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1.  Introduction and motivation

The Kondo effect was in a sense the first example of a 
system exhibiting asymptotically free running of a coupling 

constant:
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Non-Fermi liquid behavior in Kondo Models∗

Ian Affleck
Department of Physics & Astronomy, University of British Columbia, Vancouver, B.C., Canada, V6T 1Z1

(Dated: February 2, 2008)

Despite the fact that the low energy behavior of the basic Kondo model cannot be studied per-
turbatively it was eventually shown by Wilson, Anderson, Nozières and others to have a simple
“local Fermi liquid theory” description. That is electronic degrees of freedom become effectively
non-interacting in the zero energy limit. However, generalized versions of the Kondo model in-
volving more than one channel or impurity may exhibit low energy behavior of a less trivial sort
which can, nonetheless, be solved exactly using either Bethe ansatz or conformal field theory and
bosonization techniques. Now the low energy limit exhibits interacting many body behavior. For
example, processes in which a single electron scatters off the impurity into a multi electron-hole
state have a non-vanishing (and sometimes large) amplitude at zero energy. This corresponds to
a rare solveable example of non-Fermi liquid behavior. Essential features of these phenomena are
reviewed here.

I. INTRODUCTION

Kondo’s seminal paper of forty years ago1 showed that
the low energy behavior of the Kondo model is funda-
mentally non-perturbative. I write the Hamiltonian as:

H =
∑

!kα

ψ†α
!k

ψ!kα
ε(k) + J #S ·

∑

!k !k′

ψ†
!k

#σ

2
ψ!k′ (1.1)

where ψ!kα
’s are conduction electron annihilation opera-

tors, (of momentum #k, spin α) and #S represents the spin
of the magnetic impurity with

[Sa, Sb] = iεabcSc. (1.2)

There is an implicit sum over electron spin indices, α
in the interaction term in Eq. (1.1). The dimensionless
coupling constant is

λ ≡ Jν, (1.3)

where ν is the density of states at the Fermi surface. As
Kondo showed, perturbation theory in λ is infrared diver-
gent at low T . For instance, the temperature-dependent
resisitivity for a dilute array of impurities is given by a
formula of the form:

ρ(T ) ∼ [λ + λ2 ln
D

T
+ ...]2 (1.4)

Here D is the band-width. No matter how small the cou-
pling constant, λ, the higher order terms eventually over-
whelm the lower order ones at low enough temperature.
This result stimulated an enormous amount of theoret-
ical work. As Nozières put it, “Theorists ‘diverged’ on
their own, leaving the experiment realities way behind”.2

As was realized later, the divergence of the resistivity

∗submitted to the special issue of J. Phys Soc. Japan: “Kondo
effect – 40 Years after the Discovery”

formula has an elegant interpretation in terms of renor-
malization group (RG) concepts. The scale dependent
effective coupling constant, λ(T ) diverges as T → 0:

λ(T ) ≈ λ + λ2 ln
D

T
+ . . . (1.5)

The temperature at which the higher order terms over-
whelm the lower order ones,

TK ≈ D exp[−1/λ], (1.6)

defines a fundamental energy scale. Perturbation theory
can be applied for T >> TK but not for T ≤ TK . The
low T behavior is fundamentally non-perturbative.

Nonetheless, the physics was eventually shown by
Wilson,3 Anderson,4 Nozières5 and others to be simple
at very low energies, E << TK . Only the intermediate
energy range where E is O(TK) defies a simple descrip-
tion. This simplicity at very low energies arises from the
fact, that in a certain sense to be made precise below,
λ(T ) → ∞ at T → 0. This infinite λ behavior is actually
quite simple. (I begin with the case of an S = 1/2 impu-
rity.) One electron forms a singlet with the impurity. The
remaining low energy electronic degrees of freedom feel
an infinite repulsion from the screened impurity which
corresponds to a π/2 phase shift in the s-wave channel.
The induced electron-electron interactions among these
low energy degrees of freedom become increasingly unim-
portant as the energy scale decreases, corresponding to ir-
relevant interactions in the renormalization group sense.
They lead to a simple dependence of physical quanti-
ties on T (or other energy scales) which can be Taylor
expanded in powers of T/TK . From a renormalization
group viewpoint, the low energy fixed point (λ → ∞)
is simply non-interacting electrons, like the high-energy
fixed point (λ = 0) except for the removal of the impu-
rity spin and the presence of a modified boundary condi-
tion at the impurity location corresponding to the phase
shift. The Kondo model thus provides a rare example of
a renormalization group flow between two different fixed
points, both of which are trivial.
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defines a fundamental energy scale. Perturbation theory
can be applied for T >> TK but not for T ≤ TK . The
low T behavior is fundamentally non-perturbative.

Nonetheless, the physics was eventually shown by
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at very low energies, E << TK . Only the intermediate
energy range where E is O(TK) defies a simple descrip-
tion. This simplicity at very low energies arises from the
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rity.) One electron forms a singlet with the impurity. The
remaining low energy electronic degrees of freedom feel
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The induced electron-electron interactions among these
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defines a fundamental energy scale. Perturbation theory
can be applied for T >> TK but not for T ≤ TK . The
low T behavior is fundamentally non-perturbative.

Nonetheless, the physics was eventually shown by
Wilson,3 Anderson,4 Nozières5 and others to be simple
at very low energies, E << TK . Only the intermediate
energy range where E is O(TK) defies a simple descrip-
tion. This simplicity at very low energies arises from the
fact, that in a certain sense to be made precise below,
λ(T ) → ∞ at T → 0. This infinite λ behavior is actually
quite simple. (I begin with the case of an S = 1/2 impu-
rity.) One electron forms a singlet with the impurity. The
remaining low energy electronic degrees of freedom feel
an infinite repulsion from the screened impurity which
corresponds to a π/2 phase shift in the s-wave channel.
The induced electron-electron interactions among these
low energy degrees of freedom become increasingly unim-
portant as the energy scale decreases, corresponding to ir-
relevant interactions in the renormalization group sense.
They lead to a simple dependence of physical quanti-
ties on T (or other energy scales) which can be Taylor
expanded in powers of T/TK . From a renormalization
group viewpoint, the low energy fixed point (λ → ∞)
is simply non-interacting electrons, like the high-energy
fixed point (λ = 0) except for the removal of the impu-
rity spin and the presence of a modified boundary condi-
tion at the impurity location corresponding to the phase
shift. The Kondo model thus provides a rare example of
a renormalization group flow between two different fixed
points, both of which are trivial.

The effective coupling of the impurity spin to the itinerant 
electrons grows logarithmically at low energies
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leading to interesting phenomena at the Kondo 
temperature:
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quite simple. (I begin with the case of an S = 1/2 impu-
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remaining low energy electronic degrees of freedom feel
an infinite repulsion from the screened impurity which
corresponds to a π/2 phase shift in the s-wave channel.
The induced electron-electron interactions among these
low energy degrees of freedom become increasingly unim-
portant as the energy scale decreases, corresponding to ir-
relevant interactions in the renormalization group sense.
They lead to a simple dependence of physical quanti-
ties on T (or other energy scales) which can be Taylor
expanded in powers of T/TK . From a renormalization
group viewpoint, the low energy fixed point (λ → ∞)
is simply non-interacting electrons, like the high-energy
fixed point (λ = 0) except for the removal of the impu-
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tion at the impurity location corresponding to the phase
shift. The Kondo model thus provides a rare example of
a renormalization group flow between two different fixed
points, both of which are trivial.

below which one electron “sacrifices itself” to neutralize 
the spin:
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Variants of this model exhibit other interesting behaviours.
One natural generalisation is the multi-channel model:  

Wilson loops.

2.1 Multichannel Kondo model

The multichannel Kondo model is described by the Hamiltonian

H =
∑

!p, i,α

ε("p)ψ†
!p iαψ!p iα + J

∑

!p !p′ iαβ

Sαβ ψ
†
!p iαψ!p′ iβ (2.1)

where ψ†
!p iα is the creation operator for a conduction electron with channel index i =

1, . . . , K, SU(N) spin α, and energy

ε("p) =
p2

2m
− εF . (2.2)

The interaction is antiferromagnetic, J > 0. These “ambient” electrons interact with a

spin Sαβ localized at the origin and transforming under a representation R of SU(N). The

Fourier transform of this delta-function interaction gives rise to the sum over momenta in

the second term of (2.1). The SU(N) generalizes spin, and this extension will be important

for us because the system that we will study has N = K (large).

Our analysis will focus on the antisymmetric representation with k indices, in which case

the impurity spin S can be described in terms of auxiliary fermions χα with total fermion

number k:

Sαβ = χ†
αχβ −

k

N
δαβ ,

N∑

α=1

χ†
αχα = k . (2.3)

The original version of the model corresponds to one channel (i.e. K = 1) with SU(2)

spin (N = 2), interacting with a single impurity fermion. Integrating out the conduction

electrons up to some cutoff of order of the Fermi momentum shows that at low temperatures

the Kondo coupling flows to J → ∞. This means that the Hamiltonian (2.1) is minimized

by binding one electron with the impurity to form a spin singlet (recall that J > 0).

Therefore, the impurity spin is completely screened and disappears from the low energy

theory. We are left with a theory of free electrons, but we have to impose the boundary

condition ψ = 0 at the origin. This phenomenon will have an analog in the gravity dual, in

terms of a geometric transition where the D5 branes that give rise to the impurity disappear

and are replaced by their flux.

In the multichannel K ≥ 2 case, the ground state of the strong coupling point J → ∞
is a Young tableau with K − 1 columns and N − k lines; this has larger dimension than

6

with i=1,...,K labelling channel, and alpha the index for the 
global SU(2) spin symmetry.  

If the defect has spin s, then
the IR fate depends on the # of channels compared to s:

K > 2s

K < 2s

“Overscreened,” non-Fermi liquid behavior

“Underscreened,” free partially screened spin in IR

c.f. exact solution by Affleck, Ludwig
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Another interesting generalisation arises when instead of 
considering the impurity interacting with a free Fermi 
liquid, one considers a non-trivial bulk CFT (as would 
happen if one tunes such a system through a quantum 

critical point):

Strange metals and the AdS/CFT correspondence 8

CFT

Figure 3. A quantum spin coupled via an exchange interaction to a CFT in 2+1
dimensions.

zα and Aµ by the constraints of symmetry and gauge invariance, which now yields

Z =

∫

Dzα(r, τ)DAµ(r, τ) exp

(

−
∫

d2rdτ Lz

)

Lz = |(∂µ − iAµ)z
α|2 + s|zα|2 + u(|zα|2)2 + 1

2w2
(εµνλ∂νAλ)

2 (7)

For brevity, we have now used a “relativistically” invariant notation, and scaled away

the spin-wave velocity v; the values of the couplings s, u, w are different from, but

related to, those in Eq. (4). The Maxwell action for Aµ is generated from short distance
zα fluctuations, and it makes Aµ a dynamical field. This theory has a ‘Higgs’ phase

where zα condenses like the Higgs boson: this we can identify as the Néel state. The

ordinary Coulomb phase with zα gapped appears as a ‘spin liquid’ state with a collective

gapless, spinless excitation associated with the Aµ photon. Non-perturbative effects [34]

associated with the monopoles in Aµ (not discussed here), show that this spin liquid is

ultimately unstable to the appearance of VBS order.
An interesting question now is whether the transition between the Néel and VBS

states as described by (7) is a CFT3. The existence of a CFT3 fixed point has been

established order-by-order in the 1/N expansion, where the spinor index α = 1 . . .N .

However, the issue remains unsettled for N = 2 [38, 39].

For our purposes here, the CFT3s described by Eqs. (4) and (7) are non-

supersymmetric analogs of the CFT3 realized by SYM3. Insights gained from the
AdS/CFT correspondence are described elsewhere [9, 10].

3. Quantum impurity in a CFT

As we discussed in Section 1, we will move away from the zero density CFTs of Section 3

by a adding a single defect localized in space. This will eventually allow us to address

the non-zero density case in the following section.
For the quantum antiferromagnets of Section 3, the simplest interesting defect is a

single spin Ŝa coupled to the antiferromagnet by an exchange coupling, J , as shown in

Fig. 3.

More generally, the configuration of Fig. 3 belongs to a wide class of ‘Kondo’

problems. Usually, the bulk CFT is rather simple: it is a free electron system whose

We will be considering such models in the context of 
gauge/gravity duality, momentarily.

c.f. Sachdev, 
Buragohain, Vojta
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the Kondo lattice Hamiltonian

H = HJ +
∑

k

εkc
†
kαc

α
k +

JK

2

∑

i

Ŝa
i c

†
iα(σ

a)αβc
β
i . (29)

Here HJ is a quantum spin model just as in Eq. (1). To these localized spins, we have

added mobile conduction electrons: cαk is the Fourier transform of the electron operator

cαi on site i and εk is the electron dispersion. Finally. JK is the Kondo exchange coupling

between the conduction electrons and the spins.

The most direct mean-field analyses of H appear in lattice models with random
infinite-range exchange interactions [64, 74]: the Jij being independent Gaussian random

variables with zero mean. Note that the disorder is ‘quenched’ i.e. each Jij is

independent of time, but is chosen at random from a Gaussian distribution. However,

similar mean field equations also arise in the large spatial dimension limit of non-random

Kondo lattice models [71, 72, 73, 74, 75].

Such mean field models yield solutions corresponding to the two classes of non-
magnetic metallic states expected in Kondo lattice models [79, 80, 81]:

• A Fermi liquid (FL) with a ‘large Fermi surface’, which can be viewed as arising
from the RG flow to large JK . Here the electrons forming the Ŝa

i spins, along with

the cαi electrons, become part of the Luttinger count which determines the volume

enclosed by the Fermi surface.

• A fractionalized Fermi liquid (FFL or FL*) with a ‘small Fermi surface’, in which

the effects of JK can be accounted for perturbatively. Here the Ŝa spins form a spin

liquid, while the conduction electrons form a Fermi surface whole volume counts

only the density of the cαi conduction electrons.

Let us describe the mean-field structure of the FL* phase so obtained [64, 74]. It

was found that correlations of the spin liquid sector of this phase are described by a

quantum impurity theory which is identical to Eq. (14). However, this theory now has
an additional self-consistency condition that the ‘environment’ spins ϕa are the same

as the impurity spin Ŝa: thus the two-point correlator of ϕa which appears in Eqs (13)

and (14) should be proportional to the two-point correlator of Ŝa in Eq. (26): i.e.

D(τ) ∝ C(τ). (30)

It was further shown that a solution of this self-consistency relation is only possible if

the spectrum is gapless and has a power-law form. Then from Eqs. (19) and (27) we

have the exponent relation

h = γ. (31)

Combining this with the exact relation in Eq. (28) for the quantum impurity model, we

obtain [64]

h = 1. (32)

This is the value that corresponds to ‘marginal Fermi liquid’ behavior [76], as we will

see shortly. The same value of h is obtained in large dimension solution of non-random

A last and even more interesting generalisation is to 
consider the Kondo lattice model:

Now competition between the Kondo interaction and 
RKKY spin-spin interactions, is thought to potentially 

explain the existence of phase diagrams like those of the 
heavy fermion metals:

We lack an analogue of  ‘t Hooft’s argument to justify a 
string theory approach to these systems. 

On the other hand, quantum criticality is believed by some 
to play a crucial role in organizing and explaining the 

transport properties which characterize some of the most 
mysterious phases in these materials:

A less famous but perhaps more tractable set of materials 
is the “heavy fermion metals.”  Here, there is very 

significant evidence that the idealized picture:

is actually realized in concrete materials,
whose phase diagram is then:

Thursday, January 6, 2011

One holy grail is to develop a systematic understanding of 
the non-Fermi liquid phases that are ubiquitous.

Wednesday, May 18, 2011
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We will be studying highly idealized models of this general 
sort in the talk today.  The bulk will be a highly 

supersymmetric CFT, coupled supersymmetrically to the 
defect spin.  There are many drawbacks to the 

supersymmetry, but it has the virtue of allowing us to 
reliably solve for some features of the physics, in some 

limits.

Plan:

II.  SUSY Kondo model: probe approximation
III.  SUSY Kondo lattice model: probe approximation
IV.  SUSY Kondo model: including backreaction
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II.  The maximally supersymmetric Kondo model

We will be studying the system realised by the following 
configuration of D3 and D5 branes in type IIB superstring 

theory:

AdS/CFT. We begin by reviewing the realization of quantum impurities using intersecting

D3 and D5 branes. Next we study the model at large ’t Hooft coupling and large N ,

but keeping the number of D5 branes M fixed. As explained in [3], this is equivalent to

having D5 branes embedded in AdS5 × S5 with worldvolume flux. From the field theory

perspective, this is a quenched approximation where loops of defect fields are neglected.

After reviewing the gravity description, we calculate the g-function and compare with the

nonsupersymmetric Kondo model of §2.1.

3.1 D-brane description of the Kondo model

The brane configuration is given by4

0 1 2 3 4 5 6 7 8 9

N D3 × × × ×
M D5 × × × × × ×
k F1 × ×

This configuration preserves 8 supercharges. The k fundamental strings between the D3

and D5 branes lead to k fermions localized on the D3/D5 intersection.

The full open string action is given by

S = SD3 + SD5 + Sdefect (3.1)

where SD3 is the action for the N D3-branes (namely N = 4 SYM), SD5 describes the 6d

worldvolume theory on the M D5-branes, and Sdefect is the action for the 3-5 strings at the

intersection,

Sdefect =

∫
dt

[
iχ̄I

i ∂tχ
i
I + χ̄I

i

(
A0(t, 0)

i
j + naφ

a(t, 0)ij
)
χj
I + χ̄I

i (Ã0)
J
I χ

i
J − k(Ã0)

I
I

]
(3.2)

where i, j = 1, . . . , N , I = 1, . . . ,M . The fermion χ is a bifundamental of SU(N)×SU(M),

so it couples to the D3 and D5 gauge fields A0 and Ã0. Supersymmetry requires that it

couple also to one linear combination naφa of the scalars of the N = 4 theory; na is a unit

vector in R6. Ã0 also acts as a Lagrange multiplier fixing the fermion number χ̄I
iχ

i
J = kδIJ .

In the decoupling limit for the D3 gauge theory, the 5-5 strings become nondynamical. Then

we are left with 4d N = 4 SYM with gauge group SU(N), coupled to a 0 + 1-dimensional

4We refer the reader to [8, 15] for detailed descriptions of this system.
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In the standard supergravity limit,  this system is dual to 
N=4 SYM coupled to a defect fermion with: 

The bosonic symmetries preserved by the defect are:

fermionic system (3.2) with flavor symmetry U(M). This reproduces the supersymmetric

Kondo model of §2.2.

Let us now discuss the symmetries preserved by the defect. A line (x0, 0, 0, 0) preserves

rotations along the line, time translations, dilatations and special conformal transfor-

mations along the time direction, δx0 = b0x2. These generators (Jij, P0, D,K0) give

SO(3) × SL(2,R); this is the subgroup of the original SO(4, 2) conformal group that

is left unbroken by a line. On the other hand, the SO(6) R-symmetry that acts on the

N = 4 SYM scalar fields is broken to SO(5) by the coupling χ̄naφaχ. Thus, the bosonic

symmetries preserved by the Wilson loop are SL(2,R)× SO(3)× SO(5). The defect also

breaks half of the supersymmetries of the ambient gauge theory. These combine with the

bosonic symmetries to give the supergroup OSp(4∗|4) [15]. This group plays an important

role in understanding the dynamics at strong coupling. The operators of lowest dimension

correspond generically to short multiplets of OSp(4∗|4), whose dimensions are protected

and determined by group theory. We calculate the spectrum of excitations explicitly in §4,
and use these results in §5 to study the stability and thermodynamics of the defect theory.

The dynamics of the system is controlled by the ’t Hooft coupling λ = g2YMN and M/N .

