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• ConsiderHeisenberg typemodels

H = −J
∑
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~si · ~sj + · · · , J > 0

• with a discrete(e.g. the Ising model,Z2) or continuous(e.g. the
XY model,U(1)) spin symmetry.
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~si · ~sj + · · · , J > 0

• with a discrete(e.g. the Ising model,Z2) or continuous(e.g. the
XY model,U(1)) spin symmetry.

• ParamagnetT > Tc to ferromagnet transitionT < Tc as the
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• TheU(1) XY model in 2D (Kosterlitz-Thouless model) or 3D
and the “O(3) quantum rotor” in 3D, the Hubbard model. etc⇒
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Spin systems
• Many condensed matter systems modeled by spin systems

• ConsiderHeisenberg typemodels

H = −J
∑

ij

~si · ~sj + · · · , J > 0

• with a discrete(e.g. the Ising model,Z2) or continuous(e.g. the
XY model,U(1)) spin symmetry.

• ParamagnetT > Tc to ferromagnet transitionT < Tc as the
system cools down.

• TheU(1) XY model in 2D (Kosterlitz-Thouless model) or 3D
and the “O(3) quantum rotor” in 3D, the Hubbard model. etc⇒
canonical models for super-fluidity/super-conductivity.

• Non-trivial critical exponentsatTc only computable by
Monte-Carlo forD > 2.
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Generalities
• Landau approach:~m(x) =

∑

a δ(x− xa)~sa

• The partition functionZ =
∫

D~me−βFL(m) AroundTc
FL =

∫

dd−1x
(

α0(T )|∂ ~m(x)|2 + α1(T )|~m(x)|2 + · · ·
)
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D~me−βFL(m) AroundTc
FL =

∫

dd−1x
(
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• Gaussian fluctuations:~m(x) = ~M + δ ~m(x).
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Generalities
• Landau approach:~m(x) =

∑

a δ(x− xa)~sa

• The partition functionZ =
∫

D~me−βFL(m) AroundTc
FL =

∫

dd−1x
(

α0(T )|∂ ~m(x)|2 + α1(T )|~m(x)|2 + · · ·
)

• Mean field: ~M ∝ v̂ a saddle-point ofFL ⇒ | ~M | ∼ |T − Tc|
1
2

• Gaussian fluctuations:~m(x) = ~M + δ ~m(x).
The spin-spin correlator:

〈mi(x)mj(0)〉 = | ~M |2vivj+
e−L/ξ(T )

Ld−3+η
vivj+

1

Ld−3+η
(δij−vivj)

MFA: η = 0 andξ(T ) ∼ |T − Tc|
1
2
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∑

a δ(x− xa)~sa

• The partition functionZ =
∫

D~me−βFL(m) AroundTc
FL =

∫

dd−1x
(

α0(T )|∂ ~m(x)|2 + α1(T )|~m(x)|2 + · · ·
)

• Mean field: ~M ∝ v̂ a saddle-point ofFL ⇒ | ~M | ∼ |T − Tc|
1
2

• Gaussian fluctuations:~m(x) = ~M + δ ~m(x).
The spin-spin correlator:

〈mi(x)mj(0)〉 = | ~M |2vivj+
e−L/ξ(T )

Ld−3+η
vivj+

1

Ld−3+η
(δij−vivj)

MFA: η = 0 andξ(T ) ∼ |T − Tc|
1
2

• Sound-speed of Goldstone mode:~m⇔ |~m|eiψ then
FL ∼

∫

| ~M |2(δψ)2

In theMFA cψ ∼ | ~M |2 ∼ |T − Tc|
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• Can one go beyond the MFA?
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• Can one model these basic features in GR?

• Can one go beyond the MFA?

The answer is in the affirmative to both questions.

• Map spin-models⇒ Gauge theories

• Gauge theories⇒ GR!

• A new approach to holographic super-fluids/super-conductors
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Lattice gauge theory and Spin-models
Polyakov ’78; Susskind ’79

• Any LGT with arbitrary gauge groupG in d-dimensionswith
arbitraryadjoint matter

• Integrate out gauge invariant states⇒ generate effective theory
for the Polyakov loop

• ZLGT (P ;T ) ∼ ZSpM (~s;T−1)

• Ferromagnetic spin modelH = −J ∑

〈ij〉 ~si · ~sj + · · ·
in d− 1 dimensionswith spin symmetryC = Center(G)
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Lattice gauge theory and Spin-models
Polyakov ’78; Susskind ’79

• Any LGT with arbitrary gauge groupG in d-dimensionswith
arbitraryadjoint matter

• Integrate out gauge invariant states⇒ generate effective theory
for the Polyakov loop

• ZLGT (P ;T ) ∼ ZSpM (~s;T−1)

• Ferromagnetic spin modelH = −J ∑

〈ij〉 ~si · ~sj + · · ·
in d− 1 dimensionswith spin symmetryC = Center(G)

• Inversion of temperature:
Deconf. (high T) phase in LGT⇔ Ordered (low T) phase of
SpM
Conf. (low T) phase in LGT⇔ Disordered (high T) phase of
SpM
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LGT - SpM equivalence
Polyakov ’78; Susskind ’79; Svetitsky and Yaffe ’82

g
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LGT - SpM equivalence
Polyakov ’78; Susskind ’79; Svetitsky and Yaffe ’82

