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|. Introduction and motivation

The Kondo effect was in a sense the first example of a
system exhibiting asymptotically free running of a coupling
constant:
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The effective coupling of the impurity spin to the itinerant
electrons grows logarithmically at low energies

D
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leading to interesting phenomena at the Kondo
temperature:

Tk =~ Dexp|—1/A],

below which one electron “sacrifices itself” to neutralize
the spin:

High T - weak coupling Low T - strong coupling

Impurity  Conduction — .
Spin Electron Non maagnetic
Spin ~
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Variants of this model exhibit other interesting behaviours.
One natural generalisation is the multi-channel model:

H=Y cfpiatsiatd Y SasUpiatiis

Py, Py iof

with i=1,..,K labelling channel, and alpha the index for the
global SU(2) spin symmetry.

If the defect has spin s, then
the IR fate depends on the # of channels compared to s:

K > 2s “Overscreened,’ non-Fermi liquid behavior

K < 2s “Underscreened,’ free partially screened spin in IR

c.f. exact solution by Affleck, Ludwig
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Another interesting generalisation arises when instead of
considering the impurity interacting with a free Fermi
liquid, one considers a non-trivial bulk CFT (as would
happen if one tunes such a system through a quantum

critical point):

}r‘ c.f. Sachdey,

Buragohain, Vojta

74

We will be considering such models in the context of
gauge/gravity duality, momentarily.
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A last and even more interesting generalisation is to
consider the Kondo lattice model:

J A
H=H;+) ecl,ch- 2K > Sl (o)l
k 1

Now competition between the Kondo interaction and
RKKY spin-spin interactions, is thought to potentially
explain the existence of phase diagrams like those of the
heavy fermion metals:

q 03

_ YbRh,Si,
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We will be studying highly idealized models of this general
sort in the talk today. The bulk will be a highly
supersymmetric CFT, coupled supersymmetrically to the
defect spin. There are many drawbacks to the
supersymmetry, but it has the virtue of allowing us to
reliably solve for some features of the physics, in some
limits.

Plan:
ll. SUSY Kondo model: probe approximation

lll. SUSY Kondo lattice model: probe approximation
IV. SUSY Kondo model: including backreaction




ll. The maximally supersymmetric Kondo model

We will be studying the system realised by the following
configuration of D3 and D5 branes in type IIB superstring
theory:

N D3| x X X X
M Db | X X X X X X
k F1 | X %

S — SD3 -+ SDE) -+ Sdefect

Sactect = / dt (i A0 + X! (Aolt, 0); + nad(£,0)%) xJ + X (o) — k(Ao)]
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In the standard supergravity limit, this system is dual to
N=4 SYM coupled to a defect fermion with:

— —
Sﬁeld theory — SN:4 =+ / [ZXbatX -+ Xb {(AO(ta 0 ))?} + UI(¢I(t7 0 ))g} Xc} )

D Xixa=k
The bosonic symmetries preserved by the defect are:
SL(2,R) x SO(3) x SO(H)

It is useful to write the AdS; x S°> metric in a way that
makes these symmetries manifest:

ds* = R’ (du2 + cosh” u dsSs, + sinh” u d2; + df” + sin® 0 dﬂi)
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In the probe approximation M << N, the D5 worldvolume
is an AdS; x S*, given by the embedding conditions:

Figure 1: The points of the S®~P sphere with the same polar angle 6 define a S”~? sphere.
The angle 0 represents the latitude on S®?, measured from one of its poles.

N 1
The allowed angles are: k=— <9k — 5 sin 29k> .

Monday, November 7, 2011



The defect free energy and entropy can be computed by
evaluating the DBI action immersed in the AdS black brane:

ds® = —f(r)dt* + d (Z dx; ) + R*(d6? + sin®0 dQ)]) |

f(r) = ]7; (1 _ %) |

(The field theory temperature is given by 7 =7, /7R".)