At weak coupling λ " 1 we can perform perturbative field theory calculations, and the

results of §2 apply. On the other hand, at large ’t Hooft coupling there is dual gravity

description in terms of type IIB supergravity with 3- and 5-form fluxes. When M/N " 1

the D5 branes can be treated as probes in the AdS5 × S5 background generated by the

D3 branes. For 1 " g2YMM " g2YMN the backreaction of the 5-branes should be taken

into account as well. We now focus on the probe limit, postponing the analysis of the fully

backreacted solution to §6, where we will make contact with the results of [7].

3.2 Gravity side

Let us review the gravity description of Wilson loops in the probe limit, whereM/N correc-

tions are ignored, and apply it to the Kondo model. As found in [3], in this approximation

the quantum impurity is described holographically by D5 branes embedded in AdS5 × S5,

with worldvolume flux. In field-theoretic terms, this gives a solution to the Kondo model

in the quenched approximation, where loop effects of the defect fermions are ignored. Fur-

thermore, the ambient conformal field theory is very strongly coupled, and its quantum

effects are resummed into a gravitational dual. This approximation will allow us to find

important quantities such as the defect entropy and thermodynamics controlled by the

leading irrelevant operators.
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It is useful to write the               metric in a way that 
makes these symmetries manifest:In order to realize the defect symmetries transparently, it is useful to slice AdS5 × S5 by

ds2 = R2
(
du2 + cosh2 u ds2AdS2

+ sinh2 u dΩ2
2 + dθ2 + sin2 θ dΩ2

4

)
, (3.3)

with u ≥ 0 and 0 ≤ θ ≤ π. The potential C4 that gives rise to the five form flux can be

written as [8]

C4 = R4

[(
−u

2
+

1

8
sinh 4u

)
e0e1e4e5 +

(
3

2
θ − sin 2θ +

1

8
sin 4θ

)
e6e7e8e9

]
, (3.4)

where (e0, e1) are the vielbeins for ds2AdS2
, (e4, e5) are the vielbeins for dΩ2

2, and (e6, e7, e8, e9)

are those for dΩ2
4.

The D5-brane worldvolume is AdS2 × S4, given by the embedding conditions

u = 0 , θ = θk . (3.5)

As we review shortly, this angle is related to the number of defect fermions k by

k =
N

π

(
θk −

1

2
sin 2θk

)
. (3.6)

This configuration was studied originally by [20]. The bosonic symmetries SL(2,R) ×
SO(3)× SO(5) are explicitly realized in the way of writing the metric (3.3).

Ignoring nonabelian interactions, the D5 branes are described by the DBI action

S5 = −T5

∫
d6ξ

√
− det(G+ F ) + T5

∫
F ∧ C4 , (3.7)

with worldvolume metric

ds2D5 = R2(ds2AdS2
+ sin2 θk dΩ

2
4) . (3.8)

The background value (3.4) induces a tadpole for F due to the Chern-Simons interaction.

As a result, there is nonzero worldvolume flux given by

F = cos θk e
0 ∧ e1 , (3.9)

and the fundamental string charge k is given by δSD5/δF01.

3.3 Defect free energy and entropy

As a first step towards solving the supersymmetric Kondo model, we now evaluate the

boundary free energy and entropy (g-function) in the probe approximation, and compare

with the multichannel Kondo model of §2.1.
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Wilson loops.

2.1 Multichannel Kondo model

The multichannel Kondo model is described by the Hamiltonian

H =
∑

!p, i,α

ε("p)ψ†
!p iαψ!p iα + J

∑

!p !p′ iαβ

Sαβ ψ
†
!p iαψ!p′ iβ (2.1)

where ψ†
!p iα is the creation operator for a conduction electron with channel index i =

1, . . . , K, SU(N) spin α, and energy

ε("p) =
p2

2m
− εF . (2.2)

The interaction is antiferromagnetic, J > 0. These “ambient” electrons interact with a

spin Sαβ localized at the origin and transforming under a representation R of SU(N). The

Fourier transform of this delta-function interaction gives rise to the sum over momenta in

the second term of (2.1). The SU(N) generalizes spin, and this extension will be important

for us because the system that we will study has N = K (large).

Our analysis will focus on the antisymmetric representation with k indices, in which case

the impurity spin S can be described in terms of auxiliary fermions χα with total fermion

number k:

Sαβ = χ†
αχβ −

k

N
δαβ ,

N∑

α=1

χ†
αχα = k . (2.3)

The original version of the model corresponds to one channel (i.e. K = 1) with SU(2)

spin (N = 2), interacting with a single impurity fermion. Integrating out the conduction

electrons up to some cutoff of order of the Fermi momentum shows that at low temperatures

the Kondo coupling flows to J → ∞. This means that the Hamiltonian (2.1) is minimized

by binding one electron with the impurity to form a spin singlet (recall that J > 0).

Therefore, the impurity spin is completely screened and disappears from the low energy

theory. We are left with a theory of free electrons, but we have to impose the boundary

condition ψ = 0 at the origin. This phenomenon will have an analog in the gravity dual, in

terms of a geometric transition where the D5 branes that give rise to the impurity disappear

and are replaced by their flux.

In the multichannel K ≥ 2 case, the ground state of the strong coupling point J → ∞
is a Young tableau with K − 1 columns and N − k lines; this has larger dimension than

6

AdS5 × S5

5

into the black brane, characterized by latitudes θν of S4 that they wrap. The position −→a in

the −→x directions and the direction of the S4 within S5 give other parameters as well. But

for a single D5-brane, we can take these to be fixed at any value without loss of generality,

whereas for multiple D5-branes to be considered below, their relative values would matter.

Explicitly, by parametrizing the 4-spheres by (θ1, θ2, θ3, φ4) and denoting the coordinates on

the D5-brane by ξ = (τ, ρ, θ1, θ2, θ3, φ4), the embeddings are given by1

(τ, ρ, θ1, θ2, θ3, φ4) #→ (τ, ρ,
−→
0 , θν , θ1, θ2, θ3, φ4) with ρ ∈ (0,∞) and τ ∈ (−∞,∞), (2.7)

where the worldvolume flux depends on θν , and is given by

(2πα′F)τρ = −(2πα′F)ρτ = cosθν with all other components vanishing. (2.8)

Actually, as explained in [23], possible values of the latitude θν ∈ (0, π) are quantized:

defining a parameter ν ∈ (0, 1) by

ν ≡ 1

π
(θν − sinθνcosθν) , (2.9)

we have the quantization condition

n ≡ νN ∈ Z. (2.10)

In the dual field theory, introducing such a D5-brane in the bulk corresponds to coupling

localized massless fermions to the N = 4 gauge theory as

Sfield theory = SN=4 +

∫
dt

[
iχ†

b∂tχ
b + χ†

b

{
(A0(t,

−→
0 ))bc + vI(φI(t,

−→
0 ))bc

}
χc
]
, (2.11)

where SN=4 is the action for N = 4 supersymmetric SU(N) gauge theory [24], Aµ and φI

are its gauge and scalar fields in the adjoint representation of SU(N), respectively, and vI is

a unit 6-vector determined by the direction of the S4 within S5 wrapped by the D5-brane.

The parameter n ≡ νN , on the other hand, determines the number of fermions at the site
−→
0 [25]. More precisely, it corresponds to taking the ensemble with the density matrix

n!(N − n)!

N !

∑

b1<...<bn

| b1, ..., bn〉〈b1, ..., bn | (2.12)

1 We choose the orientation of the spacetime so that εtr123θθ1θ2θ3φ4 = +
√
−g and those of D5-branes so

that ετρθ1θ2θ3φ4 = +
√

−g(induced).
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In order to realize the defect symmetries transparently, it is useful to slice AdS5 × S5 by
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C4 = R4

[(
−u

2
+

1

8
sinh 4u

)
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3

2
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1

8
sin 4θ
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e6e7e8e9
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, (3.4)
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Ignoring nonabelian interactions, the D5 branes are described by the DBI action

S5 = −T5

∫
d6ξ

√
− det(G+ F ) + T5

∫
F ∧ C4 , (3.7)

with worldvolume metric

ds2D5 = R2(ds2AdS2
+ sin2 θk dΩ

2
4) . (3.8)

The background value (3.4) induces a tadpole for F due to the Chern-Simons interaction.

As a result, there is nonzero worldvolume flux given by

F = cos θk e
0 ∧ e1 , (3.9)

and the fundamental string charge k is given by δSD5/δF01.

3.3 Defect free energy and entropy

As a first step towards solving the supersymmetric Kondo model, we now evaluate the

boundary free energy and entropy (g-function) in the probe approximation, and compare

with the multichannel Kondo model of §2.1.
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There is a stable D5-embedding in this background, where 
the D5-brane wraps a four-sphere in the 5-sphere:

(τ, ρ, θ1, θ2, θ3,φ4) !→ (τ, ρ,
−→
0 , θν , θ1, θ2, θ3,φ4) with ρ ∈ (0,∞) and τ ∈ (−∞,∞),

!

S
8-p

S
7-p

Figure 1: The points of the S8−p sphere with the same polar angle θ define a S7−p sphere.
The angle θ represents the latitude on S8−p, measured from one of its poles.

Wednesday, November 24, 2010The allowed angles are:   

In order to realize the defect symmetries transparently, it is useful to slice AdS5 × S5 by

ds2 = R2
(
du2 + cosh2 u ds2AdS2

+ sinh2 u dΩ2
2 + dθ2 + sin2 θ dΩ2

4

)
, (3.3)

with u ≥ 0 and 0 ≤ θ ≤ π. The potential C4 that gives rise to the five form flux can be

written as [8]

C4 = R4

[(
−u

2
+

1

8
sinh 4u

)
e0e1e4e5 +

(
3

2
θ − sin 2θ +

1

8
sin 4θ

)
e6e7e8e9

]
, (3.4)

where (e0, e1) are the vielbeins for ds2AdS2
, (e4, e5) are the vielbeins for dΩ2

2, and (e6, e7, e8, e9)

are those for dΩ2
4.

The D5-brane worldvolume is AdS2 × S4, given by the embedding conditions

u = 0 , θ = θk . (3.5)

As we review shortly, this angle is related to the number of defect fermions k by

k =
N

π

(
θk −

1

2
sin 2θk

)
. (3.6)

This configuration was studied originally by [20]. The bosonic symmetries SL(2,R) ×
SO(3)× SO(5) are explicitly realized in the way of writing the metric (3.3).

Ignoring nonabelian interactions, the D5 branes are described by the DBI action

S5 = −T5

∫
d6ξ

√
− det(G+ F ) + T5

∫
F ∧ C4 , (3.7)

with worldvolume metric

ds2D5 = R2(ds2AdS2
+ sin2 θk dΩ

2
4) . (3.8)

The background value (3.4) induces a tadpole for F due to the Chern-Simons interaction.

As a result, there is nonzero worldvolume flux given by

F = cos θk e
0 ∧ e1 , (3.9)

and the fundamental string charge k is given by δSD5/δF01.

3.3 Defect free energy and entropy

As a first step towards solving the supersymmetric Kondo model, we now evaluate the

boundary free energy and entropy (g-function) in the probe approximation, and compare

with the multichannel Kondo model of §2.1.

15

In the probe approximation M << N, the D5 worldvolume 
is an              given by the embedding conditions:
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The defect free energy and entropy can be computed by 
evaluating the DBI action immersed in the AdS black brane:

The defect free energy, as a function of temperature T , can be computed using the DBI

action immersed in an AdS black hole. This calculation is easier to perform in the original

Poincare slicing of AdS, where the black hole metric obtains the familiar form

ds2 = −f(r)dt2 +
dr2

f(r)
+

r2

R2

(
3∑

i=1

dx2
i

)
+R2(dθ2 + sin2θ dΩ2

4) , (3.10)

where

f(r) =
r2

R2

(
1−

r4+
r4

)
. (3.11)

The temperature of the field theory is related to the location of the horizon by T = r+/πR2.

The 5-form flux is

F5 = −(1 + ∗)4r
3

R4
(dt ∧ dr ∧ dx1 ∧ dx2 ∧ dx3) . (3.12)

In these coordinates, the D5 branes are extended along r, t and the S4.

After regularizing by subtracting the Euclidean action of the analogous D5 embedded into

the pure AdS5 × S5 spacetime, the D5 free energy at leading order in 1/N is given by [22]

Fdefect = −
√
λ
sin3 θk
3π

NT , (3.13)

where λ is the ’t Hooft coupling λ = g2YMN . Ignoring nonabelian interactions, for M D5

branes the total free energy is simply M times the above result. Recalling the field theory

definition (2.5) of impurity entropy and that S = −∂F/∂T , from (3.13) we obtain

log g = Simp =
√
λ
sin3 θk
3π

MN , (3.14)

in agreement with the field theory result (2.22). We note that this coincides with the

expectation value of the circular Wilson loop, up to a factor of 2 from mapping the Polyakov

to the circular loop [5].

This expression, which is valid at large ’t Hooft coupling and when N/M & 1, is indepen-

dent of temperature. The result applies to any nonzero (even very small) temperatures and

is dictated by conformal invariance. On the other hand, CFT techniques also determine

the defect entropy of the overscreened Kondo model, given in (2.6). At large N , this can

be approximated by [13]

Simp =
2

π
MN

[
f

(
π

1 +K/N

)
− f

(
π

1 +K/N
(1− k/N)

)
− f

(
π

1 +K/N
k/N

)]
(3.15)

where f(x) =
∫ x

0 du log sin u and recall that K is the number of channels of the ambient

electrons.
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The impurity entropy or “g-function” is defined by:

the degeneracy at zero coupling, given by N !/k!(N − k)! (see e.g. [13]). Therefore, a

RG flow from weak to strong coupling is not possible, and instead an intermediate fixed

point is expected. This is known as “overscreening”, and is not described by Fermi-liquid

theory. Our supersymmetric model will correspond to this regime, and we will study the

intermediate fixed point using AdS/CFT.
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〈S(0)S(t)〉 ∼ 1

t2∆s
, ∆s =

N

N +K
. (2.4)

The whole effect of the impurity is encoded into constraints that determine the number of

times a given state occurs in the spectrum. According to the “fusion rule”, the spectrum

is determined by acting on a given primary operator with the spin current in the repre-

sentation R of the impurity spin. The flavor and charge sectors are not modified. These

constraints give rise to a conformal field theory with boundary conditions that respect

conformal invariance –a boundary CFT.

The approach of integrating out the ambient electrons to obtain an effective theory on the

defect has also been followed in the literature; see e.g. [13]. The saddle point equations for

the defect fields can be solved at large N , leading to results consistent with the boundary

CFT predictions.

We will then compare these to the predictions from the gravity side. Particularly important

is the impurity entropy (or g-function), which is defined as

log g = Simp ≡ limT→0 limV→∞ [S(T )− Sambient(T )] (2.5)

where Sambient is the contribution proportional to the volume V . The g-function is the

analogue of the c-function for theories with boundary. In the multichannel model,

Simp = log
k∏

n=1

sin π(N+1−n)
N+K

sin πn
N+K

. (2.6)
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A crucial difference between both expressions is that (3.14) increases with the ’t Hooft

coupling, which fixes the strength of interactions in the ambient CFT. However, the multi-

channel Kondo model of §2.1 is based on a gas of noninteracting electrons, and this effect

is absent. Physically, the increase of log g with
√
λ in our supersymmetric model is due

to the fact that the chemical potential for the defect fermions is proportional to
√
λ. This

may be understood directly in field theory terms, as we found in §2.3. It implies that the

g-function increases under a marginal deformation of the ambient theory by the operator

F 2
µν that changes gYM –a property that could also be understood using the approach of

[21].

To continue comparing the two answers, note that both g-functions become largest when

k/N = 1/2, corresponding to having particle-hole symmetry χ† ↔ χ. Normalizing the

g-functions so that their value is one at the maximum, Figure 1 shows log g as a function

of k/N by numerically solving (3.14) (dotted line) and from (3.15) for the values K/N = 1

(blue curve) and K/N = 1/10 (red curve). In particular, this reveals that the two entropies

are most similar when K = N , namely when the ambient electrons are N × N matrices

–as we would expect when comparing to the N = 4 model.
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Figure 1: Impurity entropy as a function of k/N for the supersymmetric model (dotted curve) and

nonsupersymmetric multichannel model with number of channelsK/N = 1 (blue) andK/N = 0.1

(red).

It is also useful to compare the two behaviors in the regime k/N $ 1. Expanding (3.14)

in powers of k/N obtains

log g =
1

2
kM

√
λ

[
1− 3

10

(
3πk

2N

)2/3

− 3

280

(
3πk

2N

)4/3

+ . . .

]
. (3.16)
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* The plot is symmetric about k/N = 1/2 due to particle/
hole symmetry

* We see the results for the SUSY model are closest to 
those for the standard multi-channel model with # of 

channels equal to N 
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* From the exact result, or its small k/N expansion
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17we see that the answer is far from being that of a free spin 
with integer number of possible spin states.  This is also 
true of overscreened (but not underscreened) Kondo 

models.

Defect specific heat and susceptibility

In the “real” model, these vanish at the fixed point, and 
are governed by the leading irrelevant operator that 

would be present in the flow.
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In our model too, 

the multichannel case this infinite coupling point is unstable (the ground state degeneracy

at strong coupling is larger than for J = 0). The model flows instead to an intermediate

fixed point that is not described by Fermi-liquid theory.

Let us ask the same question in our case. Given the results (4.15) on the spectrum of

defect operators, the operator O = χ̄φ⊥χ of lowest dimension is marginal but it transforms

as a vector under SO(5). The lowest dimension singlet operator has then dimension 2,

corresponding to O2. This is irrelevant in a 0 + 1-dimensional theory. Thus, there are no

relevant or marginal operators allowed by SO(3) × SO(5) and the Kondo fixed point is

stable at large ’t Hooft coupling. At small λ, operators that are not chiral primaries may

also have small dimension and should be taken into account.

Notice that at large N and λ, the stability of the fixed point is already guaranteed by

the large OSp(4∗|4) superconformal algebra. Indeed, in this limit the operators of lowest

dimension arise from small representations, but this algebra does not have short multiplets

with states of dimension h ≤ 1 that are singlets under SO(3) × SO(5). This should be

contrasted with known CFTs that contain light scalars and thus can have marginal or

relevant deformations. The restrictions from the global symmetries are relaxed in systems

with impurities separated along the spatial direction. This breaks SO(3), so operators

with nonzero SO(3) spin are now allowed in studying the stability of the impurity fixed

point. In this case the lowest allowed dimension is two, from the second state in (4.15). So

we learn that the impurity fixed point in a system with broken SO(3) is still stable.

5.2 Impurity specific heat and magnetic susceptibility

Interesting observables in a defect model include quantities like the impurity free energy,

specific heat and magnetic susceptibility. In the strict scaling limit, because the free energy

of the defect will scale as Fdefect ∼ T (see (3.13)), the impurity specific heat

Cdefect = −T
∂2Fdefect

∂T 2
(5.1)

will vanish.

The behavior of the defect susceptibility is more subtle and interesting. We define the

susceptibility as coming from considering a background “magnetic field” B that couples to

the unbroken SO(5) R-symmetry current via

S ⊃
∫

d4xAαJ
α
R (5.2)

24

will clearly vanish at the fixed point (even after 
backreaction), and so will be governed by the leading 

irrelevant operator.

We define susceptibility with respect to the “magnetic 
field” that couples to the SO(5) R-current:
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Interesting observables in a defect model include quantities like the impurity free energy,

specific heat and magnetic susceptibility. In the strict scaling limit, because the free energy

of the defect will scale as Fdefect ∼ T (see (3.13)), the impurity specific heat

Cdefect = −T
∂2Fdefect

∂T 2
(5.1)

will vanish.