Consider a LGTwith non-trivial center symmetry
Lagrangian of LGT:electricU~r,0 andmagneticU~r,i link variables
Typical phase diagram:
T

g

P 0

P 0

(*) Polyakov loop
P ∝ ∏Nt−1

n=0 U~r+nt̂,0 is the order
parameter
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(*) Polyakov loop
P ∝ ∏Nt−1

n=0 U~r+nt̂,0 is the order
parameter
(*) Svetitsky and Yaffe ’82: At all T the
magnetic fluctuations are gapped.
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g
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P 0

(*) Polyakov loop
P ∝ ∏Nt−1

n=0 U~r+nt̂,0 is the order
parameter
(*) Svetitsky and Yaffe ’82: At all T the
magnetic fluctuations are gapped.

• No long-range magnetic fluctuations⇒ integrate outU~r,j
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LGT - SpM equivalence
Polyakov ’78; Susskind ’79; Svetitsky and Yaffe ’82

Consider a LGTwith non-trivial center symmetry
Lagrangian of LGT:electricU~r,0 andmagneticU~r,i link variables
Typical phase diagram:
T

g

P 0

P 0

(*) Polyakov loop
P ∝ ∏Nt−1

n=0 U~r+nt̂,0 is the order
parameter
(*) Svetitsky and Yaffe ’82: At all T the
magnetic fluctuations are gapped.

• No long-range magnetic fluctuations⇒ integrate outU~r,j

• The resulting theoryL[P ] describeslong-range fluctuationsat
criticality

• Polyakov ’78; Susskind ’79: Can be mapped onto aspin-modelwith
P ⇔ ~s (explicitly shown in the limitg ≫ 1)
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LGT - SpM equivalence at criticality
Svetitsky and Yaffe ’82

• If criticality survives thecontinuum limitof the LGT
then critical phenomena of the gauge theory and the Spin model
are insame universality class.
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LGT - SpM equivalence at criticality
Svetitsky and Yaffe ’82

• If criticality survives thecontinuum limitof the LGT
then critical phenomena of the gauge theory and the Spin model
are insame universality class.

• Some examples:

1. PureSU(2) in d = 4 second order transition withZ2 (Ising)
critical exponents,

2. SU(N) with N > 4, d > 3

Spin model withZN fixed point:d = 4 non-trivialU(1) XY
model exponents,d > 4 mean-field exponents.

Gravity, Spin Models and Continuous Phase Transitions – p.7



LGT - SpM equivalence at criticality
Svetitsky and Yaffe ’82

• If criticality survives thecontinuum limitof the LGT
then critical phenomena of the gauge theory and the Spin model
are insame universality class.

• Some examples:

1. PureSU(2) in d = 4 second order transition withZ2 (Ising)
critical exponents,

2. SU(N) with N > 4, d > 3

Spin model withZN fixed point:d = 4 non-trivialU(1) XY
model exponents,d > 4 mean-field exponents.

• Focus on
SU(N) with N → ∞,
Spin model withZN → U(1) fixed point.
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Spontaneous breaking ofU(1) in GR Witten ’98

M

r

x0

Thermal Gas

x0 M

r rh

Black-hole

ds2TG = b20(r)
“

dr2 + dt2 + dx2
d−1

”

ds2BH = b2(r)
“

dr2

f(r)
+ f(r)dt2 + dx2

d−1

”
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r rh

Black-hole

ds2TG = b20(r)
“

dr2 + dt2 + dx2
d−1

”

ds2BH = b2(r)
“

dr2

f(r)
+ f(r)dt2 + dx2

d−1

”

• In addition “pure gauge”Bµν-field: Ψ =
∫

M B = const.
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• In addition “pure gauge”Bµν-field: Ψ =
∫

M B = const.

• Topological shift symmetryΨ → Ψ + const:
Only wrapped stringswith SF ∝

∫

(G+ iB + Φ̄R(2)) charged
under theU(1) part of it
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∫

M B = const.

• Topological shift symmetryΨ → Ψ + const:
Only wrapped stringswith SF ∝

∫

(G+ iB + Φ̄R(2)) charged
under theU(1) part of it

• If 〈e−SF 〉 6= 0 thenU(1) spontaneously broken!

• Identify 〈~s〉 ⇔ 〈P 〉 ⇔ 〈e−SF 〉: Hawking-Page⇔ spontaneous
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Spontaneous breaking ofU(1) in GR Witten ’98

M

r

x0

Thermal Gas

x0 M

r rh

Black-hole

ds2TG = b20(r)
“

dr2 + dt2 + dx2
d−1

”

ds2BH = b2(r)
“

dr2

f(r)
+ f(r)dt2 + dx2

d−1

”

• In addition “pure gauge”Bµν-field: Ψ =
∫

M B = const.

• Topological shift symmetryΨ → Ψ + const:
Only wrapped stringswith SF ∝

∫

(G+ iB + Φ̄R(2)) charged
under theU(1) part of it

• If 〈e−SF 〉 6= 0 thenU(1) spontaneously broken!

• Identify 〈~s〉 ⇔ 〈P 〉 ⇔ 〈e−SF 〉: Hawking-Page⇔ spontaneous
magnetization!