Regularizing by subtracting the Euclidean action of the
analogous D5 in pure AdS space-time, one finds for a single
brane:

. 3 9
37T
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The impurity entropy or “g-function” is defined by:

10g g = Simp = liHlT—)O hmV—)oo [S(T) _ Sambient (T>]

In this case, now restoring M, we find:

Siﬂ3 Qk

MN

lOgg — Simp — \/X

37

By way of comparison, the multi-channel Kondo model
with K channels and SU(N) spin symmetry (@ large N),
with a defect in the kth antisymmetric representation, has:

T

Simp:%MN [f(1 +7[T(/N) _f<1+K/N(1_k/N)) _f(l +7[T(/Nk/N)]

. x . Parcollet, Georges,
f(x) o f() dU, log SIINL U Kotliar, Sengupta
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0.2 04 0.6 0.8 10 N

Figure 1: Impurity entropy as a function of k/N for the supersymmetric model (dotted curve) and

nonsupersymmetric multichannel model with number of channels K/N = 1 (blue) and K/N = 0.1
(red).

*The plot is symmetric about k/N = 1/2 due to particle/
hole symmetry

*We see the results for the SUSY model are closest to
those for the standard multi-channel model with # of
channels equal to N
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* From the exact result, or its small k/N expansion

1 _ 3 /37k\?*? 3 [/3rk\*?
logg = ~kMV |1— -
089 = FRMVA 10<2N) 280<2N) "

we see that the answer is far from being that of a free spin
with integer number of possible spin states. This is also
true of overscreened (but not underscreened) Kondo
models.

Defect specific heat and susceptibility

I”

In the “real” model, these vanish at the fixed point, and
are governed by the leading irrelevant operator that
would be present in the flow.
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In our model too,

82 F. defect
C(defect = =T

will clearly vanish at the fixed point (even after
backreaction), and so will be governed by the leading
irrelevant operator.

We define susceptibility with respect to the “magnetic
field” that couples to the SO(5) R-current:

S D d4.CE'.A J5 XttlEﬁZ—F
a’ R ota O B2

B=0

The defect susceptibility will vanish trivially in the probe
approximation before including the leading irrelevant
operator. Backreaction will change this.
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*We should classify defect operator spectrum, find lowest
dimension SO(3) x SO(5) singlet.

*The system is highly symmetric, enjoying the OSp(4*|4)
supergroup of symmetries. The lowest weight
representations of this supergroup are classified.

The even subgroup of the supergroup is
SL(2,R) x SO(3) x SO(5)

and the states are classified by the quantum numbers
h,j,m|,m2 (the SL(2,R) dimension, the SO(3) spin, and the
SO(5) Dynkin labels, respectively).




* Intuitively, in the limit we’re working, we expect the
lowest dimension operators to be the short multiplets of
this algebra, of schematic form:

(O =N "x/ (o™ ... 0™) ] X5

To see which sets of quantum numbers are present in the
spectrum, we need to do a KK reduction of the D5
fluctuations. The anomalous dimensions are then
determined via:

d 1
hscalar _ 5 5\/d2 A41m2
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(and its analogues for vectors and spinors).

The explicit spectrum is determined by linearising the D5
brane action

S5:—T5/d6§\/—det(G+F)+T5/F/\C4

around the embedding. The worldvolume metric and gauge
field are:

dsps = R*(dshys, + sin® 6, dQ23)
F = cosf e’ A el

and we consider fluctuations of the 6d gauge field, as well
as ou, 006.
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The calculations are unpalatable. The results (which are
exact for chiral primary operators, even away from the
probe limit, due to SUSY) are:

D5 field defect operator SL(2,R) x SO(3) x SO(5)
(30, )i O = X¢1X (1,0;0,1)
Oui—g Q0 ~ X(n"Dada)x (2,1;0,0)
(60, fr0)}" O = x(¢\" ... 67)x (1,0;0,1)
OUj_1 Q*0OW ~ Y (n®Dyd, (fl . il_l))x (l4+1,1;0,1 —1)
(a:); Q200 ~ (Do, ¢ o . %))y (1+1,0;2,1—2)
(80, f)i? | Q*OU ~ ((n*Daga)?6\™ ... 6772)x (1+2,0;0,1—2)