The behavior of the defect susceptibility is more subtle and interesting. We define the

susceptibility as coming from considering a background “magnetic field” B that couples to

the unbroken SO(5) R-symmetry current via

S ⊃
∫

d4xAαJ
α
R (5.2)

24

(with A the vector potential for B). The total susceptibility is then

χtotal ≡
∂2F

∂B2

∣∣∣∣
B=0

, (5.3)

and the impurity susceptibility is the piece of χtotal that does not scale like a spatial

volume, namely χdefect = χtotal − χambient. With our definition (5.2) of magnetic field, the

susceptibility is given by integrating the two-point function of SO(5) R-currents. In the

original overscreened Kondo model the defect susceptibility vanishes at the fixed point,

but this need not be the case when the ambient theory has interactions. For instance,

in the models of [14], χdefect = C/T with C a universal (irrational) number. For us

χdefect vanishes trivially in the probe limit; however, results with circular Wilson loops in

§6.4 suggest that it is nonzero after taking into account the defect backreaction, with a

coefficient proportional to (3.14). Until we are ready to discuss the backreacted solution,

we restrict the analysis of the susceptibility to the probe limit. In contrast, our results

here for the specific heat are valid beyond the probe approximation.

In the overscreened Kondo model, the defect specific heat and impurity entropy vanish in

the strict scaling limit. It is because of this, as emphasized in e.g. [1, 2], that the crucial role

in governing the defect thermodynamics is played by the leading irrelevant operator that

may be present in an RG flow to the critical point. In the overscreened model summarized

in §2.1, this operator is a descendant O0 = #J−1 · #φ obtained by contracting the spin

current with the primary operator in the adjoint of the spin group. The dimension of O0 is

h0 = 1+ N
N+K , which becomes h0 = 3/2 for K = N . We stress again that for us χdefect = 0

only in the probe limit –below we find a nonzero susceptibility in the backreacted case,

even in the absence of irrelevant deformations.

We should therefore consider the results for Cdefect and χdefect in the presence of such a

perturbation. More precisely, one is generally interested in the leading operator consistent

with the SO(3) × SO(5) global spin and flavor symmetries. Let us first discuss this for a

general operator O0 that is a singlet under the global symmetries and has scaling dimension

h0 ≥ 2 (recall that there are no relevant or marginal singlet operators). In the dual field

theory, we imagine deforming the defect action so that

Sdefect → Sdefect +

∫
dt (λ0O0 + h.c.) . (5.4)

Here, λ0 is a parameter of mass dimension 1−h0 < 0; we can use it to define a scale analo-

gous to the Kondo temperature in [1, 2], TK ∼ λ−1/(h0−1)
0 . The defect operators considered

below have vanishing one point function so, as in the overscreened Kondo problem, the

corrections to the specific heat and susceptibility are second order in λ0. Now, the basic

25

The defect susceptibility will vanish trivially in the probe 
approximation before including the leading irrelevant 

operator.  Backreaction will change this.

Monday, November 7, 2011



* The system is highly symmetric, enjoying the OSp(4∗|4)
supergroup of symmetries.  The lowest weight 

representations of this supergroup are classified.

The even subgroup of the supergroup is 

4.1 Defect operators

Starting from the action (3.1) and (3.2), at large N the defect operators of lowest dimen-

sions are single traces of SU(N) indices and contain one pair of defect fermions,

(O(n)) J
I =

∑

i,j

χ̄J
j (φ

a1 . . .φan) j
i χi

I (4.1)

where φa are the N = 4 scalars. These operators transform in the adjoint of the flavor

U(M) group. Focusing on the spectrum at large N , the operators of lowest dimension

arise from small multiplets of the OSp(4∗|4) superconformal algebra preserved by the de-

fect. These correspond to chiral primaries, whose dimensions are protected from quantum

corrections. The even subgroup is SL(2,R)× SO(3)× SO(5), and states are classified by

the corresponding quantum numbers (h, j;m1,m2), where h is the SL(2,R) dimension, j

is the SO(3) spin, and (m1,m2) are the SO(5) Dynkin labels of the state. Lowest weight

representations for this supergroup were analyzed in [23].

The operator of lowest dimension arises from an ultrashort supermultiplet of OSp(4∗|4).
The full supermultiplet is

(1, 0; 0, 1)⊕ (3/2, 1/2; 1, 0)⊕ (2, 1; 0, 0) . (4.2)

The first state has dimension 1, is an SO(3) singlet and transforms as a vector of SO(5).

The next state is a spacetime fermion, and transforms in the spinor representations of

SO(3) and SO(5). The last state, of dimension 2, is an SO(3) triplet and SO(5) singlet.

For our purposes, we will also need short multiplets with lowest weight state of the form

(f, 0) under SL(2,R)× SO(3); the multiplet content for f ≥ 2 is

(f, 0; 0, f)⊕ (f + 1/2, 1/2; 1, f − 1)⊕ (f + 1, 1; 0, f − 1)⊕
(f + 1, 0; 2, f − 2)⊕ (f + 3/2, 1/2; 1, f − 2)⊕ (f + 2, 0; 0, f − 2) . (4.3)

4.2 D5 fluctuations and KK reduction

Having understood the multiplet structure of the superconformal algebra, the next step is

to find which of these operators are physically realized. These defect operators are dual to

fluctuations of the D5 worldvolume fields in the AdS5 × S5 background. So our strategy

will be to calculate the spectrum of D5 fields explicitly, and use these results to determine

the anomalous dimensions of defect operators via

hscalar =
d

2
+

1

2

√
d2 + 4m2
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and the states are classified by the quantum numbers 
h,j,m1,m2 (the SL(2,R) dimension, the SO(3) spin, and the 

SO(5) Dynkin labels, respectively).
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* The system is highly symmetric, enjoying the OSp(4∗|4)
supergroup of symmetries.  The lowest weight 

representations of this supergroup were analyzed by 
Gunaydin and Scalise some time ago.

* Intuitively, in the limit we’re working, we expect the 
lowest dimension operators to be the short multiplets of 

this algebra, of schematic form:
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U(M) group. Focusing on the spectrum at large N , the operators of lowest dimension
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4.2 D5 fluctuations and KK reduction

Having understood the multiplet structure of the superconformal algebra, the next step is

to find which of these operators are physically realized. These defect operators are dual to

fluctuations of the D5 worldvolume fields in the AdS5 × S5 background. So our strategy

will be to calculate the spectrum of D5 fields explicitly, and use these results to determine

the anomalous dimensions of defect operators via

hscalar =
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So, to find these quantities, we need to determine the 
spectrum of defect operators, and in particular find the 
leading singlet under the SO(3) x SO(5) spin and flavor 

symmetries.
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supergroup of symmetries.  The lowest weight 
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Gunaydin and Scalise some time ago.
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lowest dimension operators to be the short multiplets of 
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χ̄J
j (φ
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where φa are the N = 4 scalars. These operators transform in the adjoint of the flavor

U(M) group. Focusing on the spectrum at large N , the operators of lowest dimension

arise from small multiplets of the OSp(4∗|4) superconformal algebra preserved by the de-

fect. These correspond to chiral primaries, whose dimensions are protected from quantum

corrections. The even subgroup is SL(2,R)× SO(3)× SO(5), and states are classified by

the corresponding quantum numbers (h, j;m1,m2), where h is the SL(2,R) dimension, j

is the SO(3) spin, and (m1,m2) are the SO(5) Dynkin labels of the state. Lowest weight

representations for this supergroup were analyzed in [23].

The operator of lowest dimension arises from an ultrashort supermultiplet of OSp(4∗|4).
The full supermultiplet is

(1, 0; 0, 1)⊕ (3/2, 1/2; 1, 0)⊕ (2, 1; 0, 0) . (4.2)

The first state has dimension 1, is an SO(3) singlet and transforms as a vector of SO(5).

The next state is a spacetime fermion, and transforms in the spinor representations of

SO(3) and SO(5). The last state, of dimension 2, is an SO(3) triplet and SO(5) singlet.

For our purposes, we will also need short multiplets with lowest weight state of the form

(f, 0) under SL(2,R)× SO(3); the multiplet content for f ≥ 2 is

(f, 0; 0, f)⊕ (f + 1/2, 1/2; 1, f − 1)⊕ (f + 1, 1; 0, f − 1)⊕
(f + 1, 0; 2, f − 2)⊕ (f + 3/2, 1/2; 1, f − 2)⊕ (f + 2, 0; 0, f − 2) . (4.3)

4.2 D5 fluctuations and KK reduction

Having understood the multiplet structure of the superconformal algebra, the next step is

to find which of these operators are physically realized. These defect operators are dual to

fluctuations of the D5 worldvolume fields in the AdS5 × S5 background. So our strategy

will be to calculate the spectrum of D5 fields explicitly, and use these results to determine

the anomalous dimensions of defect operators via

hscalar =
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(and its analogues for vectors and spinors).

The explicit spectrum is determined by linearising the D5 
brane action

In order to realize the defect symmetries transparently, it is useful to slice AdS5 × S5 by

ds2 = R2
(
du2 + cosh2 u ds2AdS2

+ sinh2 u dΩ2
2 + dθ2 + sin2 θ dΩ2

4

)
, (3.3)

with u ≥ 0 and 0 ≤ θ ≤ π. The potential C4 that gives rise to the five form flux can be

written as [8]

C4 = R4

[(
−u

2
+

1

8
sinh 4u

)
e0e1e4e5 +

(
3

2
θ − sin 2θ +

1

8
sin 4θ

)
e6e7e8e9

]
, (3.4)

where (e0, e1) are the vielbeins for ds2AdS2
, (e4, e5) are the vielbeins for dΩ2

2, and (e6, e7, e8, e9)

are those for dΩ2
4.

The D5-brane worldvolume is AdS2 × S4, given by the embedding conditions

u = 0 , θ = θk . (3.5)

As we review shortly, this angle is related to the number of defect fermions k by

k =
N

π

(
θk −

1

2
sin 2θk

)
. (3.6)

This configuration was studied originally by [20]. The bosonic symmetries SL(2,R) ×
SO(3)× SO(5) are explicitly realized in the way of writing the metric (3.3).

Ignoring nonabelian interactions, the D5 branes are described by the DBI action

S5 = −T5

∫
d6ξ

√
− det(G+ F ) + T5

∫
F ∧ C4 , (3.7)

with worldvolume metric

ds2D5 = R2(ds2AdS2
+ sin2 θk dΩ

2
4) . (3.8)

The background value (3.4) induces a tadpole for F due to the Chern-Simons interaction.

As a result, there is nonzero worldvolume flux given by

F = cos θk e
0 ∧ e1 , (3.9)

and the fundamental string charge k is given by δSD5/δF01.

3.3 Defect free energy and entropy

As a first step towards solving the supersymmetric Kondo model, we now evaluate the

boundary free energy and entropy (g-function) in the probe approximation, and compare

with the multichannel Kondo model of §2.1.
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The calculations are unpalatable.  The results (which are 
exact for chiral primary operators, even away from the 

probe limit, due to SUSY) are: 

D5 field defect operator SL(2,R)× SO(3)× SO(5)

(δθ, frt)
(1)
l=1 O ≡ χ̄φ⊥χ (1, 0; 0, 1)

δul=0 Q2O ∼ χ̄(naDαφa)χ (2, 1; 0, 0)

(δθ, frt)
(1)
l O(l) ≡ χ̄(φ(a1

⊥ . . .φal)
⊥ )χ (l, 0; 0, l)

δul−1 Q2O(l) ∼ χ̄(naDαφaφ
(a1
⊥ . . .φ

al−1)
⊥ )χ (l + 1, 1; 0, l − 1)

(ai)l Q2O(l) ∼ χ̄(Γinaφa φ
[a1
⊥ φ(a2]

⊥ . . .φal)
⊥ )χ (l + 1, 0; 2, l − 2)

(δθ, frt)
(2)
l Q4O(l) ∼ χ̄((naDαφa)2φ

(a1
⊥ . . .φ

al−2)
⊥ )χ (l + 2, 0; 0, l − 2)

(4.15)

This concludes our analysis of chiral primary defect operators, that appear in the large N

spectrum. It is important to point out that, while the spectrum of fluctuations was derived

in the probe approximation, the results are in fact exact. This is because the dimensions of

chiral primaries are protected from quantum corrections. Next we will use these results to

study the stability of the Kondo fixed point, and determine the thermodynamic properties

induced by irrelevant deformations.

5 Stability and defect thermodynamics

So far we have studied the Kondo fixed point that arises from placing a fermionic impurity

in N = 4 SYM, in a way that preserves half of the supersymmetries of the ambient theory.

We determined the impurity entropy of the system and the spectrum of defect operators.

The most interesting properties of the defect model are controlled by the lowest dimension

operators allowed by symmetry that provide a correction to the scaling limit. In this

section we use the results on the spectrum of operators to explore the stability of the fixed

point and its basic thermodynamic observables.

5.1 Stability of the Kondo fixed point

The first point to address is whether the Kondo fixed point that we have found is stable;

this would be the case if there are no relevant operators allowed by symmetries. It is

useful to first review the situation in the real Kondo model (2.1), based on free electrons

interacting with a spin. In the original one channel SU(2) spin model, the strongly coupled

point J → ∞ is stable, since by symmetry no relevant operators are allowed. In contrast, in

23

There is one marginal operator, that transforms as an 
SO(5) vector;  geometrically, it correponds to the 

fluctuation of D5 scalar fields that rotates the embedding  

which is dual to an operator of dimension h = l + 2. These modes realize operators

with quantum numbers (l+ 2, 1; 0, l) under SL(2,R)× SO(3)× SO(5) ⊂ OSp(4∗|4). This
corresponds to the third state in the supermultiplet (4.3), after identifying f ≡ l−1. These

modes will be denoted by δul.

• The KK modes from the internal gauge field ai give rise to SO(3) singlets with masses

(see (4.11))

m2
l = l(l + 1) , l ≥ 2 . (4.14)

The dual operators have quantum numbers (l + 1, 0; 2, l − 2), corresponding to the fourth

state in (4.3). Below, we refer to these modes as (ai)l.

Let us now establish the holographic dictionary for (chiral primary) defect operators. First,

our analysis reveals that the lowest mode ((δθ, frt)
(1)
l=1 in the notation above) is dual to a

marginal operator that transforms as an SO(5) vector. This is consistent with the ultra-

short multiplet (4.2) of the superconformal algebra. Geometrically, this mode corresponds

to the D5 scalar field that rotates the embedding SO(5) ⊂ SO(6). In the defect interaction

L ⊃ χ̄naφaχ, this scalar field gives rise to a fluctuation δna that is orthogonal to na. Since

an AdS field couples linearly to its dual operator, from this defect interaction we deduce

that the operator dual to the massless scalar is χ̄φ⊥χ, where naφ⊥ , a = 0.

At first sight, it may be a bit surprising that the only marginal operator that we find is an

SO(5) vector and not a singlet. Indeed, naively we would expect the Kondo interaction

χ̄(A0+naφa)χ, which is an SO(5) singlet, to give rise to a marginal deformation. However,

the supersymmetry algebra fixes the coefficient of the Kondo coupling in terms of the

ambient gauge coupling gYM . Thus, turning on χ̄(A0 + naφa)χ without changing gYM

breaks supersymmetry and the dimension of the operator is not protected. Our results

indicate that at large N this dimension diverges.

The holographic dictionary may be found starting from the lowest weight mode (δθ, frt)
(1)
l ,

which we just argued is dual to χ̄φl
⊥χ, and then recognizing that the rest of the modes fill

in a short multiplet of OSp(4∗|4) –see (4.2) and (4.3). We summarize the dictionary for

defect operators in (4.15).5 Only the bosonic fields are shown, and the operator content is

schematic. The first two states realize the ultrashort multiplet, while the next four entries,

defined only for l ≥ 2, yield (4.3).

5Here α = 1, 2, 3 are the space coordinates of the four-dimensional spacetime, while the index i labels

the S4 coordinates (where the D5s are wrapped). Also, φa
⊥ denotes the N = 4 scalar fields that transform

as an SO(5) vector, while the remaining scalar is naφa. (φ(a1

⊥ . . .φal)
⊥ ) is a symmetric traceless product,

and the symmetrization in (ai)l corresponds to the vector harmonics of S4, explained in §A.2.
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In general, when the leading irrelevant operator O0

has dimension h0 and we consider

(with A the vector potential for B). The total susceptibility is then

χtotal ≡
∂2F

∂B2

∣∣∣∣
B=0

, (5.3)

and the impurity susceptibility is the piece of χtotal that does not scale like a spatial

volume, namely χdefect = χtotal − χambient. With our definition (5.2) of magnetic field, the

susceptibility is given by integrating the two-point function of SO(5) R-currents. In the

original overscreened Kondo model the defect susceptibility vanishes at the fixed point,

but this need not be the case when the ambient theory has interactions. For instance,

in the models of [14], χdefect = C/T with C a universal (irrational) number. For us

χdefect vanishes trivially in the probe limit; however, results with circular Wilson loops in

§6.4 suggest that it is nonzero after taking into account the defect backreaction, with a

coefficient proportional to (3.14). Until we are ready to discuss the backreacted solution,

we restrict the analysis of the susceptibility to the probe limit. In contrast, our results

here for the specific heat are valid beyond the probe approximation.

In the overscreened Kondo model, the defect specific heat and impurity entropy vanish in

the strict scaling limit. It is because of this, as emphasized in e.g. [1, 2], that the crucial role

in governing the defect thermodynamics is played by the leading irrelevant operator that

may be present in an RG flow to the critical point. In the overscreened model summarized

in §2.1, this operator is a descendant O0 = #J−1 · #φ obtained by contracting the spin

current with the primary operator in the adjoint of the spin group. The dimension of O0 is

h0 = 1+ N
N+K , which becomes h0 = 3/2 for K = N . We stress again that for us χdefect = 0

only in the probe limit –below we find a nonzero susceptibility in the backreacted case,

even in the absence of irrelevant deformations.

We should therefore consider the results for Cdefect and χdefect in the presence of such a

perturbation. More precisely, one is generally interested in the leading operator consistent

with the SO(3) × SO(5) global spin and flavor symmetries. Let us first discuss this for a

general operator O0 that is a singlet under the global symmetries and has scaling dimension

h0 ≥ 2 (recall that there are no relevant or marginal singlet operators). In the dual field

theory, we imagine deforming the defect action so that

Sdefect → Sdefect +

∫
dt (λ0O0 + h.c.) . (5.4)

Here, λ0 is a parameter of mass dimension 1−h0 < 0; we can use it to define a scale analo-

gous to the Kondo temperature in [1, 2], TK ∼ λ−1/(h0−1)
0 . The defect operators considered

below have vanishing one point function so, as in the overscreened Kondo problem, the

corrections to the specific heat and susceptibility are second order in λ0. Now, the basic
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(for defect operators with vanishing one-point function), 
we’ll find:

thermodynamic properties of the defect theory follow from dimensional analysis, recalling

that the impurity specific heat is dimensionless and the susceptibility has dimensions of

inverse length. At order λ2
0, the contributions then read

Cdefect ∼
(

T

TK

)2(h0−1)

, χdefect ∼
(

T

TK

)2(h0−1) 1

T
. (5.5)

Moving next to the specific form of the irrelevant perturbation, the analysis of KK fluctu-

ations above shows that the lowest operator allowed by symmetries is the double-trace

(χ†φ⊥χ) · (χ†φ⊥χ) , (5.6)

with a sum over the SO(5) indices of φ⊥. This operator has h0 = 2, which curiously agrees

with the normal Fermi liquid case (although in the Fermi liquid analysis the contribution

was first order and not second order as here, so Cdefect and χdefect scale differently with

temperature). On the other hand, the overscreened model relevant for us has a leading

operator of fractional dimension h0 = 3/2. This would give rise to a linear scaling Cdefect ∼
T , as in the Fermi liquid case, although of course other properties of the system are sensitive

to the non Fermi liquid nature of the fixed point.