• FluctuationsδΨ ⇔ Goldstone mode in the dual spin-model
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Identification of the symmetries

6

T

Tc

Gravity Gauge theory Spin model

BH, U(1)B/ Deconf. U(1)C/ S.fluid U(1)S/

TG, U(1)B Conf. U(1)C Normal U(1)S
?

T

T−1
c
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BH, U(1)B/ Deconf. U(1)C/ S.fluid U(1)S/

TG, U(1)B Conf. U(1)C Normal U(1)S
?

T

T−1
c

Another condition for superfluidity:
Second speedcψ → 0 asT → Tc iff a continuous phase transition
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6

T
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Gravity Gauge theory Spin model

BH, U(1)B/ Deconf. U(1)C/ S.fluid U(1)S/

TG, U(1)B Conf. U(1)C Normal U(1)S
?

T

T−1
c

Another condition for superfluidity:
Second speedcψ → 0 asT → Tc iff a continuous phase transition

FL ∝
∫

| ~M |2(∂δψ)2 + ∂(δ|~m|)2 + · · ·
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Identification of the symmetries

6

T

Tc

Gravity Gauge theory Spin model

BH, U(1)B/ Deconf. U(1)C/ S.fluid U(1)S/

TG, U(1)B Conf. U(1)C Normal U(1)S
?

T

T−1
c

Another condition for superfluidity:
Second speedcψ → 0 asT → Tc iff a continuous phase transition

FL ∝
∫

| ~M |2(∂δψ)2 + ∂(δ|~m|)2 + · · ·
Continuous Hawking-Page⇔ Normal-to-superfluid transition

GRAVITY/SPIN-MODEL CORRESPONDENCE
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Continuous HP in dilaton-Einstein U.G. ’10

Specify

S ∝ N2
∫

dd+1x
√−g

(

R− ξ(∂Φ)2 + V (Φ) − 1
12e

− 8
d−1

Φ(dB)2
)
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Continuous HP in dilaton-Einstein U.G. ’10

Specify

S ∝ N2
∫

dd+1x
√−g

(

R− ξ(∂Φ)2 + V (Φ) − 1
12e

− 8
d−1

Φ(dB)2
)

Look for solutions of the type:
ds2TG = b20(r)

(

dr2 + dt2 + dx2
d−1

)

ds2BH = b2(r)
(

dr2

f(r) + f(r)dt2 + dx2
d−1

)

Requirements for asecond order Hawking-Page transition:
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Continuous HP in dilaton-Einstein U.G. ’10

Specify

S ∝ N2
∫

dd+1x
√−g

(

R− ξ(∂Φ)2 + V (Φ) − 1
12e

− 8
d−1

Φ(dB)2
)

Look for solutions of the type:
ds2TG = b20(r)

(

dr2 + dt2 + dx2
d−1

)

ds2BH = b2(r)
(

dr2

f(r) + f(r)dt2 + dx2
d−1

)

Requirements for asecond order Hawking-Page transition:

i.) There is a finiteTc at which:

ii.) ∆F (Tc) = 0. TG(BH) dominates forT < Tc (T > Tc).

iii.) ∆S(Tc) = 0

iv.) Make sure that this happens between the thermodynamically
favored BH and TG branches.
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All can be solved if asT → Tc horizon marginally traps the
singularity!
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Solution to the constraints

All can be solved if asT → Tc horizon marginally traps the
singularity! This happens iff

V (Φ) → V∞e
2

q

ξ

d−1
Φ

(1 + Vsub(Φ))
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All can be solved if asT → Tc horizon marginally traps the
singularity! This happens iff
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(1 + Vsub(Φ))

Nature of the transition is determined byVsub.
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Solution to the constraints

All can be solved if asT → Tc horizon marginally traps the
singularity! This happens iff

V (Φ) → V∞e
2

q

ξ

d−1
Φ

(1 + Vsub(Φ))

Nature of the transition is determined byVsub. Definet = T−Tc

Tc
.

• nthorder transition∆F ∼ tn:

whenVsub(Φ) = e−κΦ, with κ =
√

ζ(d−1)
n−1 for n ≥ 2
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Solution to the constraints

All can be solved if asT → Tc horizon marginally traps the
singularity! This happens iff

V (Φ) → V∞e
2

q

ξ

d−1
Φ

(1 + Vsub(Φ))

Nature of the transition is determined byVsub. Definet = T−Tc

Tc
.

• nthorder transition∆F ∼ tn:

whenVsub(Φ) = e−κΦ, with κ =
√

ζ(d−1)
n−1 for n ≥ 2

• BKT scaling∆F ∼ e−ct
− 1

α :
whenVsub(Φ) = Φ−α.
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Linear-dilaton near Tc

Study vicinity ofTc in a Einstein-dilaton system⇔ 3D XY model:
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Linear-dilaton near Tc

Study vicinity ofTc in a Einstein-dilaton system⇔ 3D XY model:

• Universal result:The geometry becomeslinear-dilaton
background at criticality:
ds2 → dt2 + dx2

d−1 + dr2; Φ(r) → 3r
2ℓ
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Linear-dilaton near Tc

Study vicinity ofTc in a Einstein-dilaton system⇔ 3D XY model:

• Universal result:The geometry becomeslinear-dilaton
background at criticality:
ds2 → dt2 + dx2

d−1 + dr2; Φ(r) → 3r
2ℓ

• Exact solution to string theory to all orders inℓs!
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Large N and α′
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Large N and α′

• Boundary value of the dilaton̄Φ0

• TakeΦ̄0 → −∞,N → ∞ such thateΦ̄0N = eΦ0 = const.

