechanics. The same is true of second quantization, which is particularly important when

large numbers of identical particles are present. The variational formulation is rarely the

best tool for applications, but it is valuable in extending quantum mechanics to unexplored

domains. The pilot wave formulation brings certain conceptual issues to the fore. And the

Hamilton-Jacobi formulation holds promise for solving otherwise-intractable bound state

problems.

We are fortunate indeed to live in a universe where nature provides such bounty.