Large N correlators involving double trace operators are suppressed by additional powers

of N as compared to their single-trace counterparts. Thus, we may instead consider the

leading single-trace singlet, which corresponds to the last state in (4.15). This operator

is a descendant of O(2) = χ̄(φ(a1
⊥ φa2)

⊥ )χ and has dimension h0 = 4. It is also interesting

to envision the possibility that the two irrelevant operators are simultaneously present in

the approach to the fixed point. This would produce a transition in the impurity critical

exponents, at a parametrically small temperature controlled by a power of 1/N .

6 Beyond the probe approximation: Kondo models and geomet-

ric transitions

Our analysis of the supersymmetric Kondo model has been restricted so far to the probe

limit for the D5 branes. In the field theory side this corresponds to a quenched approxima-

tion that ignores quantum effects from the defect fields, and in the gravity side it amounts

to treating the D5 branes as probes in the D3 geometry. Moreoever, we found that even

starting from this limit it is possible to derive results that are valid beyond the probe

approximation –these include the spectrum of defect operators and the thermodynamic

properties presented in §5.
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of dimension two.
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III.  SUSY Kondo lattice models

* It would be very nice to also get a handle on the lattice 
models.  They can be tied to non-Fermi liquids; in these 

gravity models, this is readily visible in the probe 
approximation.

* The probes naturally live on geometries.AdS2

* Such geometries are dual to “locally critical” sectors, that 
is sectors which enjoy dynamical scaling

x→ λx, t→ λzt

with z =∞ .
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* Fermions coupled to such locally critical sectors can 
naturally be deformed into non-Fermi liquids.

S.S. Lee;
Cubrovic, Schalm, Zaanen;

Liu, McGreevy, Vegh

* A good intuitive way to understand this was emphasized 
by Faulkner and Polchinski.

Consider a quantum field theory whose action takes 
the schematic form:

Consider a field theory whose action takes the general 
form:

9

and work out G(ω) and AJ,J ′ as a function of external parameters. Here λN=4(J) is the

N = 4 gaugino evaluated at the Jth lattice site, and χJ is the probe fermion associated

with the Jth site. There is also an infinite tower of similar operators of higher conformal

dimension. We will, however, keep our discussion abstract.

Note that we are only guaranteed of the scaling form (8) governed by the (0+1)-

dimensional conformal invariance when ω ! T .6 Therefore, looking forward for a moment

(to the stage where we mix the OF s with semi-holographic fermions) this behavior of the

Green’s function will be relevant when studying excitations close to the Fermi surface, only

if the disconnected phase persists to very low temperatures (compared to the Fermi mo-

mentum kF ). This is achievable in our models, because the temperature of the dimerization

transition is Tc ∼ 1
adefect

[6], where adefect is the lattice spacing for defect fermions, and can be

dialed freely; while kF ∼ 1
aitinerant

is another free parameter, where aitinerant is the lattice spac-

ing for semi-holographic itinerant free fermions, which can also be adjusted independently.

Thus we make a hierarchy adefect ! aitinerant.

We now semi-holographically couple this large N field theory to the free band fermion in

the spirit of [8]:7

S = Sstrong +
∑

J,J ′

∫
dt

[
c†J(iδJ,J ′∂t + µδJ,J ′ + tJ,J ′)cJ ′

]

+g
∑

J

∫
dt

[
c†JOF

J + (Hermitian conjugate)
]
. (11)

Here tJ,J ′ characterizes the band structure of the originally free fermion c sector, which now

mixes with the large N dimer model through the coupling constant g.

The key insight of [8] is that large N factorization of the field theory (which would work

even at small ’t Hooft coupling) can be used to infer the modifications to the two-point

functions of the conducting c fermions arising from the coupling g. The g = 0 Green’s

6 At very low frequency G(ω) will still approach zero on general grounds, but it may do so with a different

scaling dimension ∆′ or in even more complicated ways.
7 For notational simplicity, we made the free c fermions live on the same lattice sites as the defect fermions

do. As just mentioned, however, we should really make the c fermions live on a much finer lattice to get

the hierarchy 1
aitinerant

∼ kF ! Tc ∼ 1
adefect

. Also as in §2 of [8], we have neglected possible spin-orbit

effects that could promote, for example, coupling constants between c and OF in (11) to be matrices in

spin space.

Here you should think of the c fields as free lattice 
fermions, with lattice sites indexed by J, and       asOF

J

an operator in the strongly coupled field theory, interacting 
with the free fermion at the Jth lattice site.  In our setup, 

it could be a fermionic operator on the Jth D5 or anti-D5
brane, for instance.

Thursday, January 6, 2011

*  There is a strongly coupled sector which we’ll assume is 
a large N theory that we can describe using gravity.

*  There is a free (lattice) fermion with a Fermi surface.

*  We deform these two theories by coupling them with 
coupling constant  “g”; c should couple to the lowest 

dimension fermionic operator in the strong sector that
is permitted by symmetries.

Wednesday, May 18, 2011
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* Deform these field theories by coupling them together 
with coupling constant “g”.

* In perturbation theory in g, there is a simple set of graphs 
that correct the free fermion propagator:

a) + + +  ...

b) + + +  ...+ + +

Figure 2: a) The geometric sum leading to the fermion correlator (2.5). The solid line
represents G0 and the dashed line represents G0. b) The geometric sum (3.2), where an ×
represents the double-trace perturbation.

exhibiting the strange metallic behavior discussed in Refs. [6, 8]. The calculation uses only

the factorization property and so would be equally true in weakly coupled large-N theories.

Now we can see what happens if the AdS2 ×R2 strongly coupled theory is replaced by

an AdS4 theory, with Ψ an operator of dimension ∆ in the 2 + 1 dimensional CFT. The

correlator

〈0|TΨ(!x, t)Ψ†(0, 0)|0〉 = (x2 − t2)−∆ (2.6)

implies

G0(!k,ω) = A(∆)(k2 − ω2)∆−3/2 , (2.7)

with A(∆) = 4πΓ(2 − 2∆) sin π∆. Since the Fermi momentum !k is a UV scale we are

interested in k % ω and so we expand,

G0(!k,ω) = A(∆)
{
k2∆−3 − (∆− 3/2)ω2k2∆−5 + . . .

}
. (2.8)

Using this in the correlator (2.5), the leading ω-independent term should be absorbed into

the definiton of ε!k from the UV theory. The leading correction to the fermion self-energy is ω2

as in Fermi liquid theory, but here it is real because the kinematics forbids the quasiparticle

decay. This example should capture the low energy dynamics of the models considered in

[18] where a fermion lives in a zero temperature holographic superconducting background

and the IR part of the geometry was an emergent AdS4 solution.

Similarly, we can extend to a Lifshitz theory with dynamical exponent z. For an operator

of energy dimension ∆,

G0(!k,ω) = A(∆, z)k2∆/z−2−z +B(∆, z)ω2k2∆/z−2−3z + . . . . (2.9)

5

* In the large N limit, this geometric series gives the exact 
result for the corrected c propagator.
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In perturbation theory in g, we can turn on the interactions 
between the free fermion (with its Fermi liquid behaviour) 
and the strongly interacting sector.   For instance, there are 

a set of tree graphs that renormalize the c propagator:

a) + + +  ...

b) + + +  ...+ + +

Figure 2: a) The geometric sum leading to the fermion correlator (2.5). The solid line
represents G0 and the dashed line represents G0. b) The geometric sum (3.2), where an ×
represents the double-trace perturbation.
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}
. (2.8)

Using this in the correlator (2.5), the leading ω-independent term should be absorbed into

the definiton of ε!k from the UV theory. The leading correction to the fermion self-energy is ω2

as in Fermi liquid theory, but here it is real because the kinematics forbids the quasiparticle

decay. This example should capture the low energy dynamics of the models considered in

[18] where a fermion lives in a zero temperature holographic superconducting background

and the IR part of the geometry was an emergent AdS4 solution.

Similarly, we can extend to a Lifshitz theory with dynamical exponent z. For an operator

of energy dimension ∆,

G0(!k,ω) = A(∆, z)k2∆/z−2−z +B(∆, z)ω2k2∆/z−2−3z + . . . . (2.9)

5

Normally, we would have to include interactions coming off 
the strong       lines.  But in a large N strong sector, such 

interactions are suppressed by powers of 1/N!
O

Then, the resulting  “dressed” c propagator can be 
written purely in terms of the two-point function of

in the strongly coupled sector:O

Thursday, January 6, 2011

Wednesday, May 18, 2011

Now, let us consider the behaviour of two-point functions 
for natural fermionic operators in our setup.

a)  In the phase:
9

FIG. 1: Predimerization transition. (a)Disconnected configuration dominates at high temperature.

(b)Connected configuration dominates at low temperature.

A. Disconnected configuration

The obvious candidate stable configuration of such a pair is just two separated configu-

rations of the sort considered in Sec.II B with θν = θ̄ν̄ [see Fig.1(a)]. Its free energy is just

twice that of the single D5-brane:

FD5 + FD̄5 = −
(
2
L4sin3θνvol(S4)

(2π)5gsα′3 r+

)
. (3.1)

Note that it is independent of the separation ∆x.

B. Connected configuration

Another candidate solution with the given boundary condition is a reconnecting solution

[see Fig.1(b)]: a reconnecting D5-brane starts at r = ∞ with −→x = (−∆x
2 , 0, 0), dips into the

bulk, and then comes back to r = ∞ now with −→x = (+∆x
2 , 0, 0), effectively reversing its

orientation as it should.8 Explicitly, we have

θ(ρ) = θν and (2πα′F)τρ = cosθν
1√

1− 1
sin6θν

(
L4k2

r4(ρ)−r4+

)

√(
∂r

∂ρ

)2

, (3.2)

8 Incidentally, this is the reason why a pair of two D5-branes cannot reconnect.

The operator lives on an           slice 
of the bulk geometry.  The two-point 
functions are constrained to behave as:

8

to instead have z ∼ N ]. While in many cases these deformations may leave the essential

physics of the fermion spectral function unchanged (see [8] for a nice discussion), it is also

reasonable to find other ways that the essential insights of [10–13] can be reproduced in a

more robust setting. The AdS2 regions spanned by the D5- and anti-D5-branes in the top-

down holographic dimer model of [6] provide an alternative way to obtain the same physics.

Here, we explore this in a semi-holographic setting following [8], and we abstract the main

features of the top-down model to include more generic possibilities.

We begin with a large N field theory, governed by some action Sstrong, with the following

features:

1. There is a lattice of defect fermions which undergoes a dimerization transition as we

vary the external parameters such as temperature [see Fig.2 for the (1+1)-dimensional

case]. We will focus on the cases for which this parameter is temperature, but one can

easily generalize.5

2. There exist fermionic operators OF
J localized at the Jth lattice site, whose thermal

correlation functions in the undimerized phase are known and gapless:
∫

dteiωt〈OF
J (t)O

F †
J ′ (0)〉 = iδJ,J ′G(ω),

with G(ω) ∼ ω2∆−1 for ω $ T. (8)

3. In the dimerized phase, the spectrum is gapped and

lim
ω→0

∫
dteiωt〈OF

J (t)O
F †
J ′ (0)〉 = iAJ,J ′ . (9)

Here, AJ,J ′ is nonzero (generically if and) only if J = J ′ or J and J ′ are paired up via

dimerization.

For example, for the literal D5 probe theory in AdS5 × S5, we can take

OF
J = χ†

JλN=4(J)χJ (10)

5 For instance, one can consider driving such a transition by going to finite chemical potential for the large

N gauge fields at T = 0, at the cost of introducing Reissner-Nordström black branes. At sufficiently

large chemical potential, even at zero temperature, the horizon of the extremal Reissner-Nordström black

brane grows large, and the probe branes will transition back to a configuration where they stretch to the

horizon instead of reconnecting. It would be interesting to determine the order of this phase transition at

zero temperature.
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function for the c fermions is

G0(k,ω) ≡ −i
1

Nl.s.

∑

J,J ′

∫
dteiωt−ik·(xJ−xJ′ )〈cJ(t)c†J ′(0)〉g=0 ∼

1

ω − v|k− kF (k)|
(12)

with kF (k) the point on the Fermi surface, closest to the argument k, and Nl.s. the number

of lattice sites. Then we find that for finite coupling g, after summing a geometric series of

tree-level mixing diagrams,

Gg(k,ω) ∼
1

ω − v|k− kF (k)|− g2G(k,ω) . (13)

In particular, for G(k,ω) = cω2∆−1 with ∆ ≤ 1, one finds a dominant low-frequency behavior

characteristic of a non-Fermi liquid which has vanishing quasiparticle residue [with marginal

Fermi liquid behavior precisely at ∆ = 1, when the naive ω2−1 is modified to have ωlog(ω)

behaviour]. For ∆ > 1, the residue does not vanish, but the theory is still novel in that

the quasiparticle width does not agree with that of standard Fermi liquid theory. As we

described above, these results are true in a regime where kF ' ω ' 1
adefect

, where the

zero-temperature Green’s functions used above should be a good approximation to the true

(finite- but low-temperature) answers.

Now, we are in a position to add one simple observation on top of the basic picture

advocated in [8]: in holographic models which undergo a dimerization transition as in

Sec. II, the phase transition also drives an interesting transition in the structure of the

Fermi surface. The main point is that the low frequency behavior of the Green’s function
∫
dteiωt〈OF

J (t)O
F †
J ′ (0)〉 changes drastically in the dimerization transition. In the undimerized

state, we will have non-Fermi liquid behavior just as in [8]. However, in the dimerized phase,

the spectrum in the dimer sector is gapped. This means that at low frequencies, instead

of exhibiting power-law behavior, limω→0 G(k,ω) = A for some nonzero constant A. Thus

in this phase, we have a conventional Fermi liquid whose Fermi surface is shifted from the

original kF .

Therefore, in this semi-holographic setting, the dimerization transition of Sec. II becomes

a transition between a conventional Fermi liquid phase (dimerized) and a non-Fermi liquid

phase (undimerized). These transitions are somewhat reminiscent of the phase transitions

in Kondo lattice models discussed in [14] and references therein.

Finally, we note that if one is purely interested in finding realizations of the non-Fermi

liquid phase, without studying phase transitions of the Fermi surface, one can also simply

V.   On large N FL/NFL transitions in our system

AdS2

Thursday, January 6, 2011
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original k = 1 theory. Correlation functions of the dual op-
erators will enjoy large N inheritance from the parent k = 1
theory, similarly to the theories discussed in [19]. (New de-

grees of freedom that might be introduced by the orbifolding,

analogous to twisted states in string theory, are very massive

in the supergravity regime, due to the free orbifold action). A

simple analysis following this logic implies that the spectrum

is the same for all k > 1; so in particular, ∆ = 1 fermionic
operators arise in these theories (and any lower ∆ fermionic

operators from the second tower can rendered safe as above,

by using global quantum numbers). A careful discussion of

the KK spectra of these theories, and the matching with oper-

ators in the dual defect field theories, will appear in [20].

Coupling to semi-holographic fermions The theory we

have constructed above is locally critical in the largeN limit.

That is, because the probeM2′ branes wrapAdS2 slices of the

AdS4 geometry, the excitations of the bulk fields localized on

the probe branes can be classified by the quantum numbers of

a locally critical quantum theory, and the correlation functions

of the operators dual to localized bulk excitations (computed

using the standard AdS/CFT dictionary) obey the constraints

following from local criticality. These are precisely correla-

tion functions of operators involving defect fields in the dual

field theory.

Now, we couple the defect field theory we have constructed

to semi-holographic fermions, following [7]. Namely, if we

call the full action of the lattice system above (including both

the bulk gauge theory and the defect fields) SLC , we consider

the theory with

Stotal = SLC(A,B,Q, Q̃)+
∑

J,J′

∫

dt c†J(iδJ,J′∂t + µδJ,J′ + tJ,J′)cJ′

+ g
∑

J

∫

dt (c†JO
F
J +Hermitian conjugate) . (12)

In (12), we are coupling a normal theory of a weakly coupled

Fermi surface (governing the excitations of the c fermion) to
the strongly coupled locally critical sector, through the cou-

pling constant g mixing c with (in any natural theory) the low-
est dimension fermionic operatorOF that has the right quan-

tum numbers to couple to c.
Using largeN factorization, it is then easy to show that the

g = 0 Green’s function of the c fermion

G0(k,ω) ∼
1

ω − v|k− kF(k)|
(13)

is modified to

Gg(k,ω) ∼
1

ω − v|k− kF(k)|− g2G(k,ω) , (14)

where

G(ω) =
∫

dt eiωt〈OF
J (t)O

F†
J (0)〉 . (15)

This two-point function is fixed by the scaling symmetry of

the LC theory to be G(ω) = c∆ω2∆−1 where ∆ is the di-

mension of OF (and, importantly, G(ω) ∼ c ω log(ω) in the
degenerate case∆ = 1).
The correction term in the denominator of Gg will domi-

nate the low-frequency behavior if ∆ ≤ 1. Unitarity allows
any ∆ ≥ 1

2 and this scaling dimension is a free parameter

in the general approaches of [4, 7]. The marginal Fermi liq-

uid behavior of [2] appears in the case that the dimension of

OF is precisely 1. Therefore, the question is, are there natu-

ral circumstances in which the theory SLC(A,B,Q, Q̃) has a
leading fermionic operator of∆ = 1 which can couple to c?
The theories we have constructed above naturally come

with defect operators of ∆ = 1, as indicated by our calcu-
lation of the KK spectrum on the probe M2′ branes. It is in-

teresting to consider where these come from in field theory

language. The field theory has gauge-invariant operators of

the form

∂tQ̃1Aχ2, ∂tQ̃2Bχ1, ∂tQ1Bχ̃2, ∂tQ2Aχ̃1 . (16)

(as well as related quartets of operators of the schematic form

χ̃1ψAχ2, · · · and χ̃1A∂tQ2, · · · ). These have∆ = 1 at weak
coupling, and are good candidates for the duals of the probe

defect operators we computed on the gravity side (arising in

the tower of fluctutations of the M2′ branes along x5,··· ,10).

Suppose that upon extrapolating to strong coupling (at large

N), the weak-coupling dimensions of these operators are in-

deed protected, i.e. that the weak-coupling engineering di-

mensions of the fields correspond to their scaling dimensions

under the locally critical scaling governing the defect sector

in the probe limit. Then, assigning appropriate global quan-

tum numbers to c, one can choose one of these as the lowest
dimension fermionic operator that c can couple to in the local-
ized sector.

Returning to the dual gravitational description, we can see

that the idea above does work at least in the probe approx-

imation. By appropriate choice of global quantum numbers

(under the Z4 lattice symmetry and the (subgroup of) SO(6)
preserved by the brane configuration), one can guarantee that

no lower ∆ operators from the second tower of fluctuations

in the previous subsection infect the leading-order c-fermion
correlators (14) after coupling to the large N sector. We con-

clude that we can work directly in the probe limit and obtain

a marginal Fermi liquid by identifying OF with the lowest

fermionic operator in the first tower of defect fields computed

above. This has ∆ = 1, and as emphasized in the introduc-
tion, this dimension is independent of momentum.

Backreaction Up until now we have ignored the backre-

action of the impurities on the itinerant fields, and therefore

on each other. Thus we have been studying the dynamics of a

single impurity interacting strongly with itinerant fields. The

gravity side exhibits the successes it does because the probe

branes each wrap an AdS2 region, and the symmetries of lo-

cal quantum criticality are manifest, even including the highly

nontrivial field theory interactions that are re-summed by the

tree-level gravity solution.

If we make the strong dynamical assumption that the 
strongly coupled sector exhibits local quantum criticality, 

then the two-point function is constrained:
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original k = 1 theory. Correlation functions of the dual op-
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OF is precisely 1. Therefore, the question is, are there natu-
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leading fermionic operator of∆ = 1 which can couple to c?
The theories we have constructed above naturally come

with defect operators of ∆ = 1, as indicated by our calcu-
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in the probe limit. Then, assigning appropriate global quan-

tum numbers to c, one can choose one of these as the lowest
dimension fermionic operator that c can couple to in the local-
ized sector.