• In the large N limit it is dominated by the sphere diagrams.
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Large N and α′

• Boundary value of the dilaton̄Φ0

• TakeΦ̄0 → −∞,N → ∞ such thateΦ̄0N = eΦ0 = const.

• In the large N limit it is dominated by the sphere diagrams.

• Expectation:strong correlations⇔ α′ corrections suppressed

• The correlation lengthξ ∼ |T − Tc|−ν → ∞ nearTc

• In factα′Rs ∼ e−2Φh vanishes precisely whenT → Tc.
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Large N and α′

• Boundary value of the dilaton̄Φ0

• TakeΦ̄0 → −∞,N → ∞ such thateΦ̄0N = eΦ0 = const.

• In the large N limit it is dominated by the sphere diagrams.

• Expectation:strong correlations⇔ α′ corrections suppressed

• The correlation lengthξ ∼ |T − Tc|−ν → ∞ nearTc

• In factα′Rs ∼ e−2Φh vanishes precisely whenT → Tc.

• However, another invariantgµνs ∂µΦ∂νΦ → const ∼ ℓ−2
s as

T → Tc
One has to take into accountα′ corrections.

Gravity, Spin Models and Continuous Phase Transitions – p.13



Large N and α′

• Boundary value of the dilaton̄Φ0

• TakeΦ̄0 → −∞,N → ∞ such thateΦ̄0N = eΦ0 = const.

• In the large N limit it is dominated by the sphere diagrams.

• Expectation:strong correlations⇔ α′ corrections suppressed

• The correlation lengthξ ∼ |T − Tc|−ν → ∞ nearTc

• In factα′Rs ∼ e−2Φh vanishes precisely whenT → Tc.

• However, another invariantgµνs ∂µΦ∂νΦ → const ∼ ℓ−2
s as

T → Tc
One has to take into accountα′ corrections.

• Can be done because this regime is governed by alinear-dilaton
CFT on the world-sheet!
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Embedding in string theory?
Considerd− 1 = 3, n = 2. Simplest example:

V = V∞e
4
3
Φ

(

1 + 2e2Φ0e−2Φ
)

A consistent truncation of IIB with single scalar!Pilch-Warner ’00

N = 4 sYM softly broken by mass-term for a hyper-multiplet.
Near AdS minimum:V ′′(0) = m2ℓ2 = 4 = ∆(4 − ∆) consistent
with mass-deformation.
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Embedding in string theory?
Considerd− 1 = 3, n = 2. Simplest example:

V = V∞e
4
3
Φ

(

1 + 2e2Φ0e−2Φ
)

A consistent truncation of IIB with single scalar!Pilch-Warner ’00

N = 4 sYM softly broken by mass-term for a hyper-multiplet.
Near AdS minimum:V ′′(0) = m2ℓ2 = 4 = ∆(4 − ∆) consistent
with mass-deformation.
An analytic kink solution fromasymptotically AdSat r = 0,
Φ = Φ0:

ds2TG = e−
4
3
Φ0

cosh
2
3 (3r

2ℓ )

sinh2(3r
2ℓ )

(

dt2 + dx2
d−1 + dr2

)

,

eΦ(r) = eΦ0 cosh(
3r

2ℓ
).
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Embedding in string theory?
Considerd− 1 = 3, n = 2. Simplest example:

V = V∞e
4
3
Φ

(

1 + 2e2Φ0e−2Φ
)

A consistent truncation of IIB with single scalar!Pilch-Warner ’00

N = 4 sYM softly broken by mass-term for a hyper-multiplet.
Near AdS minimum:V ′′(0) = m2ℓ2 = 4 = ∆(4 − ∆) consistent
with mass-deformation.
An analytic kink solution fromasymptotically AdSat r = 0,
Φ = Φ0:

ds2TG = e−
4
3
Φ0

cosh
2
3 (3r

2ℓ )

sinh2(3r
2ℓ )

(

dt2 + dx2
d−1 + dr2

)

,

eΦ(r) = eΦ0 cosh(
3r

2ℓ
).

! 2nd order HP atTc happens in a sub-dominant branch
! Background i the string frame is NOT linear-dilaton
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Second speed of sound
• Landau theory: fluctuations of the order parameter|M |eiψ
FL ∝

∫

|M |2(∂δψ)2 + · · ·
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|M |2(∂δψ)2 + · · ·
• Second sound vanishes asc2ψ ∼ |M |2 ∼ (Tc − T )2β
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Second speed of sound
• Landau theory: fluctuations of the order parameter|M |eiψ
FL ∝

∫

|M |2(∂δψ)2 + · · ·
• Second sound vanishes asc2ψ ∼ |M |2 ∼ (Tc − T )2β

• Gravity/Spin-Model correspondence:FL ⇔ Agr on-shell, at
large N
Expect mean-field scalingc2ψ ∼ (Tc − T ).
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Second speed of sound
• Landau theory: fluctuations of the order parameter|M |eiψ
FL ∝

∫

|M |2(∂δψ)2 + · · ·
• Second sound vanishes asc2ψ ∼ |M |2 ∼ (Tc − T )2β

• Gravity/Spin-Model correspondence:FL ⇔ Agr on-shell, at
large N
Expect mean-field scalingc2ψ ∼ (Tc − T ).

