Collective behavior in active matter

J.F. Joanny

Collège de France Paris Physico-Chimie Curie Institut Curie

Symmetry, Thermodynamics and Topology in Active Matter, Santa Barbara, March 2020

Active matter

Active Matter

· Energy consumed at the level of each constitutent

S. Ramaswamy, S. Dhara

Kessler, Goldstein

I Spontaneous flows in active matter

- Hydrodynamic theory
- Spontaneous flows of active matter
- Active Turbulence

I Spontaneous flows in active matter

- Hydrodynamic theory
- Spontaneous flows of active matter
- Active Turbulence

- Active motion of defects
- Defects in tissues
- Defects in active turbulence

Spontaneous flows in active matter

- Hydrodynamic theory
- Spontaneous flows of active matter
- Active Turbulence

- Active motion of defects
- Defects in tissues
- Defects in active turbulence

I Spontaneous flows in active matter

Hydrodynamic theory

- Spontaneous flows of active matter
- Active Turbulence

- Active motion of defects
- Defects in tissues
- Defects in active turbulence

Hydrodynamic theory of active matter

Slow variables and hydrodynamic theory

- Study cooperative effects at long length scales and long time scales
- Liquid with polar and nematic order, polarisation **p**
- $\bullet\,$ Slow variables : velocity field, orientational field, energy consumption (chemical energy $\Delta\mu)$
- Symmetries and conservation laws

Constitutive equations

$$\begin{aligned} & 2\eta v_{\alpha\beta} &= \tilde{\sigma}_{\alpha\beta} + \zeta \Delta \mu q_{\alpha\beta} - \frac{\nu}{2} (p_{\alpha} h_{\beta} + p_{\beta} h_{\alpha}) , \\ & \frac{Dp_{\alpha}}{Dt} &= \frac{h_{\alpha}}{\gamma} - \nu v_{\alpha\beta} p_{\beta} , \\ & r &= r_0 \Delta \mu + \zeta v_{\alpha\beta} q_{\alpha\beta} . \end{aligned}$$

- Hydrodynamics of nematic liquid crystals,
- Orientational field $h_{\perp} = K \nabla^2 \phi$
- Active stress, Nematic tensor q_{αβ} = p_αp_β − ¹/_dδ_{αβ}. Contractile if ζ < 0.

Joanny (Institut Curie)

I Spontaneous flows in active matter

Hydrodynamic theory

Spontaneous flows of active matter

Active Turbulence

- Active motion of defects
- Defects in tissues
- Defects in active turbulence

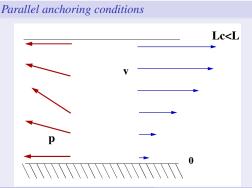
Spontaneous flow Frederiks transition

Stability of homogeneous state

• System oriented along x, contractile fluid, $\nu = 0$

$$\Omega(\vec{q}) = \left[rac{\zeta \Delta \mu}{2\eta} rac{q_{\chi}^2 - q_{y}^2}{q^2} - \left(rac{1}{\gamma} + rac{1}{4\eta}
ight) Kq^2
ight]$$

Instability at zero wave vector in the direction perpendicular to orientation



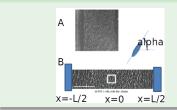
Flow bifurcation R.Voituriez

- Same anchoring condition on both surfaces
- Active stress equivalent to an external magnetic field along x axis
- Instability for a finite thickness $L_{c} = \left(-\frac{\pi^{2}K(\frac{4\eta}{\gamma} + (\nu+1)^{2})}{2\zeta\Delta\mu(\nu+1)}\right)^{1/2}$

< 白ビト < 三 ト < 三 >

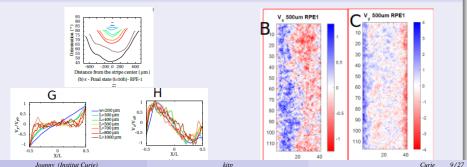
Spontaneous tissue flow G. Duclos, V. Yashunsky, P. Silberzan

Experiment



- Several cell types, nematic cells
- Stripe width 50 μ m to 800 μ m
- Cell orientation
- PIV

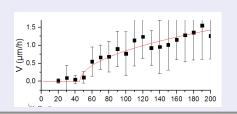
Velocity and cell orientation



Active gel theory C. Blanch-Mercader

Spontaneous flow

Fredericks transition



Theoretical developments

• Substrate friction: screening length $\lambda = \left(\frac{4\eta + \gamma(\nu+1)^2}{\xi}\right)^{1/2}$

$$\frac{1}{L_c^2} = \frac{1}{L_c^2} (\xi = 0) - \frac{1}{\lambda^2}$$

- Transverse flow related to cell division
- Chiral effects

Joanny (Institut Curie)