Returning to the dual gravitational description, we can see

that the idea above does work at least in the probe approx-

imation. By appropriate choice of global quantum numbers

(under the Z4 lattice symmetry and the (subgroup of) SO(6)
preserved by the brane configuration), one can guarantee that

no lower ∆ operators from the second tower of fluctuations

in the previous subsection infect the leading-order c-fermion
correlators (14) after coupling to the large N sector. We con-

clude that we can work directly in the probe limit and obtain

a marginal Fermi liquid by identifying OF with the lowest

fermionic operator in the first tower of defect fields computed

above. This has ∆ = 1, and as emphasized in the introduc-
tion, this dimension is independent of momentum.

Backreaction Up until now we have ignored the backre-

action of the impurities on the itinerant fields, and therefore

on each other. Thus we have been studying the dynamics of a

single impurity interacting strongly with itinerant fields. The

gravity side exhibits the successes it does because the probe

branes each wrap an AdS2 region, and the symmetries of lo-

cal quantum criticality are manifest, even including the highly

nontrivial field theory interactions that are re-summed by the

tree-level gravity solution.

The unitarity bound on the dimension is 1/2; for any value 
less than 1, one obtains a non-Fermi liquid, and if Delta is 

precisely 1, one has a marginal Fermi liquid with 
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The correction term in the denominator of Gg will domi-

nate the low-frequency behavior if ∆ ≤ 1. Unitarity allows
any ∆ ≥ 1
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in the general approaches of [4, 7]. The marginal Fermi liq-

uid behavior of [2] appears in the case that the dimension of

OF is precisely 1. Therefore, the question is, are there natu-

ral circumstances in which the theory SLC(A,B,Q, Q̃) has a
leading fermionic operator of∆ = 1 which can couple to c?
The theories we have constructed above naturally come

with defect operators of ∆ = 1, as indicated by our calcu-
lation of the KK spectrum on the probe M2′ branes. It is in-

teresting to consider where these come from in field theory

language. The field theory has gauge-invariant operators of

the form

∂tQ̃1Aχ2, ∂tQ̃2Bχ1, ∂tQ1Bχ̃2, ∂tQ2Aχ̃1 . (16)

(as well as related quartets of operators of the schematic form

χ̃1ψAχ2, · · · and χ̃1A∂tQ2, · · · ). These have∆ = 1 at weak
coupling, and are good candidates for the duals of the probe

defect operators we computed on the gravity side (arising in

the tower of fluctutations of the M2′ branes along x5,··· ,10).

Suppose that upon extrapolating to strong coupling (at large

N), the weak-coupling dimensions of these operators are in-

deed protected, i.e. that the weak-coupling engineering di-

mensions of the fields correspond to their scaling dimensions

under the locally critical scaling governing the defect sector

in the probe limit. Then, assigning appropriate global quan-

tum numbers to c, one can choose one of these as the lowest
dimension fermionic operator that c can couple to in the local-
ized sector.

Returning to the dual gravitational description, we can see

that the idea above does work at least in the probe approx-

imation. By appropriate choice of global quantum numbers

(under the Z4 lattice symmetry and the (subgroup of) SO(6)
preserved by the brane configuration), one can guarantee that

no lower ∆ operators from the second tower of fluctuations

in the previous subsection infect the leading-order c-fermion
correlators (14) after coupling to the large N sector. We con-

clude that we can work directly in the probe limit and obtain

a marginal Fermi liquid by identifying OF with the lowest

fermionic operator in the first tower of defect fields computed

above. This has ∆ = 1, and as emphasized in the introduc-
tion, this dimension is independent of momentum.

Backreaction Up until now we have ignored the backre-

action of the impurities on the itinerant fields, and therefore

on each other. Thus we have been studying the dynamics of a

single impurity interacting strongly with itinerant fields. The

gravity side exhibits the successes it does because the probe

branes each wrap an AdS2 region, and the symmetries of lo-

cal quantum criticality are manifest, even including the highly

nontrivial field theory interactions that are re-summed by the

tree-level gravity solution.
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Now, let us consider the behaviour of two-point functions 
for natural fermionic operators in our setup.

a)  In the phase:
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FIG. 1: Predimerization transition. (a)Disconnected configuration dominates at high temperature.

(b)Connected configuration dominates at low temperature.

A. Disconnected configuration

The obvious candidate stable configuration of such a pair is just two separated configu-

rations of the sort considered in Sec.II B with θν = θ̄ν̄ [see Fig.1(a)]. Its free energy is just

twice that of the single D5-brane:

FD5 + FD̄5 = −
(
2
L4sin3θνvol(S4)

(2π)5gsα′3 r+

)
. (3.1)

Note that it is independent of the separation ∆x.

B. Connected configuration

Another candidate solution with the given boundary condition is a reconnecting solution

[see Fig.1(b)]: a reconnecting D5-brane starts at r = ∞ with −→x = (−∆x
2 , 0, 0), dips into the

bulk, and then comes back to r = ∞ now with −→x = (+∆x
2 , 0, 0), effectively reversing its

orientation as it should.8 Explicitly, we have

θ(ρ) = θν and (2πα′F)τρ = cosθν
1√

1− 1
sin6θν

(
L4k2

r4(ρ)−r4+

)

√(
∂r

∂ρ

)2

, (3.2)

8 Incidentally, this is the reason why a pair of two D5-branes cannot reconnect.

The operator lives on an           slice 
of the bulk geometry.  The two-point 
functions are constrained to behave as:
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to instead have z ∼ N ]. While in many cases these deformations may leave the essential

physics of the fermion spectral function unchanged (see [8] for a nice discussion), it is also

reasonable to find other ways that the essential insights of [10–13] can be reproduced in a

more robust setting. The AdS2 regions spanned by the D5- and anti-D5-branes in the top-

down holographic dimer model of [6] provide an alternative way to obtain the same physics.

Here, we explore this in a semi-holographic setting following [8], and we abstract the main

features of the top-down model to include more generic possibilities.

We begin with a large N field theory, governed by some action Sstrong, with the following

features:

1. There is a lattice of defect fermions which undergoes a dimerization transition as we

vary the external parameters such as temperature [see Fig.2 for the (1+1)-dimensional

case]. We will focus on the cases for which this parameter is temperature, but one can

easily generalize.5

2. There exist fermionic operators OF
J localized at the Jth lattice site, whose thermal

correlation functions in the undimerized phase are known and gapless:
∫

dteiωt〈OF
J (t)O

F †
J ′ (0)〉 = iδJ,J ′G(ω),

with G(ω) ∼ ω2∆−1 for ω $ T. (8)

3. In the dimerized phase, the spectrum is gapped and

lim
ω→0

∫
dteiωt〈OF

J (t)O
F †
J ′ (0)〉 = iAJ,J ′ . (9)

Here, AJ,J ′ is nonzero (generically if and) only if J = J ′ or J and J ′ are paired up via

dimerization.

For example, for the literal D5 probe theory in AdS5 × S5, we can take

OF
J = χ†

JλN=4(J)χJ (10)

5 For instance, one can consider driving such a transition by going to finite chemical potential for the large

N gauge fields at T = 0, at the cost of introducing Reissner-Nordström black branes. At sufficiently

large chemical potential, even at zero temperature, the horizon of the extremal Reissner-Nordström black

brane grows large, and the probe branes will transition back to a configuration where they stretch to the

horizon instead of reconnecting. It would be interesting to determine the order of this phase transition at

zero temperature.
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function for the c fermions is

G0(k,ω) ≡ −i
1

Nl.s.

∑

J,J ′

∫
dteiωt−ik·(xJ−xJ′ )〈cJ(t)c†J ′(0)〉g=0 ∼

1

ω − v|k− kF (k)|
(12)

with kF (k) the point on the Fermi surface, closest to the argument k, and Nl.s. the number

of lattice sites. Then we find that for finite coupling g, after summing a geometric series of

tree-level mixing diagrams,

Gg(k,ω) ∼
1

ω − v|k− kF (k)|− g2G(k,ω) . (13)

In particular, for G(k,ω) = cω2∆−1 with ∆ ≤ 1, one finds a dominant low-frequency behavior

characteristic of a non-Fermi liquid which has vanishing quasiparticle residue [with marginal

Fermi liquid behavior precisely at ∆ = 1, when the naive ω2−1 is modified to have ωlog(ω)

behaviour]. For ∆ > 1, the residue does not vanish, but the theory is still novel in that

the quasiparticle width does not agree with that of standard Fermi liquid theory. As we

described above, these results are true in a regime where kF ' ω ' 1
adefect

, where the

zero-temperature Green’s functions used above should be a good approximation to the true

(finite- but low-temperature) answers.

Now, we are in a position to add one simple observation on top of the basic picture

advocated in [8]: in holographic models which undergo a dimerization transition as in

Sec. II, the phase transition also drives an interesting transition in the structure of the

Fermi surface. The main point is that the low frequency behavior of the Green’s function
∫
dteiωt〈OF

J (t)O
F †
J ′ (0)〉 changes drastically in the dimerization transition. In the undimerized

state, we will have non-Fermi liquid behavior just as in [8]. However, in the dimerized phase,

the spectrum in the dimer sector is gapped. This means that at low frequencies, instead

of exhibiting power-law behavior, limω→0 G(k,ω) = A for some nonzero constant A. Thus

in this phase, we have a conventional Fermi liquid whose Fermi surface is shifted from the

original kF .

Therefore, in this semi-holographic setting, the dimerization transition of Sec. II becomes

a transition between a conventional Fermi liquid phase (dimerized) and a non-Fermi liquid

phase (undimerized). These transitions are somewhat reminiscent of the phase transitions

in Kondo lattice models discussed in [14] and references therein.

Finally, we note that if one is purely interested in finding realizations of the non-Fermi

liquid phase, without studying phase transitions of the Fermi surface, one can also simply

V.   On large N FL/NFL transitions in our system

AdS2
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original k = 1 theory. Correlation functions of the dual op-
erators will enjoy large N inheritance from the parent k = 1
theory, similarly to the theories discussed in [19]. (New de-

grees of freedom that might be introduced by the orbifolding,

analogous to twisted states in string theory, are very massive

in the supergravity regime, due to the free orbifold action). A

simple analysis following this logic implies that the spectrum

is the same for all k > 1; so in particular, ∆ = 1 fermionic
operators arise in these theories (and any lower ∆ fermionic

operators from the second tower can rendered safe as above,

by using global quantum numbers). A careful discussion of

the KK spectra of these theories, and the matching with oper-

ators in the dual defect field theories, will appear in [20].
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have constructed above is locally critical in the largeN limit.

That is, because the probeM2′ branes wrapAdS2 slices of the

AdS4 geometry, the excitations of the bulk fields localized on

the probe branes can be classified by the quantum numbers of

a locally critical quantum theory, and the correlation functions

of the operators dual to localized bulk excitations (computed

using the standard AdS/CFT dictionary) obey the constraints

following from local criticality. These are precisely correla-

tion functions of operators involving defect fields in the dual

field theory.

Now, we couple the defect field theory we have constructed

to semi-holographic fermions, following [7]. Namely, if we

call the full action of the lattice system above (including both

the bulk gauge theory and the defect fields) SLC , we consider

the theory with
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F
J +Hermitian conjugate) . (12)

In (12), we are coupling a normal theory of a weakly coupled

Fermi surface (governing the excitations of the c fermion) to
the strongly coupled locally critical sector, through the cou-

pling constant g mixing c with (in any natural theory) the low-
est dimension fermionic operatorOF that has the right quan-

tum numbers to couple to c.
Using largeN factorization, it is then easy to show that the

g = 0 Green’s function of the c fermion

G0(k,ω) ∼
1

ω − v|k− kF(k)|
(13)

is modified to

Gg(k,ω) ∼
1

ω − v|k− kF(k)|− g2G(k,ω) , (14)

where

G(ω) =
∫

dt eiωt〈OF
J (t)O

F†
J (0)〉 . (15)

This two-point function is fixed by the scaling symmetry of

the LC theory to be G(ω) = c∆ω2∆−1 where ∆ is the di-

mension of OF (and, importantly, G(ω) ∼ c ω log(ω) in the
degenerate case∆ = 1).
The correction term in the denominator of Gg will domi-

nate the low-frequency behavior if ∆ ≤ 1. Unitarity allows
any ∆ ≥ 1

2 and this scaling dimension is a free parameter

in the general approaches of [4, 7]. The marginal Fermi liq-

uid behavior of [2] appears in the case that the dimension of

OF is precisely 1. Therefore, the question is, are there natu-

ral circumstances in which the theory SLC(A,B,Q, Q̃) has a
leading fermionic operator of∆ = 1 which can couple to c?
The theories we have constructed above naturally come

with defect operators of ∆ = 1, as indicated by our calcu-
lation of the KK spectrum on the probe M2′ branes. It is in-

teresting to consider where these come from in field theory

language. The field theory has gauge-invariant operators of

the form

∂tQ̃1Aχ2, ∂tQ̃2Bχ1, ∂tQ1Bχ̃2, ∂tQ2Aχ̃1 . (16)

(as well as related quartets of operators of the schematic form

χ̃1ψAχ2, · · · and χ̃1A∂tQ2, · · · ). These have∆ = 1 at weak
coupling, and are good candidates for the duals of the probe

defect operators we computed on the gravity side (arising in

the tower of fluctutations of the M2′ branes along x5,··· ,10).

Suppose that upon extrapolating to strong coupling (at large

N), the weak-coupling dimensions of these operators are in-

deed protected, i.e. that the weak-coupling engineering di-

mensions of the fields correspond to their scaling dimensions

under the locally critical scaling governing the defect sector

in the probe limit. Then, assigning appropriate global quan-

tum numbers to c, one can choose one of these as the lowest
dimension fermionic operator that c can couple to in the local-
ized sector.

Returning to the dual gravitational description, we can see

that the idea above does work at least in the probe approx-

imation. By appropriate choice of global quantum numbers

(under the Z4 lattice symmetry and the (subgroup of) SO(6)
preserved by the brane configuration), one can guarantee that

no lower ∆ operators from the second tower of fluctuations

in the previous subsection infect the leading-order c-fermion
correlators (14) after coupling to the large N sector. We con-

clude that we can work directly in the probe limit and obtain

a marginal Fermi liquid by identifying OF with the lowest

fermionic operator in the first tower of defect fields computed

above. This has ∆ = 1, and as emphasized in the introduc-
tion, this dimension is independent of momentum.

Backreaction Up until now we have ignored the backre-

action of the impurities on the itinerant fields, and therefore

on each other. Thus we have been studying the dynamics of a

single impurity interacting strongly with itinerant fields. The

gravity side exhibits the successes it does because the probe

branes each wrap an AdS2 region, and the symmetries of lo-

cal quantum criticality are manifest, even including the highly

nontrivial field theory interactions that are re-summed by the

tree-level gravity solution.

If we make the strong dynamical assumption that the 
strongly coupled sector exhibits local quantum criticality, 

then the two-point function is constrained:
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original k = 1 theory. Correlation functions of the dual op-
erators will enjoy large N inheritance from the parent k = 1
theory, similarly to the theories discussed in [19]. (New de-

grees of freedom that might be introduced by the orbifolding,

analogous to twisted states in string theory, are very massive

in the supergravity regime, due to the free orbifold action). A

simple analysis following this logic implies that the spectrum

is the same for all k > 1; so in particular, ∆ = 1 fermionic
operators arise in these theories (and any lower ∆ fermionic

operators from the second tower can rendered safe as above,

by using global quantum numbers). A careful discussion of

the KK spectra of these theories, and the matching with oper-

ators in the dual defect field theories, will appear in [20].

Coupling to semi-holographic fermions The theory we

have constructed above is locally critical in the largeN limit.

That is, because the probeM2′ branes wrapAdS2 slices of the

AdS4 geometry, the excitations of the bulk fields localized on

the probe branes can be classified by the quantum numbers of

a locally critical quantum theory, and the correlation functions

of the operators dual to localized bulk excitations (computed

using the standard AdS/CFT dictionary) obey the constraints

following from local criticality. These are precisely correla-

tion functions of operators involving defect fields in the dual

field theory.

Now, we couple the defect field theory we have constructed

to semi-holographic fermions, following [7]. Namely, if we

call the full action of the lattice system above (including both

the bulk gauge theory and the defect fields) SLC , we consider

the theory with

Stotal = SLC(A,B,Q, Q̃)+
∑

J,J′

∫

dt c†J(iδJ,J′∂t + µδJ,J′ + tJ,J′)cJ′

+ g
∑

J

∫

dt (c†JO
F
J +Hermitian conjugate) . (12)

In (12), we are coupling a normal theory of a weakly coupled

Fermi surface (governing the excitations of the c fermion) to
the strongly coupled locally critical sector, through the cou-

pling constant g mixing c with (in any natural theory) the low-
est dimension fermionic operatorOF that has the right quan-

tum numbers to couple to c.
Using largeN factorization, it is then easy to show that the

g = 0 Green’s function of the c fermion

G0(k,ω) ∼
1

ω − v|k− kF(k)|
(13)

is modified to

Gg(k,ω) ∼
1

ω − v|k− kF(k)|− g2G(k,ω) , (14)

where

G(ω) =
∫

dt eiωt〈OF
J (t)O

F†
J (0)〉 . (15)

This two-point function is fixed by the scaling symmetry of

the LC theory to be G(ω) = c∆ω2∆−1 where ∆ is the di-

mension of OF (and, importantly, G(ω) ∼ c ω log(ω) in the
degenerate case∆ = 1).
The correction term in the denominator of Gg will domi-

nate the low-frequency behavior if ∆ ≤ 1. Unitarity allows
any ∆ ≥ 1

2 and this scaling dimension is a free parameter

in the general approaches of [4, 7]. The marginal Fermi liq-

uid behavior of [2] appears in the case that the dimension of

OF is precisely 1. Therefore, the question is, are there natu-

ral circumstances in which the theory SLC(A,B,Q, Q̃) has a
leading fermionic operator of∆ = 1 which can couple to c?
The theories we have constructed above naturally come

with defect operators of ∆ = 1, as indicated by our calcu-
lation of the KK spectrum on the probe M2′ branes. It is in-

teresting to consider where these come from in field theory

language. The field theory has gauge-invariant operators of

the form

∂tQ̃1Aχ2, ∂tQ̃2Bχ1, ∂tQ1Bχ̃2, ∂tQ2Aχ̃1 . (16)

(as well as related quartets of operators of the schematic form

χ̃1ψAχ2, · · · and χ̃1A∂tQ2, · · · ). These have∆ = 1 at weak
coupling, and are good candidates for the duals of the probe

defect operators we computed on the gravity side (arising in

the tower of fluctutations of the M2′ branes along x5,··· ,10).

Suppose that upon extrapolating to strong coupling (at large

N), the weak-coupling dimensions of these operators are in-

deed protected, i.e. that the weak-coupling engineering di-

mensions of the fields correspond to their scaling dimensions

under the locally critical scaling governing the defect sector

in the probe limit. Then, assigning appropriate global quan-

tum numbers to c, one can choose one of these as the lowest
dimension fermionic operator that c can couple to in the local-
ized sector.

Returning to the dual gravitational description, we can see

that the idea above does work at least in the probe approx-

imation. By appropriate choice of global quantum numbers

(under the Z4 lattice symmetry and the (subgroup of) SO(6)
preserved by the brane configuration), one can guarantee that

no lower ∆ operators from the second tower of fluctuations

in the previous subsection infect the leading-order c-fermion
correlators (14) after coupling to the large N sector. We con-

clude that we can work directly in the probe limit and obtain

a marginal Fermi liquid by identifying OF with the lowest

fermionic operator in the first tower of defect fields computed

above. This has ∆ = 1, and as emphasized in the introduc-
tion, this dimension is independent of momentum.