• Equate the Landau free energy and theregulatedon-shell
action:
FL(T ) = ∆A(T ) = ABH(T ) −ATG(T )
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Second speed of sound
• Landau theory: fluctuations of the order parameter|M |eiψ
FL ∝

∫

|M |2(∂δψ)2 + · · ·
• Second sound vanishes asc2ψ ∼ |M |2 ∼ (Tc − T )2β

• Gravity/Spin-Model correspondence:FL ⇔ Agr on-shell, at
large N
Expect mean-field scalingc2ψ ∼ (Tc − T ).

• Equate the Landau free energy and theregulatedon-shell
action:
FL(T ) = ∆A(T ) = ABH(T ) −ATG(T )

• Associateδψ with fluctuations of the B-field:ψ =
∫

M B
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Second speed of sound
• Landau theory: fluctuations of the order parameter|M |eiψ
FL ∝

∫

|M |2(∂δψ)2 + · · ·
• Second sound vanishes asc2ψ ∼ |M |2 ∼ (Tc − T )2β

• Gravity/Spin-Model correspondence:FL ⇔ Agr on-shell, at
large N
Expect mean-field scalingc2ψ ∼ (Tc − T ).

• Equate the Landau free energy and theregulatedon-shell
action:
FL(T ) = ∆A(T ) = ABH(T ) −ATG(T )

• Associateδψ with fluctuations of the B-field:ψ =
∫

M B

• One findsc2ψ ∝ e−
√
V∞rh ∼ (T − Tc).

• Second sound indeed vanishes atTc with the mean-field
exponent!
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Critical exponents from probe strings

• Identification:〈~m(x)〉 ⇔ 〈P [x]〉 ⇔ 〈WF 〉
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Critical exponents from probe strings

• Identification:〈~m(x)〉 ⇔ 〈P [x]〉 ⇔ 〈WF 〉
• In the superfluid (BH) phase~m = | ~M |~v thenm‖ ∼ ReP ,
m⊥ ∼ ImP .
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Critical exponents from probe strings

• Identification:〈~m(x)〉 ⇔ 〈P [x]〉 ⇔ 〈WF 〉
• In the superfluid (BH) phase~m = | ~M |~v thenm‖ ∼ ReP ,
m⊥ ∼ ImP .

• For the two-point function:
〈mi(x) mj(0)〉 = 〈~m‖(x) · ~m‖(0)〉vivj

+〈~m⊥(x) · ~m⊥(0)〉(δij − vivj).
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Critical exponents from probe strings

• Identification:〈~m(x)〉 ⇔ 〈P [x]〉 ⇔ 〈WF 〉
• In the superfluid (BH) phase~m = | ~M |~v thenm‖ ∼ ReP ,
m⊥ ∼ ImP .

• For the two-point function:
〈mi(x) mj(0)〉 = 〈~m‖(x) · ~m‖(0)〉vivj

+〈~m⊥(x) · ~m⊥(0)〉(δij − vivj).

〈~m‖ · ~m‖〉 ∝ 〈RePReP 〉
〈~m⊥ · ~m⊥〉 ∝ 〈ImPImP 〉
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One-point function
Division of paths:r ∈ (0, rm) UV, r ∈ (rm, rh) IR
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One-point function
Division of paths:r ∈ (0, rm) UV, r ∈ (rm, rh) IR
For rh → ∞ andrm large enough, the IR region governed by the
linear-dilaton CFT:.
T (z) = − 1

α′ : ∂Xµ∂Xµ : +vµ∂
2Xµ

with vµ =
√
V∞
2 δµ,r
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One-point function
Division of paths:r ∈ (0, rm) UV, r ∈ (rm, rh) IR
For rh → ∞ andrm large enough, the IR region governed by the
linear-dilaton CFT:.
T (z) = − 1

α′ : ∂Xµ∂Xµ : +vµ∂
2Xµ

with vµ =
√
V∞
2 δµ,r

rh dependence determined by the IR path-integrals:
M(rh) ∼ PIIR ∼ ∑

χCχe
−ip∗r(χ)rh .
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One-point function
Division of paths:r ∈ (0, rm) UV, r ∈ (rm, rh) IR
For rh → ∞ andrm large enough, the IR region governed by the
linear-dilaton CFT:.
T (z) = − 1

α′ : ∂Xµ∂Xµ : +vµ∂
2Xµ

with vµ =
√
V∞
2 δµ,r

rh dependence determined by the IR path-integrals:
M(rh) ∼ PIIR ∼ ∑

χCχe
−ip∗r(χ)rh . On the mass-shell,

p∗r = −i
√
V∞
2

(

1 +
√

1 + 4m2
∗(χ)
V∞

)

,

m2
∗ ≡ 2

α′

(

N + Ñ − 2
)