There is one marginal operator, that transforms as an
SO(5) vector; geometrically, it correponds to the

fluctuation of D5 scalar fields that rotates the embedding
of SO(5) C SO(6).
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In general, when the leading irrelevant operator (©,
has dimension 2o and we consider

Sdefect — Sdefect + / dt ()\OOO =+ hC)

(for defect operators with vanishing one-point function),
we'll find:

- ( T >2(h01) ( T )2(]1()1) 1
defect ™~ | = s Xdefect ™~ | /= e
TK TK T

The overscreened Kondo model with N=K has hy = 3/2.
Here, instead the leading global singlet perturbation is:

(X'o1x) - (XTo1x),

of dimension two.
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[ll. SUSY Kondo lattice models

* 1t would be very nice to also get a handle on the lattice
models. They can be tied to non-Fermi liquids; in these
gravity models, this is readily visible in the probe
approximation.

*The probes naturally live on A4S, geometries.

* Such geometries are dual to “locally critical” sectors, that
is sectors which enjoy dynamical scaling

xr— Ar, t — A\t

with z = o0,
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* Fermions coupled to such locally critical sectors can
naturally be deformed into non-Fermi liquids.

Cubrovic, Schalm, Zaanen;
Liu, McGreevy,Vegh

* A good intuitive way to understand this was emphasized
by Faulkner and Polchinski.

Consider a quantum field theory whose action takes
the schematic form:

S = SstrOng + Z / dt |:er](i5J,J’at + ILL5=],J/ + tJ,J’)CJ’}
J,J’
+gZ/dt [CTJ(’)? + (Hermitian conjugate)} .
J

* There is a strongly coupled sector which we’ll assume is
a large N theory that we can describe using gravity.

* There is a free (lattice) fermion with a Fermi surface.
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* Deform these field theories by coupling them together

¢¢ %)

with coupling constant “g"’.

*In perturbation theory in g, there is a simple set of graphs
that correct the free fermion propagator:

*In the large N limit, this geometric series gives the exact
result for the corrected ¢ propagator.
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Then, the resulting “dressed” ¢ propagator can be
written purely in terms of the two-point function of
O in the strongly coupled sector:

1
w—vlk —kp(k)| — ¢?G(k,w)

G,k ,w) ~

G(w) = / it 1 (OF (1051 (0))

If we make the strong dynamical assumption that the
strongly coupled sector exhibits local quantum criticality,
then the two-point function is constrained:

g(w) _ CAwQA_l
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*Forany A <1 one obtains a non-Fermi liquid.

A=1 — G~ wlog(w)

Varma et al,
1989

“Marginal Fermi liquid.”

* In defect models, the lowest dimension operator coupled

¢¢ )

to ¢’ is often a defect-localised operator.

* Local criticality then automatic in probe approx.!

* Unfortunately, the D3/D5 system does not lead to an
interesting non-Fermi liquid.
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However, in a close relative (a natural analogue constructed
using M2 branes and probe M2’ branes, instead of D3 and

D5 branes):

01 2

345678910

M2 X X X

M2' x o

one can naturally obtain precisely the scalings required for
the marginal Fermi liquid of Varma et al.

These theories involve defects (both fermionic and
bosonic) coupled to the N=6 supersymmetric doubled
Chern-Simons theories studied by ABJM.
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A rather general 3d N=2 supersymmetric Chern-Simons
theory has a Lagrangian of the form:

9 _ _
- / P %Tr(A/\dA—k§A3)+Dﬂ¢iD“¢i+iww“Du¢z‘
v

16m2 - - -
13 (6iTh. ¢:)(0;Th:0;) Ok T Th or)

_ _ ST _ _
(6T, 60 (D Th ) — —— (DiTF,60) (65TF, 1)

Gaiotto,Yin;
many earlier

_Am
k
*There can also be a superpotential.