Backreaction Up until now we have ignored the backre-

action of the impurities on the itinerant fields, and therefore

on each other. Thus we have been studying the dynamics of a

single impurity interacting strongly with itinerant fields. The

gravity side exhibits the successes it does because the probe

branes each wrap an AdS2 region, and the symmetries of lo-

cal quantum criticality are manifest, even including the highly

nontrivial field theory interactions that are re-summed by the

tree-level gravity solution.

The unitarity bound on the dimension is 1/2; for any value 
less than 1, one obtains a non-Fermi liquid, and if Delta is 

precisely 1, one has a marginal Fermi liquid with 
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original k = 1 theory. Correlation functions of the dual op-
erators will enjoy large N inheritance from the parent k = 1
theory, similarly to the theories discussed in [19]. (New de-

grees of freedom that might be introduced by the orbifolding,

analogous to twisted states in string theory, are very massive

in the supergravity regime, due to the free orbifold action). A

simple analysis following this logic implies that the spectrum

is the same for all k > 1; so in particular, ∆ = 1 fermionic
operators arise in these theories (and any lower ∆ fermionic

operators from the second tower can rendered safe as above,

by using global quantum numbers). A careful discussion of

the KK spectra of these theories, and the matching with oper-

ators in the dual defect field theories, will appear in [20].

Coupling to semi-holographic fermions The theory we

have constructed above is locally critical in the largeN limit.

That is, because the probeM2′ branes wrapAdS2 slices of the

AdS4 geometry, the excitations of the bulk fields localized on

the probe branes can be classified by the quantum numbers of

a locally critical quantum theory, and the correlation functions

of the operators dual to localized bulk excitations (computed

using the standard AdS/CFT dictionary) obey the constraints

following from local criticality. These are precisely correla-

tion functions of operators involving defect fields in the dual

field theory.

Now, we couple the defect field theory we have constructed

to semi-holographic fermions, following [7]. Namely, if we

call the full action of the lattice system above (including both

the bulk gauge theory and the defect fields) SLC , we consider

the theory with

Stotal = SLC(A,B,Q, Q̃)+
∑

J,J′

∫

dt c†J(iδJ,J′∂t + µδJ,J′ + tJ,J′)cJ′

+ g
∑

J

∫

dt (c†JO
F
J +Hermitian conjugate) . (12)

In (12), we are coupling a normal theory of a weakly coupled

Fermi surface (governing the excitations of the c fermion) to
the strongly coupled locally critical sector, through the cou-

pling constant g mixing c with (in any natural theory) the low-
est dimension fermionic operatorOF that has the right quan-

tum numbers to couple to c.
Using largeN factorization, it is then easy to show that the

g = 0 Green’s function of the c fermion

G0(k,ω) ∼
1

ω − v|k− kF(k)|
(13)

is modified to

Gg(k,ω) ∼
1

ω − v|k− kF(k)|− g2G(k,ω) , (14)

where

G(ω) =
∫

dt eiωt〈OF
J (t)O

F†
J (0)〉 . (15)

This two-point function is fixed by the scaling symmetry of

the LC theory to be G(ω) = c∆ω2∆−1 where ∆ is the di-

mension of OF (and, importantly, G(ω) ∼ c ω log(ω) in the
degenerate case∆ = 1).
The correction term in the denominator of Gg will domi-

nate the low-frequency behavior if ∆ ≤ 1. Unitarity allows
any ∆ ≥ 1

2 and this scaling dimension is a free parameter

in the general approaches of [4, 7]. The marginal Fermi liq-

uid behavior of [2] appears in the case that the dimension of

OF is precisely 1. Therefore, the question is, are there natu-

ral circumstances in which the theory SLC(A,B,Q, Q̃) has a
leading fermionic operator of∆ = 1 which can couple to c?
The theories we have constructed above naturally come

with defect operators of ∆ = 1, as indicated by our calcu-
lation of the KK spectrum on the probe M2′ branes. It is in-

teresting to consider where these come from in field theory

language. The field theory has gauge-invariant operators of

the form

∂tQ̃1Aχ2, ∂tQ̃2Bχ1, ∂tQ1Bχ̃2, ∂tQ2Aχ̃1 . (16)

(as well as related quartets of operators of the schematic form

χ̃1ψAχ2, · · · and χ̃1A∂tQ2, · · · ). These have∆ = 1 at weak
coupling, and are good candidates for the duals of the probe

defect operators we computed on the gravity side (arising in

the tower of fluctutations of the M2′ branes along x5,··· ,10).

Suppose that upon extrapolating to strong coupling (at large

N), the weak-coupling dimensions of these operators are in-

deed protected, i.e. that the weak-coupling engineering di-

mensions of the fields correspond to their scaling dimensions

under the locally critical scaling governing the defect sector

in the probe limit. Then, assigning appropriate global quan-

tum numbers to c, one can choose one of these as the lowest
dimension fermionic operator that c can couple to in the local-
ized sector.

Returning to the dual gravitational description, we can see

that the idea above does work at least in the probe approx-

imation. By appropriate choice of global quantum numbers

(under the Z4 lattice symmetry and the (subgroup of) SO(6)
preserved by the brane configuration), one can guarantee that

no lower ∆ operators from the second tower of fluctuations

in the previous subsection infect the leading-order c-fermion
correlators (14) after coupling to the large N sector. We con-

clude that we can work directly in the probe limit and obtain

a marginal Fermi liquid by identifying OF with the lowest

fermionic operator in the first tower of defect fields computed

above. This has ∆ = 1, and as emphasized in the introduc-
tion, this dimension is independent of momentum.

Backreaction Up until now we have ignored the backre-

action of the impurities on the itinerant fields, and therefore

on each other. Thus we have been studying the dynamics of a

single impurity interacting strongly with itinerant fields. The

gravity side exhibits the successes it does because the probe

branes each wrap an AdS2 region, and the symmetries of lo-

cal quantum criticality are manifest, even including the highly

nontrivial field theory interactions that are re-summed by the

tree-level gravity solution.

Varma et al
(1989)
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* In defect models, the lowest dimension operator coupled 
to “c” is often a defect-localised operator.

* For any              one obtains a non-Fermi liquid.∆ < 1

∆ =1 → G ∼ ω log(ω)

“Marginal Fermi liquid.”

Varma et al,
1989

* Local criticality then automatic in probe approx.!

* Unfortunately, the D3/D5 system does not lead to an 
interesting non-Fermi liquid. 
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However, in a close relative (a natural analogue constructed 
using M2 branes and probe M2’ branes, instead of D3 and 

D5 branes):

I will mostly talk about the kind of lattice model one can 
make microscopically, in M-theory, by studying the following 

brane configuration:

2

field theoretic toy-models suggest that lattices of defects inter-

acting with itinerant electrons could be a reasonable starting

point for strange metal phenomenology (see e.g. [13–15]).

Such lattices can be implemented in various ways, differing

in their symmetries and in the quantum numbers of the oper-

ators in the theory. The model of [11] involves a lattice of de-

fect fermions interacting with the 4d N = 4 supersymmetric
Yang-Mills theory, and is engineered by intersecting D3 and

D5-branes (with the D5-branes wrapping AdS2 × S4 regions

in the near-horizon AdS5 × S5 geometry of the D3-branes).

The supersymmetry preserved by that lattice model is some-

what unconventional (allowing e.g. purely fermionic defect

representations); therefore we will mostly focus on a different

lattice system which is 2+1 dimensional and enjoys a more

powerful supersymmetry algebra for some values of our dis-

crete parameters. This, however, entails extraneous bosonic

degrees of freedom at the lattice sites, and the examples con-

taining only fermions on the defects can be analyzed similarly.

In the most symmetric case, the brane configuration we

study is given, in M-theory, by M2 and M2′ branes:

0 1 2 3 4 5 6 7 8 9 10

M2 x x x

M2′ x :: :: x x

(1)

Here, an x denotes a dimension wrapped by the given brane
stack, blanks denotes dimensions where the given branes are

localized at a common point, and :: denotes dimensions in

which the given branes are individually localized but form a

lattice. In this configuration, the two stacks intersect along a

lattice in the 1-2 plane.

Our family of theories will depend on two parameters: N
and k. N denotes the number of M2 branes in the stack above;

the M2′ branes are equally spaced in a square lattice, and the

lattice spacing is the only scale in the problem (so it doesn’t

constitute a new parameter). The second parameter k arises as
follows. We consider a Zk orbifold which acts as follows on

the four complex coordinates transverse to the M2s:

gk : zi = x2i+1 + ix2i+2, zi → e
i2π
k zi, i = 1...4 . (2)

The set of M2′ branes wrap the locus [16]

z1 = z2 = 0, z3 = z̄4 . (3)

and their orbifold images under (2). For k = 1 this embedding
is equivalent to the one in (1). We treat even and odd k sym-
metrically, defining the orbifold action to identify points on

different, mirror branes (rather than taking the gk/2k element

to identify points on the same brane in the case k even).
The global symmetry of the M2-brane theory is partially

broken by the orbifolding and the presence of the M2′ probes;

from SO(8) × SO(2) to SO(6) × U(1) × Z4 for k = 1,
and down to SU(2) × U(1)2 × Z4 for k > 1. The Z4 factor

here represents the symmetry of the lattice. At large k (such
that k5 # N # 1), it follows from the analysis in [17] that

the near-horizon region of the system of M2 and M2′ branes is

described more accurately using different variables in terms of

type IIA string theory with D2 and D2′ branes on a nontrivial

geometry with background 2-form gauge flux.

The field theory The field theory on the M2 branes in

these geometries has been studied in great detail [17]. A

general 3d supersymmetric Chern-Simons theory with at least

N = 2 supersymmetry has an action including the terms [18]:

S =

∫

d3x
k

4π
Tr(A∧dA+2

3
A3)+Dµφ̄iD

µφi+iψ̄iγ
µDµψi

− 16π2

k2
(φ̄iT

a
Ri
φi)(φ̄jT

b
Rjφj)(φ̄kT

a
Rk

T b
Rk

φk)

− 4π

k
(φ̄iT

a
Ri
φi)(ψ̄jT

a
Rj

ψj)−
8π

k
(ψ̄iT

a
Ri
φi)(φ̄jT

a
Rj

ψj) .

(4)

Here T a
R are the generators of the gauge group in representa-

tion R, and the scalars φi and fermions ψi are superpartners

in a chiral multiplet. These terms arise from integrating out

the scalars and fermions of the massive vector multiplet and

flowing to the deep infrared limit of the theory.

The field theory on our M2 branes is a special case of this

theory, with gauge groups U(N) × U(N) appearing at lev-
els ±k. The ‘t Hooft coupling of this theory is N/k and so
is large in the holographic limits. The matter fields φi are

four bi-fundamental fields A1,2 and B1,2, in the (N, N̄) and
(N̄ ,N) representations respectively. In addition to the basic
supersymmetric action written above for these fields, we add

an N = 3 superpotential

W =
2π

k
εabεȧḃTr(AaBȧAbBḃ) . (5)

Here a, b = 1, 2 and the superpotential has been written in
a manifestly SU(2) × SU(2) symmetric manner. The full
symmetry of the field theory is in fact enhanced to an SO(6)×
U(1)b (with the baryonic U(1)b acting with charge±1 on the
A and B fields), and the theory with these choices enjoys an

enhancedN = 6 supersymmetry [17].[29]
The probe M2′ branes give rise to localized degrees of free-

dom; in the type IIA string theory limit of the brane con-

struction these arise from strings stretching between the D2

branes and a lattice of probe D2′ branes. In the simplest case

of k = 1, these are hypermultiplets, with the fermions trans-
forming as spinors in the dimensions transverse to both branes

(and the bosons transforming as spinors along 1234). The in-

frared Chern-Simons theory is more difficult to analyze di-

rectly, since the appropriate type IIB brane construction in-

volves non-perturbative ingredients. However, by generaliz-

ing the methods of [17] one can obtain a plausible hypothe-

sis for the spectrum [16], in which defect hypermultiplets are

added to both gauge groups. One reason that this is plausible

is that the dual probe branes respect parity, which in the field

theory exchanges the gauge group factors. The bosonic quan-

tum mechanical degrees of freedomQ1,2 and Q̃1,2 at each site

transform as follows. Qi transforms in the N of the ith U(N)

(as well as its orbifolds).

But for some purposes, the IIB configuration:
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where we’ve defined

ζ(z1) =
1

8π
√
2

∑

n

(|ηcn|2 − |ηn|2)
z1 − z1n

(27)

and

φ1 = Z1 − ζ . (28)

The |ζ̇|2 term in (26) exhibits cross-couplings between the η
hypermultiplet fields that would naively ruin local criticality.

One would also get similar terms by integrating out A0 and

φ3. The generation of inter-defect interactions is not tied to

supersymmetry, but these terms sum to a cross-coupling term

in the Kähler potential for the defect hypermultiplets. [31]

This makes it seem unlikely that the local criticality of the

gravity regime can survive to finite N and coupling, where a

field theory analysis should be reliable. However, it is impor-

tant to remember that our starting point here has been the 3d

N = 8 Yang-Mills theory, and this UV Lagrangian is valid
only far from the IR fixed point which we know governs the

physics on the N M2 branes (even at finiteN ).
To get an alternate perspective, we can also try to com-

pute the inter-defect corrections arising from coupling the

defect hypermultiplets to the doubled Chern-Simons theory

which captures the fixed-point physics. In fact, a simple toy-

model already illustrates the important difference between the

Chern-Simons defect theories and the Yang-Mills defect theo-

ries. An Abelian Chern-Simons gauge field coupled to defect

fermions χn would be governed by an action

S =

∫

dt d2z [A0(∂zAz̄ − ∂z̄Az)−Az(∂0Az̄ − ∂z̄A0)

+Az̄(∂0Az − ∂zA0)] +

∫

dt
∑

n

δ(2)(z − zn)χ
†
nA0χn .

(29)

One can see directly that integrating out A0 will not gen-

erate a dangerous inter-defect coupling here, as it is a non-

propagating field. The A and B fields do propagate, but these

couple to the defect fields only quadratically as in Eqs. (6, 7)

and so do not generate tree level corrections.

A full field-theoretic analysis of the radiative corrections

to the ABJM theory coupled to hypermultiplet defects is be-

yond the scope of our work. It will be interesting to see to

what extent the absence of induced inter-defect couplings ap-

plies in the full model; the simple computation above suggests

that at least the most obvious dangerous cross-couplings vis-

ible from the Yang-Mills perspective, do not characterize the

physics of the IR fixed point theory coupled to hypermulti-

plet defects. Especially in the cases k = 1, 2, where the full
model enjoys enhanced supersymmetry, non-renormalization

theorems strongly constrain the possible generation of four-

fermion cross-coupling terms (see for instance [26]); con-

straints on higher multi-fermion terms are less obvious. It

would be most interesting to push this analysis further, and

construct systems of defect fermions interacting with itinerant

fields where local criticality can be seen robustly directly from

field theoretic arguments.
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Appendix: The 3.5 system
To begin let us consider a variant of the construction of [11],

who studied the brane configuration

0 1 2 3 4 5 6 7 8 9

D3 x x x x

D5(5̄) x :: :: :: x x x x x

(30)

As before, an x indicates a direction in which the given branes

are extended, and a :: indicates a direction in which they are in
a lattice configuration. The 3-5 intersections are 0+ 1 dimen-
sional, representing defects in the dual gauge theory. For this

system, with 8 ND directions, only fermions live on the inter-

sections, which is very natural for the intended applications.

In the limit that the 5-branes are probes, the D3-branes gen-

erate an AdS5×S5 spacetime, with each 5-brane wrapped on

an AdS2 × S4 subspace. However, the spatial directions con-

tract in the IR of the AdS5 geometry, so the 5-brane density

diverges there and their backreaction cannot be neglected. At

large N , the backreaction becomes a large effect at energies
which are parametrically small compared to the lattice scale

(as noted in [11]). [32]

We are looking for an IR geometryAdS2×R3×X , which
we will for convenience compactify to AdS2 × T 3 ×X . We
study this with the Ansatz X = S5, averaging the energy

density of the 5-branes over the compact dimensions. Let A,
T , and S be the respective radii of the three factors AdS2 ×
T 3 × S5. The effective action dimensionally reduced to 1+1

dimensions is of the form

S =

∫

d2x

(

−T 3S5

g2s
+

A2T 3S3

g2s
− N5A2S4

gs
− N2

3A
2T 3

S5

)

.

(31)

We work in units where the string length is one, and ignore

order one coefficients. The respective terms come from the

curvatures of AdS2 and S5, the 5-brane tensions, and the RR

5-form flux, and do not distinguish between pure D5-branes

and a mix of D5s andD5s. In other situations it would be nat-
ural to Weyl transform to an effective potential, but this is not

possible forAdS2; instead we directly extremize with respect

to A. One readily verifies that the action has no stationary

(or its T-duals) would be advantageous, as I’ll occasionally 
mention..

c.f. Ammon, Erdmenger,
Meyer, O’Bannon, Wrase

c.f. SK, Karch, Yaida
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one can naturally obtain precisely the scalings required for 
the marginal Fermi liquid of  Varma et al.

These theories involve defects (both fermionic and 
bosonic) coupled to the N=6 supersymmetric doubled 

Chern-Simons theories studied by ABJM.
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field theoretic toy-models suggest that lattices of defects inter-

acting with itinerant electrons could be a reasonable starting

point for strange metal phenomenology (see e.g. [13–15]).

Such lattices can be implemented in various ways, differing

in their symmetries and in the quantum numbers of the oper-

ators in the theory. The model of [11] involves a lattice of de-

fect fermions interacting with the 4d N = 4 supersymmetric
Yang-Mills theory, and is engineered by intersecting D3 and

D5-branes (with the D5-branes wrapping AdS2 × S4 regions

in the near-horizon AdS5 × S5 geometry of the D3-branes).

The supersymmetry preserved by that lattice model is some-

what unconventional (allowing e.g. purely fermionic defect

representations); therefore we will mostly focus on a different

lattice system which is 2+1 dimensional and enjoys a more

powerful supersymmetry algebra for some values of our dis-

crete parameters. This, however, entails extraneous bosonic

degrees of freedom at the lattice sites, and the examples con-

taining only fermions on the defects can be analyzed similarly.

In the most symmetric case, the brane configuration we

study is given, in M-theory, by M2 and M2′ branes:

0 1 2 3 4 5 6 7 8 9 10

M2 x x x

M2′ x :: :: x x

(1)

Here, an x denotes a dimension wrapped by the given brane
stack, blanks denotes dimensions where the given branes are

localized at a common point, and :: denotes dimensions in

which the given branes are individually localized but form a

lattice. In this configuration, the two stacks intersect along a

lattice in the 1-2 plane.

Our family of theories will depend on two parameters: N
and k. N denotes the number of M2 branes in the stack above;

the M2′ branes are equally spaced in a square lattice, and the

lattice spacing is the only scale in the problem (so it doesn’t

constitute a new parameter). The second parameter k arises as
follows. We consider a Zk orbifold which acts as follows on

the four complex coordinates transverse to the M2s:

gk : zi = x2i+1 + ix2i+2, zi → e
i2π
k zi, i = 1...4 . (2)

The set of M2′ branes wrap the locus [16]

z1 = z2 = 0, z3 = z̄4 . (3)

and their orbifold images under (2). For k = 1 this embedding
is equivalent to the one in (1). We treat even and odd k sym-
metrically, defining the orbifold action to identify points on

different, mirror branes (rather than taking the gk/2k element

to identify points on the same brane in the case k even).
The global symmetry of the M2-brane theory is partially

broken by the orbifolding and the presence of the M2′ probes;

from SO(8) × SO(2) to SO(6) × U(1) × Z4 for k = 1,
and down to SU(2) × U(1)2 × Z4 for k > 1. The Z4 factor

here represents the symmetry of the lattice. At large k (such
that k5 # N # 1), it follows from the analysis in [17] that

the near-horizon region of the system of M2 and M2′ branes is

described more accurately using different variables in terms of

type IIA string theory with D2 and D2′ branes on a nontrivial

geometry with background 2-form gauge flux.