+ p2
⊥ + (2πkT )2 +

(

w
2πTα′

)2 and level

matchingkw +N − Ñ = 0.
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One-point function
Division of paths:r ∈ (0, rm) UV, r ∈ (rm, rh) IR
For rh → ∞ andrm large enough, the IR region governed by the
linear-dilaton CFT:.
T (z) = − 1

α′ : ∂Xµ∂Xµ : +vµ∂
2Xµ

with vµ =
√
V∞
2 δµ,r

rh dependence determined by the IR path-integrals:
M(rh) ∼ PIIR ∼ ∑

χCχe
−ip∗r(χ)rh . On the mass-shell,

p∗r = −i
√
V∞
2

(

1 +
√

1 + 4m2
∗(χ)
V∞

)

,

m2
∗ ≡ 2

α′

(

N + Ñ − 2
)

+ p2
⊥ + (2πkT )2 +

(

w
2πTα′

)2 and level

matchingkw +N − Ñ = 0.
Dominant contribution from the tachyon:

| ~M | → e−
√

V∞
2

rh ∝ (T − Tc)
1
2 .
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One-point function
Division of paths:r ∈ (0, rm) UV, r ∈ (rm, rh) IR
For rh → ∞ andrm large enough, the IR region governed by the
linear-dilaton CFT:.
T (z) = − 1

α′ : ∂Xµ∂Xµ : +vµ∂
2Xµ

with vµ =
√
V∞
2 δµ,r

rh dependence determined by the IR path-integrals:
M(rh) ∼ PIIR ∼ ∑

χCχe
−ip∗r(χ)rh . On the mass-shell,

p∗r = −i
√
V∞
2

(

1 +
√

1 + 4m2
∗(χ)
V∞

)

,

m2
∗ ≡ 2

α′

(

N + Ñ − 2
)

+ p2
⊥ + (2πkT )2 +

(

w
2πTα′

)2 and level

matchingkw +N − Ñ = 0.
Dominant contribution from the tachyon:

| ~M | → e−
√

V∞
2

rh ∝ (T − Tc)
1
2 .

Mean-field scaling in the magnetization!
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Two-point function
Three types of paths:D. Bak, A. Karch, L. Yaffe ’07

X1

r

L

0
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X1

r
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f
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0

r
h

(a) (b) (c)
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Two-point function
Three types of paths:D. Bak, A. Karch, L. Yaffe ’07

X1

r

L

0

r
h

X1

r

L

0

r
h

r
f

X1

r

L

0

r
h

(a) (b) (c)

(a) 〈~m(L) · ~m(0)〉a = | ~M |2. Finite in BH, 0 for TG.
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Two-point function
Three types of paths:D. Bak, A. Karch, L. Yaffe ’07

X1

r

L

0

r
h

X1

r

L

0

r
h

r
f

X1

r

L

0

r
h

(a) (b) (c)

(a) 〈~m(L) · ~m(0)〉a = | ~M |2. Finite in BH, 0 for TG.

(b) SF1 → mTL+ · · ·
〈~m(L) · ~m(0)〉b ∼ e−mTL+··· for L≫ 1.
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Two-point function, cont’ed
(c) bulk exchange diagrams:

〈~m‖(L) · ~m‖(0)〉c ∝ 〈ReP [L]ReP [0]〉 ∼ e−m+L

Ld−3

〈~m⊥(L) · ~m⊥(0)〉c ∝ 〈ImP [L]ImP [0]〉 ∼ e−m−L

Ld−3
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Two-point function, cont’ed
(c) bulk exchange diagrams:

〈~m‖(L) · ~m‖(0)〉c ∝ 〈ReP [L]ReP [0]〉 ∼ e−m+L

Ld−3

〈~m⊥(L) · ~m⊥(0)〉c ∝ 〈ImP [L]ImP [0]〉 ∼ e−m−L

Ld−3

m+ minimum of theCT+ modes:Gµν ,Φ, · · ·
m− minimum of theCT− modes:Bµν , · · ·
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Two-point function, cont’ed
(c) bulk exchange diagrams:

〈~m‖(L) · ~m‖(0)〉c ∝ 〈ReP [L]ReP [0]〉 ∼ e−m+L

Ld−3

〈~m⊥(L) · ~m⊥(0)〉c ∝ 〈ImP [L]ImP [0]〉 ∼ e−m−L

Ld−3

m+ minimum of theCT+ modes:Gµν ,Φ, · · ·
m− minimum of theCT− modes:Bµν , · · ·
Spectrum analysisU.G., Kiritsis, Nitti ’07: CT+ bounded from below for
any T.
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Two-point function, cont’ed
(c) bulk exchange diagrams:

〈~m‖(L) · ~m‖(0)〉c ∝ 〈ReP [L]ReP [0]〉 ∼ e−m+L

Ld−3

〈~m⊥(L) · ~m⊥(0)〉c ∝ 〈ImP [L]ImP [0]〉 ∼ e−m−L

Ld−3

m+ minimum of theCT+ modes:Gµν ,Φ, · · ·
m− minimum of theCT− modes:Bµν , · · ·
Spectrum analysisU.G., Kiritsis, Nitti ’07: CT+ bounded from below for
any T.
CT− include a zero-mode:m− = 0 asψ =

∫

M B is modulus:
Goldstone mode!
Correct qualitative behavior:〈~m‖(L) · ~m‖(0)〉 ∼ e−m+L+e−mT L