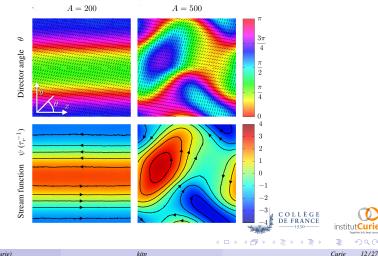
Spontaneous flows in active matter

- Hydrodynamic theory
- Spontaneous flows of active matter
- Active Turbulence

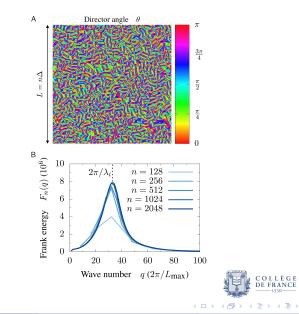
- Active motion of defects
- Defects in tissues
- Defects in active turbulence

Stationary spontaneous flows J. Casademunt, R. Alert

- Activity parameter $A = (L/L_c)^2$, flow alignment parameter $\nu = 0, 2$ dimensions.
- Instability beyond a critical activity number



Active Turbulence at zero Reynolds number



institut**Curie**

Energy balance

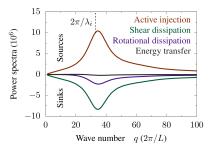
Energy and power spectra

Global energy balance

$$-\frac{dF_n}{dt} = \int_{\mathcal{A}} \left[2\eta \, v_{\alpha\beta} v_{\alpha\beta} + \frac{1}{\gamma} \, h_{\alpha} h_{\alpha} - \zeta \, q_{\alpha\beta} v_{\alpha\beta} \right] d^2 \vec{r}$$

Power spectra

$$\dot{F}_n(q) = -D_s(q) - D_r(q) + I(q) + T(q) = 0$$



- No energy transfer between scales (but $\nu = 0$).
- Energy dissipated at the scale where it is produced

Curie

14/27

Vorticity

- Finite range of orientation correlations L_c
- Vorticity equation $\nabla^2 \omega = \frac{\zeta \Delta \mu}{n} \left[\frac{1}{2} \left[\partial_x^2 \partial_y^2 \right] \sin 2\phi \partial_{xy}^2 \cos 2\phi \right]$
- Exponential distribution of vortex sizes L. Giomi

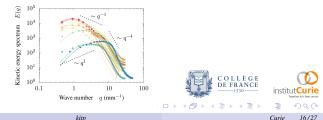


Substrate friction B. Martinez Prat, F. Sagues, R. Alert, F.Meng...



Energy spectrum

- Kinesin-microtubule layer on an oil substrate
- Energy spectrum $E(q) \sim (rac{\zeta \Delta \mu}{\eta})^2 rac{q^3}{\left(q^2 + (q\eta_b/\eta) \coth q H\right)^2}$



Spontaneous flows in active matter

- Hydrodynamic theory
- Spontaneous flows of active matter
- Active Turbulence

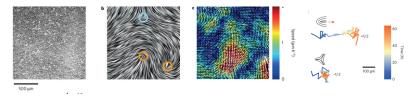
- Active motion of defects
- Defects in tissues
- Defects in active turbulence

Spontaneous flows in active matter

- Hydrodynamic theory
- Spontaneous flows of active matter
- Active Turbulence

- Active motion of defects
- Defects in tissues
- Defects in active turbulence

Defect motion Giomi et al, Pismen



Spontaneous motion of +1/2 defects, L. Brézin, T. Risler

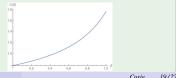
- Infinite 2d system, friction ξ , hydrodynamic screening length $L_h = (\eta/\xi)^{1/2}$
- First order perturbation in active stress
- Limit of vanishing rotational viscosity : $h_{\perp} = 0, \phi = \theta/2$

• Finite defect velocity
$$v_0 = -\frac{\pi}{8} \frac{\zeta \Delta \mu}{(\xi \eta)^{1/2}}$$

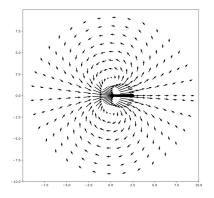
Finite rotational viscosity, flow alignment parameter $\nu = 0$

- Orientation perturbed by the flow $h_{\perp} = \frac{\gamma}{2} [\omega - v_{\theta}/r]$
- Defect velocity ۲

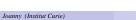
$$u_0 = -rac{\zeta \Delta \mu}{2[\xi(\eta+\gamma/4)]^{1/2}} C(eta), \quad eta = rac{\gamma}{\gamma+4\eta}$$