The field theory The field theory on the M2 branes in

these geometries has been studied in great detail [17]. A

general 3d supersymmetric Chern-Simons theory with at least

N = 2 supersymmetry has an action including the terms [18]:

S =

∫

d3x
k

4π
Tr(A∧dA+2

3
A3)+Dµφ̄iD

µφi+iψ̄iγ
µDµψi

− 16π2

k2
(φ̄iT
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Ri
φi)(φ̄jT

b
Rjφj)(φ̄kT
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T b
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φk)

− 4π

k
(φ̄iT

a
Ri
φi)(ψ̄jT

a
Rj

ψj)−
8π

k
(ψ̄iT

a
Ri
φi)(φ̄jT

a
Rj

ψj) .

(4)

Here T a
R are the generators of the gauge group in representa-

tion R, and the scalars φi and fermions ψi are superpartners

in a chiral multiplet. These terms arise from integrating out

the scalars and fermions of the massive vector multiplet and

flowing to the deep infrared limit of the theory.

The field theory on our M2 branes is a special case of this

theory, with gauge groups U(N) × U(N) appearing at lev-
els ±k. The ‘t Hooft coupling of this theory is N/k and so
is large in the holographic limits. The matter fields φi are

four bi-fundamental fields A1,2 and B1,2, in the (N, N̄) and
(N̄ ,N) representations respectively. In addition to the basic
supersymmetric action written above for these fields, we add

an N = 3 superpotential

W =
2π

k
εabεȧḃTr(AaBȧAbBḃ) . (5)

Here a, b = 1, 2 and the superpotential has been written in
a manifestly SU(2) × SU(2) symmetric manner. The full
symmetry of the field theory is in fact enhanced to an SO(6)×
U(1)b (with the baryonic U(1)b acting with charge±1 on the
A and B fields), and the theory with these choices enjoys an

enhancedN = 6 supersymmetry [17].[29]
The probe M2′ branes give rise to localized degrees of free-

dom; in the type IIA string theory limit of the brane con-

struction these arise from strings stretching between the D2

branes and a lattice of probe D2′ branes. In the simplest case

of k = 1, these are hypermultiplets, with the fermions trans-
forming as spinors in the dimensions transverse to both branes

(and the bosons transforming as spinors along 1234). The in-

frared Chern-Simons theory is more difficult to analyze di-

rectly, since the appropriate type IIB brane construction in-

volves non-perturbative ingredients. However, by generaliz-

ing the methods of [17] one can obtain a plausible hypothe-

sis for the spectrum [16], in which defect hypermultiplets are

added to both gauge groups. One reason that this is plausible

is that the dual probe branes respect parity, which in the field

theory exchanges the gauge group factors. The bosonic quan-

tum mechanical degrees of freedomQ1,2 and Q̃1,2 at each site

transform as follows. Qi transforms in the N of the ith U(N)

The near-horizon geometries and dual field theories
which result have been discussed extensively 

following the work of ABJM (and I’ll focus on the 
regime of N,k where the M-theory picture is valid).

A Chern-Simons-Matter theory with 3d N=2 
supersymmetry has a Lagrangian including the terms:
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field theoretic toy-models suggest that lattices of defects inter-

acting with itinerant electrons could be a reasonable starting

point for strange metal phenomenology (see e.g. [13–15]).

Such lattices can be implemented in various ways, differing

in their symmetries and in the quantum numbers of the oper-

ators in the theory. The model of [11] involves a lattice of de-

fect fermions interacting with the 4d N = 4 supersymmetric
Yang-Mills theory, and is engineered by intersecting D3 and

D5-branes (with the D5-branes wrapping AdS2 × S4 regions

in the near-horizon AdS5 × S5 geometry of the D3-branes).

The supersymmetry preserved by that lattice model is some-

what unconventional (allowing e.g. purely fermionic defect

representations); therefore we will mostly focus on a different

lattice system which is 2+1 dimensional and enjoys a more

powerful supersymmetry algebra for some values of our dis-

crete parameters. This, however, entails extraneous bosonic

degrees of freedom at the lattice sites, and the examples con-

taining only fermions on the defects can be analyzed similarly.

In the most symmetric case, the brane configuration we

study is given, in M-theory, by M2 and M2′ branes:

0 1 2 3 4 5 6 7 8 9 10

M2 x x x

M2′ x :: :: x x

(1)

Here, an x denotes a dimension wrapped by the given brane
stack, blanks denotes dimensions where the given branes are

localized at a common point, and :: denotes dimensions in

which the given branes are individually localized but form a

lattice. In this configuration, the two stacks intersect along a

lattice in the 1-2 plane.

Our family of theories will depend on two parameters: N
and k. N denotes the number of M2 branes in the stack above;

the M2′ branes are equally spaced in a square lattice, and the

lattice spacing is the only scale in the problem (so it doesn’t

constitute a new parameter). The second parameter k arises as
follows. We consider a Zk orbifold which acts as follows on

the four complex coordinates transverse to the M2s:

gk : zi = x2i+1 + ix2i+2, zi → e
i2π
k zi, i = 1...4 . (2)

The set of M2′ branes wrap the locus [16]

z1 = z2 = 0, z3 = z̄4 . (3)

and their orbifold images under (2). For k = 1 this embedding
is equivalent to the one in (1). We treat even and odd k sym-
metrically, defining the orbifold action to identify points on

different, mirror branes (rather than taking the gk/2k element

to identify points on the same brane in the case k even).
The global symmetry of the M2-brane theory is partially

broken by the orbifolding and the presence of the M2′ probes;

from SO(8) × SO(2) to SO(6) × U(1) × Z4 for k = 1,
and down to SU(2) × U(1)2 × Z4 for k > 1. The Z4 factor

here represents the symmetry of the lattice. At large k (such
that k5 # N # 1), it follows from the analysis in [17] that

the near-horizon region of the system of M2 and M2′ branes is

described more accurately using different variables in terms of

type IIA string theory with D2 and D2′ branes on a nontrivial

geometry with background 2-form gauge flux.

The field theory The field theory on the M2 branes in

these geometries has been studied in great detail [17]. A

general 3d supersymmetric Chern-Simons theory with at least

N = 2 supersymmetry has an action including the terms [18]:

S =

∫
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Here T a
R are the generators of the gauge group in representa-

tion R, and the scalars φi and fermions ψi are superpartners

in a chiral multiplet. These terms arise from integrating out

the scalars and fermions of the massive vector multiplet and

flowing to the deep infrared limit of the theory.

The field theory on our M2 branes is a special case of this

theory, with gauge groups U(N) × U(N) appearing at lev-
els ±k. The ‘t Hooft coupling of this theory is N/k and so
is large in the holographic limits. The matter fields φi are

four bi-fundamental fields A1,2 and B1,2, in the (N, N̄) and
(N̄ ,N) representations respectively. In addition to the basic
supersymmetric action written above for these fields, we add

an N = 3 superpotential

W =
2π

k
εabεȧḃTr(AaBȧAbBḃ) . (5)

Here a, b = 1, 2 and the superpotential has been written in
a manifestly SU(2) × SU(2) symmetric manner. The full
symmetry of the field theory is in fact enhanced to an SO(6)×
U(1)b (with the baryonic U(1)b acting with charge±1 on the
A and B fields), and the theory with these choices enjoys an

enhancedN = 6 supersymmetry [17].[29]
The probe M2′ branes give rise to localized degrees of free-

dom; in the type IIA string theory limit of the brane con-

struction these arise from strings stretching between the D2

branes and a lattice of probe D2′ branes. In the simplest case

of k = 1, these are hypermultiplets, with the fermions trans-
forming as spinors in the dimensions transverse to both branes

(and the bosons transforming as spinors along 1234). The in-

frared Chern-Simons theory is more difficult to analyze di-

rectly, since the appropriate type IIB brane construction in-

volves non-perturbative ingredients. However, by generaliz-

ing the methods of [17] one can obtain a plausible hypothe-

sis for the spectrum [16], in which defect hypermultiplets are

added to both gauge groups. One reason that this is plausible

is that the dual probe branes respect parity, which in the field

theory exchanges the gauge group factors. The bosonic quan-

tum mechanical degrees of freedomQ1,2 and Q̃1,2 at each site

transform as follows. Qi transforms in the N of the ith U(N)

Gaiotto, Yin;
many earlier
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A rather general 3d N=2 supersymmetric Chern-Simons 
theory has a Lagrangian of the form:

* There can also be a superpotential.These M2-brane theories are dual to the theories with 
gauge group, matter content, and N=3 supersymmetry-

preserving superpotential similar to the famous “conifold” 
gauge theory in 4d (with equal ranks for the nodes):
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point for strange metal phenomenology (see e.g. [13–15]).

Such lattices can be implemented in various ways, differing
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fect fermions interacting with the 4d N = 4 supersymmetric
Yang-Mills theory, and is engineered by intersecting D3 and

D5-branes (with the D5-branes wrapping AdS2 × S4 regions

in the near-horizon AdS5 × S5 geometry of the D3-branes).

The supersymmetry preserved by that lattice model is some-

what unconventional (allowing e.g. purely fermionic defect

representations); therefore we will mostly focus on a different

lattice system which is 2+1 dimensional and enjoys a more

powerful supersymmetry algebra for some values of our dis-

crete parameters. This, however, entails extraneous bosonic

degrees of freedom at the lattice sites, and the examples con-

taining only fermions on the defects can be analyzed similarly.

In the most symmetric case, the brane configuration we

study is given, in M-theory, by M2 and M2′ branes:
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M2 x x x
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(1)

Here, an x denotes a dimension wrapped by the given brane
stack, blanks denotes dimensions where the given branes are

localized at a common point, and :: denotes dimensions in

which the given branes are individually localized but form a

lattice. In this configuration, the two stacks intersect along a

lattice in the 1-2 plane.

Our family of theories will depend on two parameters: N
and k. N denotes the number of M2 branes in the stack above;

the M2′ branes are equally spaced in a square lattice, and the

lattice spacing is the only scale in the problem (so it doesn’t

constitute a new parameter). The second parameter k arises as
follows. We consider a Zk orbifold which acts as follows on

the four complex coordinates transverse to the M2s:

gk : zi = x2i+1 + ix2i+2, zi → e
i2π
k zi, i = 1...4 . (2)

The set of M2′ branes wrap the locus [16]

z1 = z2 = 0, z3 = z̄4 . (3)

and their orbifold images under (2). For k = 1 this embedding
is equivalent to the one in (1). We treat even and odd k sym-
metrically, defining the orbifold action to identify points on

different, mirror branes (rather than taking the gk/2k element

to identify points on the same brane in the case k even).
The global symmetry of the M2-brane theory is partially

broken by the orbifolding and the presence of the M2′ probes;

from SO(8) × SO(2) to SO(6) × U(1) × Z4 for k = 1,
and down to SU(2) × U(1)2 × Z4 for k > 1. The Z4 factor

here represents the symmetry of the lattice. At large k (such
that k5 # N # 1), it follows from the analysis in [17] that

the near-horizon region of the system of M2 and M2′ branes is

described more accurately using different variables in terms of

type IIA string theory with D2 and D2′ branes on a nontrivial

geometry with background 2-form gauge flux.

The field theory The field theory on the M2 branes in

these geometries has been studied in great detail [17]. A
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Here T a
R are the generators of the gauge group in representa-

tion R, and the scalars φi and fermions ψi are superpartners

in a chiral multiplet. These terms arise from integrating out

the scalars and fermions of the massive vector multiplet and

flowing to the deep infrared limit of the theory.

The field theory on our M2 branes is a special case of this

theory, with gauge groups U(N) × U(N) appearing at lev-
els ±k. The ‘t Hooft coupling of this theory is N/k and so
is large in the holographic limits. The matter fields φi are

four bi-fundamental fields A1,2 and B1,2, in the (N, N̄) and
(N̄ ,N) representations respectively. In addition to the basic
supersymmetric action written above for these fields, we add

an N = 3 superpotential

W =
2π

k
εabεȧḃTr(AaBȧAbBḃ) . (5)

Here a, b = 1, 2 and the superpotential has been written in
a manifestly SU(2) × SU(2) symmetric manner. The full
symmetry of the field theory is in fact enhanced to an SO(6)×
U(1)b (with the baryonic U(1)b acting with charge±1 on the
A and B fields), and the theory with these choices enjoys an

enhancedN = 6 supersymmetry [17].[29]
The probe M2′ branes give rise to localized degrees of free-

dom; in the type IIA string theory limit of the brane con-

struction these arise from strings stretching between the D2

branes and a lattice of probe D2′ branes. In the simplest case

of k = 1, these are hypermultiplets, with the fermions trans-
forming as spinors in the dimensions transverse to both branes

(and the bosons transforming as spinors along 1234). The in-

frared Chern-Simons theory is more difficult to analyze di-

rectly, since the appropriate type IIB brane construction in-

volves non-perturbative ingredients. However, by generaliz-

ing the methods of [17] one can obtain a plausible hypothe-

sis for the spectrum [16], in which defect hypermultiplets are

added to both gauge groups. One reason that this is plausible

is that the dual probe branes respect parity, which in the field

theory exchanges the gauge group factors. The bosonic quan-

tum mechanical degrees of freedomQ1,2 and Q̃1,2 at each site

transform as follows. Qi transforms in the N of the ith U(N)

node 3, are commuting operations. Hence we do not have to assume an a priori hierarchy

between the scales Λ1 and Λ3. A more detailed examination in §4 will show that the only

really plausible case is when M = P .7 There, it is natural to assume strong dynamics at

both nodes 1 and 3 simultaneously. In §5.1 we argue that essentially any hierarchy between

Λ1 and Λ3 is attainable in a string theory realization of this model.

Since our goal is to generate non-zero masses dynamically, it is crucial to ensure that

they are stable against relaxation to zero or infinity. The first scenario could occur if there

is an instability towards condensation of baryons, and would destroy the possibility of SUSY

breaking. Settling this question is difficult, since the SQCD node is in a confining regime and

non-computable corrections to the Kähler potential are present. There is no obvious sign of

an instability in the gravity dual that we construct later. In the rest of the paper, we will

work under the assumption that the mesonic branch of node 1 is stable. This is a question

that certainly deserves further study. An alternative direction would be to investigate the

issue of stability of dynamical masses in similar theories for which it is possible to work in

the free-magnetic regime.

The gauge theory described above can be viewed as a sub-sector embedded in a larger

quiver, with possibly more gauge groups, fields (even charged under node 3) and superpo-

tential interactions.

2.2 A ZZ2 orbifold of the conifold

In this section we present a theory that contains the sub-quiver discussed in §2.1 and hence

has the appropriate non-chiral matter and quartic interactions to generate dynamical masses

by quantum deformation of the moduli space. In addition, this model has a concrete string

theory realization in terms of D-branes probing a singularity.

The model we consider is a non-chiral ZZ2 orbifold of the conifold (see e.g. [34]). It follows

from the conifold gauge theory by the standard orbifolding procedure. Figure 2 shows the

conifold quiver for arbitrary ranks r1 and r2. The corresponding superpotential is

W = hεijεklAiBkAjBl . (2.6)

r1 r2

1 2

Figure 2: Quiver diagram for the conifold with SU(r1) × SU(r2) gauge group.

7The argument for the existence of a meta-stable vacuum when P = M is more subtle, see §4.

7
For the kth orbifold theory, the gauge groups at the two 

nodes are U(N)s with opposite levels +/- k, so overall, the 
theory preserves a suitably defined parity.  As argued by 
ABJM, the theories are secretly all N=6 supersymmetric 

(with further enhancement to N=8 for k=1,2).
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which the given branes are individually localized but form a
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and k. N denotes the number of M2 branes in the stack above;

the M2′ branes are equally spaced in a square lattice, and the
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follows. We consider a Zk orbifold which acts as follows on

the four complex coordinates transverse to the M2s:
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The set of M2′ branes wrap the locus [16]
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and their orbifold images under (2). For k = 1 this embedding
is equivalent to the one in (1). We treat even and odd k sym-
metrically, defining the orbifold action to identify points on

different, mirror branes (rather than taking the gk/2k element

to identify points on the same brane in the case k even).
The global symmetry of the M2-brane theory is partially

broken by the orbifolding and the presence of the M2′ probes;

from SO(8) × SO(2) to SO(6) × U(1) × Z4 for k = 1,
and down to SU(2) × U(1)2 × Z4 for k > 1. The Z4 factor

here represents the symmetry of the lattice. At large k (such
that k5 # N # 1), it follows from the analysis in [17] that

the near-horizon region of the system of M2 and M2′ branes is

described more accurately using different variables in terms of

type IIA string theory with D2 and D2′ branes on a nontrivial

geometry with background 2-form gauge flux.

The field theory The field theory on the M2 branes in
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Here T a
R are the generators of the gauge group in representa-

tion R, and the scalars φi and fermions ψi are superpartners

in a chiral multiplet. These terms arise from integrating out

the scalars and fermions of the massive vector multiplet and

flowing to the deep infrared limit of the theory.

The field theory on our M2 branes is a special case of this

theory, with gauge groups U(N) × U(N) appearing at lev-
els ±k. The ‘t Hooft coupling of this theory is N/k and so
is large in the holographic limits. The matter fields φi are

four bi-fundamental fields A1,2 and B1,2, in the (N, N̄) and
(N̄ ,N) representations respectively. In addition to the basic
supersymmetric action written above for these fields, we add

an N = 3 superpotential

W =
2π
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εabεȧḃTr(AaBȧAbBḃ) . (5)

Here a, b = 1, 2 and the superpotential has been written in
a manifestly SU(2) × SU(2) symmetric manner. The full
symmetry of the field theory is in fact enhanced to an SO(6)×
U(1)b (with the baryonic U(1)b acting with charge±1 on the
A and B fields), and the theory with these choices enjoys an

enhancedN = 6 supersymmetry [17].[29]
The probe M2′ branes give rise to localized degrees of free-

dom; in the type IIA string theory limit of the brane con-

struction these arise from strings stretching between the D2

branes and a lattice of probe D2′ branes. In the simplest case

of k = 1, these are hypermultiplets, with the fermions trans-
forming as spinors in the dimensions transverse to both branes

(and the bosons transforming as spinors along 1234). The in-

frared Chern-Simons theory is more difficult to analyze di-

rectly, since the appropriate type IIB brane construction in-

volves non-perturbative ingredients. However, by generaliz-

ing the methods of [17] one can obtain a plausible hypothe-

sis for the spectrum [16], in which defect hypermultiplets are

added to both gauge groups. One reason that this is plausible

is that the dual probe branes respect parity, which in the field

theory exchanges the gauge group factors. The bosonic quan-

tum mechanical degrees of freedomQ1,2 and Q̃1,2 at each site

transform as follows. Qi transforms in the N of the ith U(N)

The near-horizon geometries and dual field theories
which result have been discussed extensively 

following the work of ABJM (and I’ll focus on the 
regime of N,k where the M-theory picture is valid).

A Chern-Simons-Matter theory with 3d N=2 
supersymmetry has a Lagrangian including the terms:

2

field theoretic toy-models suggest that lattices of defects inter-

acting with itinerant electrons could be a reasonable starting

point for strange metal phenomenology (see e.g. [13–15]).

Such lattices can be implemented in various ways, differing

in their symmetries and in the quantum numbers of the oper-

ators in the theory. The model of [11] involves a lattice of de-

fect fermions interacting with the 4d N = 4 supersymmetric
Yang-Mills theory, and is engineered by intersecting D3 and

D5-branes (with the D5-branes wrapping AdS2 × S4 regions

in the near-horizon AdS5 × S5 geometry of the D3-branes).

The supersymmetry preserved by that lattice model is some-

what unconventional (allowing e.g. purely fermionic defect

representations); therefore we will mostly focus on a different

lattice system which is 2+1 dimensional and enjoys a more

powerful supersymmetry algebra for some values of our dis-

crete parameters. This, however, entails extraneous bosonic

degrees of freedom at the lattice sites, and the examples con-

taining only fermions on the defects can be analyzed similarly.