* Our theory has groups and superpotential summarised by
the quiver below:

D==—(®

I I',

2T 7
W = ?eabeabTr(AaBaAbBb) :
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At each lattice point, the defect fields are “hypermultiplets™
with quantum numbers:

(21 (PV,l), 622(17fv)

~

621 (ﬁval)v C?2(17jv)

They couple to the bulk ABJM fields with couplings of the
schematic form:

AS = /dt Z ‘(AlBl—AQBQ)Qi|2+|(AlBQ_AQBl)Qi|2

+ (A1 Bs + A3B1)Q;i*  (6)
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This class of theories can produce marginal Fermi liquid for
the following simple reason. The most obvious defect-
localised fermionic operator is of the form:

X1PAX2

* At weak coupling, this has h=1.

* Gravity analysis shows that this remains true at strong
coupling; this is the “right value” to yield a marginal Fermi
liquid in our previous discussion.

This theory is of course very unrealistic. One leading
worry: backreaction.
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Three comments on backreaction in lattice models:

|. Intuitively, we expect the backreaction to become
important when we go deep enough into the IR to “see”
many defects enclosed in our characteristic length scale.

We can estimate the temperature/energy scale at which
this becomes important using the free energy (here in the
D=3+ case):

F=N?T*+ N
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By the time
T< N3 xl1

the backreaction will surely be important; the defects now
dominate the free energy of the dual field theory.

2. Backreaction almost surely eliminates the locally critical
behavior evident in the probe approximation in these
systems.

*This can be seen from the following (crude) energetics
argument.
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E.g.in the M2 case, we might look for a stable solution of
the form:

AdS, x T? x X
Call the three radii of the factors in the geometry A, T and

S. The |+1 dimensional effective action governing the
radions takes the schematic form:

2 A2 2
S = /d% (—T257 + A*T?S° — NJA*S — Ny AT ) .

q7
(17)
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The four terms come from the AdS and internal
curvatures; the M2’ brane tensions; and the 7-form flux
from the M2 branes. We have smeared the M2’ branes,

averaging their energy over the internal directions.

In this approximation one finds an AdS2 vacuum with:
A~ S~NYS T~ NM2IND?

However, in the real system the branes are unsmeared and

there is another preferred circle. Including its radion, we
find no AdS2 vacua in the SUGRA regime.
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3. There is a generic field theory argument that suggests
that local criticality can never persist down to zero energy.
The general form of the density of states, for a locally
critical theory, should take the form:

p(FE)=A6(F)+ B/E

* B should be non-zero in a non-trivial theory
* But then | p(E) dE has an IR divergence.

*This should be cut off in a realistic system. But it is a
logarithmic divergence, so locally critical behavior could
conceivably persist down to exponentially low energies.

Monday, November 7, 2011



IV. SUSY Kondo model: including backreaction

Let us return to the single-site model, with M D5 branes
and g%, M > 1.

Can we find a smooth backreacted solution with no
“probes’?

In the Kondo model itself, in the simplest cases, the
fermionic defect “disappears” in the IR, just leaving a
disturbance on a region of order the confinement scale to
the behaviour of the bulk electrons.
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Could the D5 defects similarly “disappear” in our
problem?

They would have to leave behind a signature of their D5
charge. This can happen;if a non-trivial three-sphere is
created, M units of three-form flux could replace the Db5s.

WVe'll see that this does happen. The D5 branes squash the
5-sphere so much that is splits into two, and replace
themselves with three-form flux in a new smooth
geometry.




In fact, the relevant supergravity solutions have already
been found, by D’Hoker, Estes and Gutperle.

They were not studying impurity models. Their interest
was BPS Wilson loops in maximally supersymmetric Yang-
Mills theory.
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Yamaguchi;

But, the two problems turn out to be equivalent. ol

Gomis, Passerini

Lets sketch this equivalence in the simplest case, for the
case of the k-fold antisymmetric representation of SU(N).

This is the case M=I, with k fermions present at the D3/D5
Intersection.