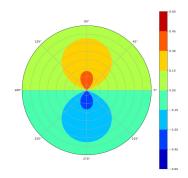


Flow field around defect



 Velocity field around a contractile defect





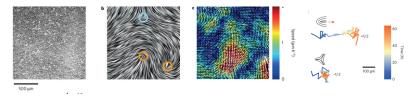
Vorticity heatmap around a contractile defect

< ≣⇒

Curie

20/27

Defect motion Giomi et al, Pismen



Spontaneous motion of +1/2 defects, L. Brézin, T. Risler

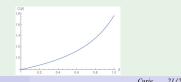
- Infinite 2d system, friction ξ , hydrodynamic screening length $L_h = (\eta/\xi)^{1/2}$
- First order perturbation in active stress
- Limit of vanishing rotational viscosity : $h_{\perp} = 0, \phi = \theta/2$

• Finite defect velocity
$$v_0 = -\frac{\pi}{8} \frac{\zeta \Delta \mu}{(\xi \eta)^{1/2}}$$

Finite rotational viscosity, flow alignment parameter $\nu = 0$

- Orientation perturbed by the flow $h_{\perp} = \frac{\gamma}{2} [\omega v_{\theta}/r]$
- Defect velocity

$$u_0 = -rac{\zeta \Delta \mu}{2[\xi(\eta+\gamma/4)]^{1/2}} C(eta), \quad eta = rac{\gamma}{\gamma+4\eta}$$



Spontaneous flows in active matter

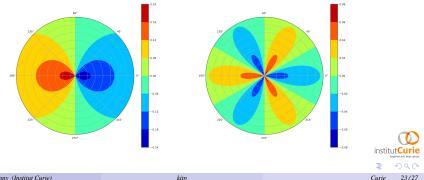
- Hydrodynamic theory
- Spontaneous flows of active matter
- Active Turbulence

- Active motion of defects
- Defects in tissues
- Defects in active turbulence

Defects in a dividing tissue

Tissue Hydrodynamics

- Incompressible tissue. Pressure dependent growth rate $\nabla \mathbf{v} = k_d(P) - k_a(P) = -\frac{1}{\bar{n}}(P - P_h)$
- Bulk viscosity $\bar{\eta}$ of the tissue. Calculation with $\gamma = 0$.
- Cells extruded from the tissue in regions where $\nabla \mathbf{v} < 0$
- $+\frac{1}{2}$ defects act as nucleation centers for multilayering

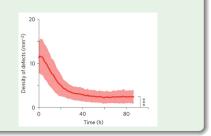


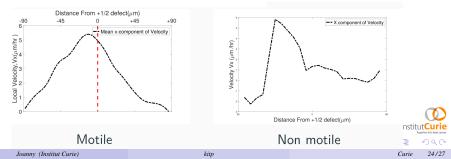
Experimental Velocity profiles T. Sarkar, P. Silberzan

Motile and non motile $+\frac{1}{2}$ *defects*

- Motile defects
 - Move at expected velocity

 - Annihilate with $-\frac{1}{2}$ defects Do not promote multilayering
- Non-Motile defects
 - Do not annihilate
 - Act as nucleation centers for multilayering



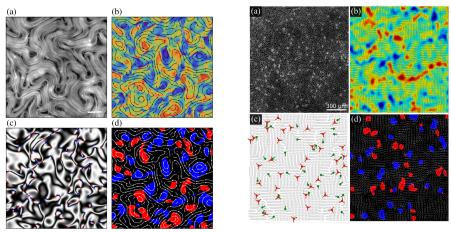


Spontaneous flows in active matter

- Hydrodynamic theory
- Spontaneous flows of active matter
- Active Turbulence

- Active motion of defects
- Defects in tissues
- Defects in active turbulence

Topological structure of turbulence L. Giomi, J. Yeomans



C. Blanch-Mercader, V. Yashunsky

★ E ► < E ►</p>

Joanny (Institut Curie)

L. Giomi

kitp

Curie 26/27

Summary

- Spontaneous flows and Frederiks transition
 - Chiral fluids Fuerthauer, Vitelli, Maitra
 - Cell extrusion and layering
- Active turbulence
 - Route to turbulence
 - Finite flow alignment parameter
 - 3 dimensional turbulence
 - Active polar fluids
- Active defects
 - Coupling between defects and flow
 - Interactions between defects Bowick, Marchetti, Ramaswamy
- Active Phase transitions Tailleur, Cates
 - Analogy with equilibrium phase transitions
 - Bubble phases (membraneless compartments?)
- Biological systems as active matter
 - Tissues, cancer and development. Active plastic materials
 - Cytoskeleton. Non homogeneous activity

Curie