Ld−3

〈~m⊥(L) · ~m⊥(0)〉 ∼ 1
Ld−3
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Two-point function, cont’ed
(c) bulk exchange diagrams:

〈~m‖(L) · ~m‖(0)〉c ∝ 〈ReP [L]ReP [0]〉 ∼ e−m+L

Ld−3

〈~m⊥(L) · ~m⊥(0)〉c ∝ 〈ImP [L]ImP [0]〉 ∼ e−m−L

Ld−3

m+ minimum of theCT+ modes:Gµν ,Φ, · · ·
m− minimum of theCT− modes:Bµν , · · ·
Spectrum analysisU.G., Kiritsis, Nitti ’07: CT+ bounded from below for
any T.
CT− include a zero-mode:m− = 0 asψ =

∫

M B is modulus:
Goldstone mode!
Correct qualitative behavior:〈~m‖(L) · ~m‖(0)〉 ∼ e−m+L+e−mT L

Ld−3

〈~m⊥(L) · ~m⊥(0)〉 ∼ 1
Ld−3

Precisely the expected behavior from the XY model,

with ξ−1
‖ → min(mT ,m+) for L≫ 1.
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Correlation length ξ

(b) Connected paths:
X1

r

L

0

r
h

IR CFT

χ

Ψ
f

Ψ
i

Ii

If
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Correlation length ξ

(b) Connected paths:
X1

r

L

0

r
h

IR CFT

χ

Ψ
f

Ψ
i

Ii

If

Propagator in the IR:∆IR(χ) ∼
∫

dprd
d−2p⊥e−ip

∗
x(χ)L
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Correlation length ξ

(b) Connected paths:
X1

r

L

0

r
h

IR CFT

χ

Ψ
f

Ψ
i

Ii

If

Propagator in the IR:∆IR(χ) ∼
∫

dprd
d−2p⊥e−ip

∗
x(χ)L

Dominant mode is the “winding tachyon”:

ξ = −i/p∗x =
(

− 4
α′ +

(

1
2πTα′

)2
)− 1

2
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Correlation length ξ

(b) Connected paths:
X1

r

L

0

r
h

IR CFT

χ

Ψ
f

Ψ
i

Ii

If

Propagator in the IR:∆IR(χ) ∼
∫

dprd
d−2p⊥e−ip

∗
x(χ)L

Dominant mode is the “winding tachyon”:

ξ = −i/p∗x =
(

− 4
α′ +

(

1
2πTα′

)2
)− 1

2

Indeed diverges ifidentify with Hagedorn a la Atick-Witten

Tc = 1
4πℓs

andξ → ℓs
2
√

2

(

T−Tc

Tc

)− 1
2
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Correlation length ξ

(b) Connected paths:
X1

r

L

0

r
h

IR CFT

χ

Ψ
f

Ψ
i

Ii

If

Propagator in the IR:∆IR(χ) ∼
∫

dprd
d−2p⊥e−ip

∗
x(χ)L

Dominant mode is the “winding tachyon”:

ξ = −i/p∗x =
(

− 4
α′ +

(

1
2πTα′

)2
)− 1

2

Indeed diverges ifidentify with Hagedorn a la Atick-Witten

Tc = 1
4πℓs

andξ → ℓs
2
√

2

(

T−Tc

Tc

)− 1
2

Mean-field scaling again!
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Summary

• A general connection between gravity and spin-models.
Normal-to-superfluid transition⇔ continuous HP in GR.
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Summary

• A general connection between gravity and spin-models.
Normal-to-superfluid transition⇔ continuous HP in GR.

• Role of large N clarified: number of spin-states at a site in case
of SU(N).
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Summary

• A general connection between gravity and spin-models.
Normal-to-superfluid transition⇔ continuous HP in GR.

• Role of large N clarified: number of spin-states at a site in case
of SU(N).

• A specific case:SU(N) at large N⇔ XY-type models.

• Two-derivative approximation fails nearTc.
Physics aroundTc governed by linear-dilaton CFT
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Summary

• A general connection between gravity and spin-models.
Normal-to-superfluid transition⇔ continuous HP in GR.

• Role of large N clarified: number of spin-states at a site in case
of SU(N).

• A specific case:SU(N) at large N⇔ XY-type models.

• Two-derivative approximation fails nearTc.
Physics aroundTc governed by linear-dilaton CFT

• Probe strings⇔ spin fluctuations

• Exponents of quantites controlled by bulk fluctuations,
suppressed by1/N ⇒ mean-field

• Exponents of stringy quantites⇒, controlled byα′ ⇒ beyond
mean-field possible

Gravity, Spin Models and Continuous Phase Transitions – p.21



Outlook

Gravity, Spin Models and Continuous Phase Transitions – p.22



Outlook

• Corrections to critical exponents:1/N andα′ corrections
beyond the semi-classical approximation?
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Outlook

• Corrections to critical exponents:1/N andα′ corrections
beyond the semi-classical approximation?

• Generalization to other spin models e.g. discrete center:
e.g. 3D Ising model from the GR dual of large-NSp(N)?

Gravity, Spin Models and Continuous Phase Transitions – p.22



Outlook

• Corrections to critical exponents:1/N andα′ corrections
beyond the semi-classical approximation?