* Recall that the action of our full gauge theory is:

. e e c
R cory — O - /dt [Zx;ic?txb 2l XzT, {(Ao(t, 0))° + o' (4;(¢, O ))g} X } 7

* Choose a gauge where the combination A+ v'¢;
has constant eigenvalues (mq,...,my).
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The equation of motion for the defect fermions is then:

We wish to write a defect partition function summing only
over the states with k fermions present. This is given by:

E 1 | dt m; 1 | dt m;
Zdefect: ef 1...€f k)

11<12<...<1p

But we can recognise this as the trace of the Wilson line in
the kth antisymmetric representation of SU(N):

Z et/ dtmiy il dtmy — Ty P oexp <z / dt(Ap + nagba)> .

11<12<...<1
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l.e. integrating out the defect fermions produces a
supersymmetric Wilson-loop insertion.

The representations are a bit more complicated for M > |,
but the same basic idea holds.

Most basic properties of DEG solutions

A natural ansatz for the metric building in the symmetries
we are guaranteed to have, is to take:

d 2
5 = [ldShs, + [3d0 + [2dQ* + dx?

Here X is a Riemann surface with boundary, and the
functions f vary over the surface.
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For instance in the case of AdSs x S°
ds® = R* (du® 4 cosh® uds’yg, + sinh? udQ; + df” + sin” 6 dS2})

the Riemann surface is coordinatized by u, 0.

The general solution is determined in terms of two real
harmonic functions hj,hs on X :

1 1
hi = Z€_¢f12ff Dy = 16¢f22ﬁ

At each point on 0%, one of the spheres shrinks.
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We can therefore visualize the boundary as being divided
into red and black segments, on which the four-sphere /
two-sphere vanishes.

-
----------------
- "
----
- ~
- ~a
-* ~
- -~
- ~
- ~
. ~
. “a
. ~

-----
--------
-® .
. “a
- ~

. .
..........
........
--------------

The non-trivial three-sphere is constructed by fibering
two-spheres over a one-cycle connecting different black
regions. The non-trivial five-spheres arise by fibering four-
spheres over cycles connecting different red regions.
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The full set of allowable solutions involves rather
complicated “topology and regularity conditions” on the
harmonic functions.

We will not discuss these conditions here.

The basic intuition should be clear: the boundary
conditions on the harmonic functions are given by where
they vanish at the boundary together with the nature of

their pole at the AdS5 asymptotic, and they are then
uniquely fixed. We give the explicit form of h for the
one-stack transition, in our paper.
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One can be painfully explicit about the solutions in terms
of h. Introducing conformally flat coordinates on the
Riemann surface

d¥? = 4p*dvdv
and defining the combinations

W = 0h,0hy + 0h10h,
V. = 0h10hy — Oh10hs
Ny = 2hiho|Oh]? — RZW
Ny = 2hihs|Ohs|® — h3W

one finds that the |IB supergravity fields are:

Monday, November 7, 2011



W 1/4 W 1/4
fi = (4 ———hj > 7f2—<4 ——h; )

N1 1N1 NQ N2
1/4
fi = | —4 —Na Ny / B (_W2N1N2>1/8
! Nw | P e |
V.
20 - "2 5
e N,

And writing  h=A+A h,=B+B,

the fluxes are given by (for the case we drew, with I=1,2):
/ F3; = 47720/]\4:877/63 (10A + c.c.)

/ Fy = 47* (o)’ N; = 8%2/ _ (AOB — BOA+ c.c.) .
S? e

I 21
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What’s next

*We would like to “enjoy” the backreacted solutions (or
bottom-up versions of similar solutions) by computing
corrections to transport, e.g. looking for analogues of the
famous “resistivity minimum” that initiated interest in the

Kondo problem. Do arson

*We would like to solve lattice models at the same level of
explicitness. This is probably hard.

*The boundary CFT methods of Affleck and Ludwig,

applied to s-wave reduction, might allow a direct solution
of the maximally supersymmetric Kondo model. It would
be fun to obtain this and compare to supergravity.
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*There is a matrix model which captures the correlation
functions of certain bulk operators in the presence of a
Wilson loop; its eigenvalue distribution mimics beautifully
aspects of the supergravity solution we sketched. It would
be interesting to try and develop the matrix model to
answer questions about correlators of boundary operators.

Gomis, Matsuura,
Okuda, Trancanelli;
Yamaguchi; Pestun;
many earlier works
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