Tractions and stress fibers control cell shape and rearrangements in collective cell migration

Jacob Notbohm

Harvey D. Spangler Assistant Professor Department of Engineering Physics University of Wisconsin–Madison

May 22, 2020

Acknowledgment: Funding from NSF CMMI-1660703.

Much of this work is published in Saraswathibhatla & Notbohm, Phys Rev X, 10:011016, 2020.

Asthmatic

What causes the difference in migration?

100 µm

Human bronchial epithelial cells cultured in air-liquid interface

Movies from Jen Mitchel & Jin-Ah Park, Harvard School of Public Health Park et al, Nat Mater 2015, 14, 1040

Prediction of vertex model

Tendency to
maintain
constant areaTendency to
maintain constant
perimeter5 $E_i = K_A (A_i - A_0)^2 + K_P (P_i - P_0)^2$ 5

Normalized perimeter $P_0/\sqrt{A_0}$ predicts the transition between static and moving cell layers.

Bi, Lopez, Schwarz, Manning, Nat Phys, 2015, 11, 1074 Park et al, Nat Mater 2015, 14, 1040

Well-established effect of density on collective migration

Angelini et al, P Natl Acad Sci USA, 2011, 108, 4714 Tambe et al, Nat Mater, 2011, 10, 469 Puliafito et al, P Natl Acad Sci USA, 2012, 109, 739 Nnetu et al, Soft Matter, 2013, 9, 9335

and others

Low density

High density

Quantify migration by rearrangements

Low density

α quantifies rearrangements

- $\alpha = 1 \rightarrow \text{random walk}$
- α = 2 \rightarrow straight trajectory

Dimensionless perimeter

High density

How does density affect migration?

Cells aren't passive particles. The notion of packing free space doesn't necessarily apply.

Hypothesis

- 1. Effects of density can be explained by preferred perimeter $P_0 / \sqrt{A_0}$.
- 2. Preferred perimeter $P_0 / \sqrt{A_0}$ affects actual perimeter $q = P/\sqrt{A}$ and cell rearrangements.

Preferred perimeter $P_0 / \sqrt{A_0}$ controlled \rightarrow actomyosin in cortex reduces it by cell periphery \rightarrow adhesion increases it

 \downarrow cortical actomyosin, \uparrow adhesion \rightarrow \uparrow perimeter, rearrangements

The hypothesized relationship between preferred perimeter and actual perimeter is common in the literature.

Brodland, J Biomech Eng, 2002, 124, 188. Farhadifar et al, Curr Biol, 2007, 17, 2095. Staple et al, Eur Phys J, 2010, 33, 117 Bi, Lopez, Schwarz, Manning, Nat Phys, 2015. Park et al, Nat Mater 2015, 14, 1040. Chiang & Marenduzzo, Europhys Lett, 2016, 116, 28009. Bi et al, Phys Rev X, 2016, 6, 021011. Moshe, Bowick, Marchetti, 2018, Phys Rev Lett, 120, 268105. Czajkowski et al, Soft Matter, 2018, 14, 5628.

Density | Cell peripheries/cortical tension/adhesion

Hypothesis: \downarrow cortical actomyosin, \uparrow adhesion \rightarrow \uparrow perimeter, rearrangements

Actin

Low density

High density

Density | Cell peripheries/cortical tension/adhesion

Hypothesis: \downarrow cortical actomyosin, \uparrow adhesion \rightarrow \uparrow perimeter, rearrangements

Laser ablation at t = 0

Observation: \downarrow cortical tension $\leftrightarrow \downarrow$ perimeter, rearrangements

Directly reduce cortical tension using actomyosin inhibitors

20 µM

Blebbistatin inhibits myosin contraction

Actin in cortex

Greater curvature implies reduced cortical tension

Malinverno et al, Nat Mater, 16, 587–596, 2017. Verma et al, Mol Biol Cell, 23, 4601–4610, 2012. Cytochalasin D disrupts actin polymerization

Phosphorylated myosin in cortex

Reduced peripheral myosin implies reduced cortical tension

Verma et al, Mol Biol Cell, 23, 4601–4610, 2012. Curran et al, Dev Cell, 43, 480-492, 2017. Kale et al, Nat Comm, 9, 5021, 2019.

Directly reduce cortical tension using actomyosin inhibitors

Blebbistatin

Cytochalasin D

Directly reduce cortical tension using actomyosin inhibitors

Observation: \downarrow cortical tension $\rightarrow \downarrow$ perimeter, rearrangements

Initial hypothesis

 \downarrow cortical actomyosin, \uparrow adhesion \rightarrow \uparrow perimeter, rearrangements

Observation

 \downarrow cortical tension $\rightarrow \downarrow$ perimeter, rearrangements

Conclusion

We're missing something.

Force balance for collective shape and rearrangements

In vertex model, combine energy equation with equation of motion Bi et al, Phys Rev X, 6, 021011, 2016.

The theory predicts 2 factors can affect cell shape and motion

New hypothesis

 \uparrow traction \rightarrow \uparrow perimeter, rearrangements

Cell-substrate tractions

Control

200 Pa

100

0

High density

Relate experimental traction to motility force

 $\eta \frac{d\boldsymbol{x}}{dt} = -\nabla E + \boldsymbol{F}$

Traction imbalance

- Pick a position in cell island.
- Compute vector sum of data in circle of radius *R*.
- Divide by number of data points.
- Repeat for different *R*.
- Repeat for different positions and take mean over all positions.

Traction imbalance and rms traction have same trends.

Cell-substrate tractions

Effect of increasing traction

CN03 activates Rho

New hypothesis: ↑ traction → ↑ perimeter, rearrangements

³ 18

Control

Rho activator CN03

increases rearrangements elongates cells

Tractions increase before perimeter does

Gray shading shows when data are statistically different from baseline/control.

Tractions increase before perimeter does

Gray shading shows when data are statistically different from baseline/control.

Implication: Tractions have a causal effect on perimeter (and motion).

What causes tractions?

Stress fibers

0.6

Anisotropy of stress fibers are not built into the model

$$E_i = K_A (A_i - A_0)^2 + K_P (P_i - P_0)^2$$
$$\eta \frac{d\boldsymbol{x}}{dt} = -\nabla E + \boldsymbol{F}$$

It's possible that greater cell perimeter q is caused by stress fibers.

It's also possible that greater cell perimeter q is caused primarily by traction.

Original hypothesis

Bi, Lopez, Schwarz, Manning, Nat Phys, 2015, 11, 1074

 \downarrow cortical actomyosin, \uparrow adhesion \rightarrow \uparrow perimeter, rearrangements

Conclusions

- 1. ↑ cell-substrate tractions and stress fibers
- → \uparrow perimeter $q = P/\sqrt{A}$
- \rightarrow \uparrow rearrangements
- 2. Tractions can reverse the well-established effect of density on rearrangements in collective migration.

Acknowledgments

Notbohm Research Group

Aashrith Saraswathibhatla

Maria Proestaki Peter Grimmer Brian Burkel Stephen Tyznik Kelly Vazquez Jun (Jay) Zhang Mainak Sarkar

Drawing by Shauna Bennett

Funding

NSF CMMI-1660703

Former Advisors

Jeff Fredberg and Jim Butler at the Harvard Chan School of Public Health

EXTRA SLIDES

How much do cell volumes change?

27