• Generalization to other spin models e.g. discrete center:
e.g. 3D Ising model from the GR dual of large-NSp(N)?

• Embedding in string theory - many examples with linear-dilaton
geometries, NS5 branes, etc.
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Outlook

• Corrections to critical exponents:1/N andα′ corrections
beyond the semi-classical approximation?

• Generalization to other spin models e.g. discrete center:
e.g. 3D Ising model from the GR dual of large-NSp(N)?

• Embedding in string theory - many examples with linear-dilaton
geometries, NS5 branes, etc.

• Continuous HP transitions in string theory and applications to
CMT.
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THANK YOU !
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Solving for the conditions
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Solving for the conditions

• Conditioniii) : Entropy difference∆S = 1
4GD

e(d−1)A(rh).

can vanish only forBH → TG, i.e. whenMBH → 0.
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Solving for the conditions

• Conditioniii) : Entropy difference∆S = 1
4GD

e(d−1)A(rh).

can vanish only forBH → TG, i.e. whenMBH → 0.
⇒ Tc corresponds to the pointrh → ∞ ⇒ horizon marginally
traps the singularity!
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Solving for the conditions

• Conditioniii) : Entropy difference∆S = 1
4GD

e(d−1)A(rh).

can vanish only forBH → TG, i.e. whenMBH → 0.
⇒ Tc corresponds to the pointrh → ∞ ⇒ horizon marginally
traps the singularity!

• Then conditionii) is automatic.
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Solving the conditions, cont’ed
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Solving the conditions, cont’ed
For conditioni) look at Einstein’s equations:

A′′ −A′2 +
ξ

d− 1
Φ

′2 = 0,

f ′′ + (d− 1)A′f ′ = 0,

(d− 1)A′2f +A′f ′ +A′′f − V

d− 1
e2A = 0.
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Solving the conditions, cont’ed
For conditioni) look at Einstein’s equations:

A′′ −A′2 +
ξ

d− 1
Φ

′2 = 0,

f ′′ + (d− 1)A′f ′ = 0,

(d− 1)A′2f +A′f ′ +A′′f − V

d− 1
e2A = 0.

One solves for the“blackness function"

f(r) = 1 −
R r

0 e
−(d−1)A

R rh
0 e−(d−1)A .
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Solving the conditions, cont’ed
For conditioni) look at Einstein’s equations:

A′′ −A′2 +
ξ

d− 1
Φ

′2 = 0,

f ′′ + (d− 1)A′f ′ = 0,

(d− 1)A′2f +A′f ′ +A′′f − V

d− 1
e2A = 0.

One solves for the“blackness function"

f(r) = 1 −
R r

0 e
−(d−1)A

R rh
0 e−(d−1)A .

TheHawking temperatureis:
T−1 = 4πe(d−1)A(rh)

∫ rh
0 e−(d−1)A(r)dr.
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Solving the conditions, cont’ed
For conditioni) look at Einstein’s equations:

A′′ −A′2 +
ξ

d− 1
Φ

′2 = 0,

f ′′ + (d− 1)A′f ′ = 0,

(d− 1)A′2f +A′f ′ +A′′f − V

d− 1
e2A = 0.

One solves for the“blackness function"

f(r) = 1 −
R r

0 e
−(d−1)A

R rh
0 e−(d−1)A .

TheHawking temperatureis:
T−1 = 4πe(d−1)A(rh)

∫ rh
0 e−(d−1)A(r)dr.

T → Tc > 0 in the limitA(rh) → −∞ can only happen for

A(r) → −A∞r + · · ·
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T−1 = 4πe(d−1)A(rh)

∫ rh
0 e−(d−1)A(r)dr.

T → Tc > 0 in the limitA(rh) → −∞ can only happen for

A(r) → −A∞r + · · · Plug in Einstein:Φ(r) → +A∞
√

d−1
ξ r + · · ·

and finally:
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Φ
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f ′′ + (d− 1)A′f ′ = 0,

(d− 1)A′2f +A′f ′ +A′′f − V
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TheHawking temperatureis:
T−1 = 4πe(d−1)A(rh)

∫ rh
0 e−(d−1)A(r)dr.

T → Tc > 0 in the limitA(rh) → −∞ can only happen for

A(r) → −A∞r + · · · Plug in Einstein:Φ(r) → +A∞
√

d−1
ξ r + · · ·

and finally:

V (Φ) → V∞ e
2

q

ξ

d−1
Φ

(1 + Vsub(Φ)) , Φ → ∞
Gravity, Spin Models and Continuous Phase Transitions – p.25


	Spin systems
	Generalities
	
	Lattice gauge theory and Spin-models
	LGT - SpM equivalence
	LGT - SpM equivalence at criticality
	Spontaneous breaking of $U(1)$
in GR {ot Witten '98}
	Identification of the symmetries
	Continuous HP in dilaton-Einstein {ot U.G. '10}
	Solution to the constraints
	Linear-dilaton near $T_c$
	Large N and $a '$
	Embedding in string theory?
	Second speed of sound
	Critical exponents from probe strings
	One-point function
	Two-point function
	Two-point function, cont'ed
	Correlation length $xi $
	Summary
	Outlook
	
	Solving for the conditions
	Solving the conditions, cont'ed