In the most symmetric case, the brane configuration we

study is given, in M-theory, by M2 and M2′ branes:

0 1 2 3 4 5 6 7 8 9 10

M2 x x x

M2′ x :: :: x x

(1)

Here, an x denotes a dimension wrapped by the given brane
stack, blanks denotes dimensions where the given branes are

localized at a common point, and :: denotes dimensions in

which the given branes are individually localized but form a

lattice. In this configuration, the two stacks intersect along a

lattice in the 1-2 plane.

Our family of theories will depend on two parameters: N
and k. N denotes the number of M2 branes in the stack above;

the M2′ branes are equally spaced in a square lattice, and the

lattice spacing is the only scale in the problem (so it doesn’t

constitute a new parameter). The second parameter k arises as
follows. We consider a Zk orbifold which acts as follows on

the four complex coordinates transverse to the M2s:

gk : zi = x2i+1 + ix2i+2, zi → e
i2π
k zi, i = 1...4 . (2)

The set of M2′ branes wrap the locus [16]

z1 = z2 = 0, z3 = z̄4 . (3)

and their orbifold images under (2). For k = 1 this embedding
is equivalent to the one in (1). We treat even and odd k sym-
metrically, defining the orbifold action to identify points on

different, mirror branes (rather than taking the gk/2k element

to identify points on the same brane in the case k even).
The global symmetry of the M2-brane theory is partially

broken by the orbifolding and the presence of the M2′ probes;

from SO(8) × SO(2) to SO(6) × U(1) × Z4 for k = 1,
and down to SU(2) × U(1)2 × Z4 for k > 1. The Z4 factor

here represents the symmetry of the lattice. At large k (such
that k5 # N # 1), it follows from the analysis in [17] that

the near-horizon region of the system of M2 and M2′ branes is

described more accurately using different variables in terms of

type IIA string theory with D2 and D2′ branes on a nontrivial

geometry with background 2-form gauge flux.

The field theory The field theory on the M2 branes in

these geometries has been studied in great detail [17]. A

general 3d supersymmetric Chern-Simons theory with at least

N = 2 supersymmetry has an action including the terms [18]:

S =

∫

d3x
k

4π
Tr(A∧dA+2

3
A3)+Dµφ̄iD

µφi+iψ̄iγ
µDµψi

− 16π2

k2
(φ̄iT

a
Ri
φi)(φ̄jT

b
Rjφj)(φ̄kT

a
Rk

T b
Rk

φk)

− 4π

k
(φ̄iT

a
Ri
φi)(ψ̄jT

a
Rj

ψj)−
8π

k
(ψ̄iT

a
Ri
φi)(φ̄jT

a
Rj

ψj) .

(4)

Here T a
R are the generators of the gauge group in representa-

tion R, and the scalars φi and fermions ψi are superpartners

in a chiral multiplet. These terms arise from integrating out

the scalars and fermions of the massive vector multiplet and

flowing to the deep infrared limit of the theory.

The field theory on our M2 branes is a special case of this

theory, with gauge groups U(N) × U(N) appearing at lev-
els ±k. The ‘t Hooft coupling of this theory is N/k and so
is large in the holographic limits. The matter fields φi are

four bi-fundamental fields A1,2 and B1,2, in the (N, N̄) and
(N̄ ,N) representations respectively. In addition to the basic
supersymmetric action written above for these fields, we add

an N = 3 superpotential

W =
2π

k
εabεȧḃTr(AaBȧAbBḃ) . (5)

Here a, b = 1, 2 and the superpotential has been written in
a manifestly SU(2) × SU(2) symmetric manner. The full
symmetry of the field theory is in fact enhanced to an SO(6)×
U(1)b (with the baryonic U(1)b acting with charge±1 on the
A and B fields), and the theory with these choices enjoys an

enhancedN = 6 supersymmetry [17].[29]
The probe M2′ branes give rise to localized degrees of free-

dom; in the type IIA string theory limit of the brane con-

struction these arise from strings stretching between the D2

branes and a lattice of probe D2′ branes. In the simplest case

of k = 1, these are hypermultiplets, with the fermions trans-
forming as spinors in the dimensions transverse to both branes

(and the bosons transforming as spinors along 1234). The in-

frared Chern-Simons theory is more difficult to analyze di-

rectly, since the appropriate type IIB brane construction in-

volves non-perturbative ingredients. However, by generaliz-

ing the methods of [17] one can obtain a plausible hypothe-

sis for the spectrum [16], in which defect hypermultiplets are

added to both gauge groups. One reason that this is plausible

is that the dual probe branes respect parity, which in the field

theory exchanges the gauge group factors. The bosonic quan-

tum mechanical degrees of freedomQ1,2 and Q̃1,2 at each site

transform as follows. Qi transforms in the N of the ith U(N)

Gaiotto, Yin;
many earlier
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At each lattice point, the defect fields are “hypermultiplets” 
with quantum numbers:

Adding the defects

The M2’ branes wrap the loci

2

field theoretic toy-models suggest that lattices of defects inter-

acting with itinerant electrons could be a reasonable starting

point for strange metal phenomenology (see e.g. [13–15]).

Such lattices can be implemented in various ways, differing

in their symmetries and in the quantum numbers of the oper-

ators in the theory. The model of [11] involves a lattice of de-

fect fermions interacting with the 4d N = 4 supersymmetric
Yang-Mills theory, and is engineered by intersecting D3 and

D5-branes (with the D5-branes wrapping AdS2 × S4 regions

in the near-horizon AdS5 × S5 geometry of the D3-branes).

The supersymmetry preserved by that lattice model is some-

what unconventional (allowing e.g. purely fermionic defect

representations); therefore we will mostly focus on a different

lattice system which is 2+1 dimensional and enjoys a more

powerful supersymmetry algebra for some values of our dis-

crete parameters. This, however, entails extraneous bosonic

degrees of freedom at the lattice sites, and the examples con-

taining only fermions on the defects can be analyzed similarly.

In the most symmetric case, the brane configuration we

study is given, in M-theory, by M2 and M2′ branes:

0 1 2 3 4 5 6 7 8 9 10

M2 x x x

M2′ x :: :: x x

(1)

Here, an x denotes a dimension wrapped by the given brane
stack, blanks denotes dimensions where the given branes are

localized at a common point, and :: denotes dimensions in

which the given branes are individually localized but form a

lattice. In this configuration, the two stacks intersect along a

lattice in the 1-2 plane.

Our family of theories will depend on two parameters: N
and k. N denotes the number of M2 branes in the stack above;

the M2′ branes are equally spaced in a square lattice, and the

lattice spacing is the only scale in the problem (so it doesn’t

constitute a new parameter). The second parameter k arises as
follows. We consider a Zk orbifold which acts as follows on

the four complex coordinates transverse to the M2s:

gk : zi = x2i+1 + ix2i+2, zi → e
i2π
k zi, i = 1...4 . (2)

The set of M2′ branes wrap the locus [16]

z1 = z2 = 0, z3 = z̄4 . (3)

and their orbifold images under (2). For k = 1 this embedding
is equivalent to the one in (1). We treat even and odd k sym-
metrically, defining the orbifold action to identify points on

different, mirror branes (rather than taking the gk/2k element

to identify points on the same brane in the case k even).
The global symmetry of the M2-brane theory is partially

broken by the orbifolding and the presence of the M2′ probes;

from SO(8) × SO(2) to SO(6) × U(1) × Z4 for k = 1,
and down to SU(2) × U(1)2 × Z4 for k > 1. The Z4 factor

here represents the symmetry of the lattice. At large k (such
that k5 # N # 1), it follows from the analysis in [17] that

the near-horizon region of the system of M2 and M2′ branes is

described more accurately using different variables in terms of

type IIA string theory with D2 and D2′ branes on a nontrivial

geometry with background 2-form gauge flux.

The field theory The field theory on the M2 branes in

these geometries has been studied in great detail [17]. A

general 3d supersymmetric Chern-Simons theory with at least

N = 2 supersymmetry has an action including the terms [18]:

S =

∫

d3x
k

4π
Tr(A∧dA+2

3
A3)+Dµφ̄iD

µφi+iψ̄iγ
µDµψi

− 16π2

k2
(φ̄iT

a
Ri
φi)(φ̄jT

b
Rjφj)(φ̄kT

a
Rk

T b
Rk

φk)

− 4π

k
(φ̄iT

a
Ri
φi)(ψ̄jT

a
Rj

ψj)−
8π

k
(ψ̄iT

a
Ri
φi)(φ̄jT

a
Rj

ψj) .

(4)

Here T a
R are the generators of the gauge group in representa-

tion R, and the scalars φi and fermions ψi are superpartners

in a chiral multiplet. These terms arise from integrating out

the scalars and fermions of the massive vector multiplet and

flowing to the deep infrared limit of the theory.

The field theory on our M2 branes is a special case of this

theory, with gauge groups U(N) × U(N) appearing at lev-
els ±k. The ‘t Hooft coupling of this theory is N/k and so
is large in the holographic limits. The matter fields φi are

four bi-fundamental fields A1,2 and B1,2, in the (N, N̄) and
(N̄ ,N) representations respectively. In addition to the basic
supersymmetric action written above for these fields, we add

an N = 3 superpotential

W =
2π

k
εabεȧḃTr(AaBȧAbBḃ) . (5)

Here a, b = 1, 2 and the superpotential has been written in
a manifestly SU(2) × SU(2) symmetric manner. The full
symmetry of the field theory is in fact enhanced to an SO(6)×
U(1)b (with the baryonic U(1)b acting with charge±1 on the
A and B fields), and the theory with these choices enjoys an

enhancedN = 6 supersymmetry [17].[29]
The probe M2′ branes give rise to localized degrees of free-

dom; in the type IIA string theory limit of the brane con-

struction these arise from strings stretching between the D2

branes and a lattice of probe D2′ branes. In the simplest case

of k = 1, these are hypermultiplets, with the fermions trans-
forming as spinors in the dimensions transverse to both branes

(and the bosons transforming as spinors along 1234). The in-

frared Chern-Simons theory is more difficult to analyze di-

rectly, since the appropriate type IIB brane construction in-

volves non-perturbative ingredients. However, by generaliz-

ing the methods of [17] one can obtain a plausible hypothe-

sis for the spectrum [16], in which defect hypermultiplets are

added to both gauge groups. One reason that this is plausible

is that the dual probe branes respect parity, which in the field

theory exchanges the gauge group factors. The bosonic quan-

tum mechanical degrees of freedomQ1,2 and Q̃1,2 at each site

transform as follows. Qi transforms in the N of the ith U(N)

along with the orbifold image loci.  They also form a lattice 
in the spatial directions of the dual field theory.

At each lattice point, there are localized “hypermultiplets” 
with quantum numbers:

Q1 (N, 1), Q2(1, N)

Q̃1 (N̄ , 1), Q̃2(1, N̄)

They have Fermi partners with the same gauge quantum 
numbers, and couple to the A,B fields of the bulk gauge
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They couple to the bulk ABJM fields with couplings of the 
schematic form:theory with couplings of the schematic form:

3

gauge group (and is a singlet under the other), while Q̃i trans-

forms in the conjugatemanner; these also transform as spinors

under the Lorentz group in the 1234 directions. Each boson

is accompanied by a fermion partner so there are also defect

fermions χ1,2, χ̃1,2; these do not transform as spinors in the

1234 directions, but do in the remaining directions. Starting

from the ABJM theory, the defect probe branes preserve 8 su-

percharges in the special case of k = 1, and more generally
they preserve 4 supercharges [16]. We expect a similar spec-

trum of localized degrees of freedom on the defects for all k.
While the overall system preserves at least 4 supercharges

in all cases, the superspace structure is unconventional and

we have not been able to find a packaging in the standard

superspace arising in 4d N = 1 supersymmetry. (For in-
stance, from the IIB brane configuration used to obtain the

N = 6 theories in [17], supplemented by our defects as
in [16], it is clear that there are no spatial directions along

which one could T-dualize to obtain a higher-dimensional the-

ory with a conventional superspace; either the probe branes

or the ABJM configuration itself breaks the needed higher-

dimensional translation symmetries). However, the couplings

of the Ai, Bj fields to the Qs and Q̃s can be inferred by the
following logic. Under translations of the M2 branes along

the 34 directions, the Q, Q̃ degrees of freedom should re-

main massless, while other motions should separate the M2s

and M2′s and give Q, Q̃ a mass. In a standard way, one

can identify motion in the transverse space to the M2 branes

with (eigenvalues of) appropriate gauge-invariant composites

of the A,B fields. First, we identify motion in the 34 direc-

tions with A1B1 + A2B2. Then, we expect component cou-

plings localized at the defects depending on the other bilinears

in Ai, Bi; these are of the form

∆S =

∫

dt
∑

i

|(A1B1−A2B2)Qi|2+|(A1B2−A2B1)Qi|2

+ |(A1B2 +A2B1)Qi|2 (6)

with similar couplings to Q̃i. For the fermions, there are re-

lated couplings

∆S =

∫

dt χ̃αΓM
αβX

Mχβ (7)

with XM corresponding to the real and imaginary parts of

A1B1−A2B2, A1B2±A2B1 and α,β spinor indices running
over the directions transverse to both the M2s and the M2′s.

The dimensions of the fields determined from their ki-

netic terms at weak coupling are ∆(Q) = ∆(Q̃) = − 1
2 ,

∆(χ) = ∆(χ̃) = 0, and ∆(A) = ∆(B) = 1
2 . Gauge-

invariant composite operators can be formed from these fields.

We will shortly compute the dimensions of low-lying defect

operators at strong ’t Hooft coupling and large N using the

gravity side of the correspondence, and then comment on the

field theory description of these operators.

Computation of operator dimensions using holography A

standard extension of the holographic dictionary relates the

dimensions ∆ of scalar operators localized at the lattice sites

in our construction, to the masses of scalar KK modes arising

in the M2′ brane world-volume action, via the formula

m2
localized = ∆(∆− 1) . (8)

The fermionic spectrum may be inferred by supersymmetry.

We briefly discuss the calculation in the simplest case,

k = 1. The fluctuations of the transverse scalars to a given
M2′ brane (the xI = x5, x6, .., x10 directions in space) are all

related by an SO(6) symmetry, so we may focus on a single
scalar. The M2′ brane wraps an AdS2 × S1 geometry. The

fluctuations can be expanded in Fourier modes on the S1. If

we let r denote the radial coordinate in AdS2 and focus on

static fluctuations, then

δxI(r,φ) =
∑

l

δxI,l(r)eilφ (9)

with φ the angular coordinate on the wrapped S1. The result-

ing Laplace equation for δxI,l(r) reveals that

m2
l = −1

4
+

l2

4
(10)

which corresponds to scalar operators of dimension

∆l =
1

2
+

l

2
. (11)

The lowest operator in the tower, with l = 0, gives a sextet
of scalar primaries with∆ = 1/2; its Fermi partner is a quar-
tet of ∆ = 1 fermionic defect operators. We will see in the
next subsection that this ∆ = 1 multiplet of fermionic op-
erators plays an important role in obtaining semi-holographic

descriptions of marginal Fermi liquids.

There is also a second tower of operators, arising from fluc-

tuations of the M2′ branes along the two transverse spatial

directions to their worldvolume in AdS4, i.e. the x1,2 direc-

tions in (1). The tower arising from these fluctuations is dis-

tinguished from the tower above by global quantum numbers.

For example, the fluctuations in theAdS directions transform
under the SO(2) rotation symmetry of the x1,2 plane (which

is broken to Z4 by the lattice), and are singlets under the

SO(6) global symmetry discussed above, while the fluctu-
ations in the x5,···10 directions transform non-trivially under

SO(6) but are Z4 invariant. While this second tower contains

some fermionic operators of ∆ = 1/2 which would be dan-
gerous if they coupled to the semi-holographic fermions, such

couplings can be forbidden by the SO(6) × Z4 symmetry in

a “natural” way (in the sense of the renormalization group).

The spectrum for higher k may be most easily inferred from
the k = 1 case by the following logic. We can obtain the
higher k brane configurations by Zk orbifolds of appropriate

lattice configurations on AdS4 × S7. The orbifold action is

free on the S7 (the fixed point at zi = 0 in C4 is removed

in the near-horizon limit), and therefore, all of the low-lying

modes in the orbifold theory are Zk invariant modes in the

(+ fermionic terms).

In a more realistic theory, there would be no bosonic 
defect excitations, so we should mentally focus on 

fermionic defect fields.  Lattice models of the D3/D5 type 
(or its D2/D6 T-dual) have purely fermionic defects.

This entire class of microscopic theories can easily predict 
marginal Fermi liquid behaviour!  Intuitively, the most 

obvious fermionic operators gauge invariant operators of 
low dimension in this theory are of the schematic form:
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This class of theories can produce marginal Fermi liquid for 
the following simple reason. The most obvious defect-

localised fermionic operator is of the form:

4

original k = 1 theory. Correlation functions of the dual op-
erators will enjoy large N inheritance from the parent k = 1
theory, similarly to the theories discussed in [19]. (New de-

grees of freedom that might be introduced by the orbifolding,

analogous to twisted states in string theory, are very massive

in the supergravity regime, due to the free orbifold action). A

simple analysis following this logic implies that the spectrum

is the same for all k > 1; so in particular, ∆ = 1 fermionic
operators arise in these theories (and any lower ∆ fermionic

operators from the second tower can rendered safe as above,

by using global quantum numbers). A careful discussion of

the KK spectra of these theories, and the matching with oper-

ators in the dual defect field theories, will appear in [20].

Coupling to semi-holographic fermions The theory we

have constructed above is locally critical in the largeN limit.

That is, because the probeM2′ branes wrapAdS2 slices of the

AdS4 geometry, the excitations of the bulk fields localized on

the probe branes can be classified by the quantum numbers of

a locally critical quantum theory, and the correlation functions

of the operators dual to localized bulk excitations (computed

using the standard AdS/CFT dictionary) obey the constraints

following from local criticality. These are precisely correla-

tion functions of operators involving defect fields in the dual

field theory.

Now, we couple the defect field theory we have constructed

to semi-holographic fermions, following [7]. Namely, if we

call the full action of the lattice system above (including both

the bulk gauge theory and the defect fields) SLC , we consider

the theory with

Stotal = SLC(A,B,Q, Q̃)+
∑

J,J′

∫

dt c†J(iδJ,J′∂t + µδJ,J′ + tJ,J′)cJ′

+ g
∑

J

∫

dt (c†JO
F
J +Hermitian conjugate) . (12)

In (12), we are coupling a normal theory of a weakly coupled

Fermi surface (governing the excitations of the c fermion) to
the strongly coupled locally critical sector, through the cou-

pling constant g mixing c with (in any natural theory) the low-
est dimension fermionic operatorOF that has the right quan-

tum numbers to couple to c.
Using largeN factorization, it is then easy to show that the

g = 0 Green’s function of the c fermion

G0(k,ω) ∼
1

ω − v|k− kF(k)|
(13)

is modified to

Gg(k,ω) ∼
1

ω − v|k− kF(k)|− g2G(k,ω) , (14)

where

G(ω) =
∫

dt eiωt〈OF
J (t)O

F†
J (0)〉 . (15)

This two-point function is fixed by the scaling symmetry of

the LC theory to be G(ω) = c∆ω2∆−1 where ∆ is the di-

mension of OF (and, importantly, G(ω) ∼ c ω log(ω) in the
degenerate case∆ = 1).
The correction term in the denominator of Gg will domi-

nate the low-frequency behavior if ∆ ≤ 1. Unitarity allows
any ∆ ≥ 1

2 and this scaling dimension is a free parameter

in the general approaches of [4, 7]. The marginal Fermi liq-

uid behavior of [2] appears in the case that the dimension of

OF is precisely 1. Therefore, the question is, are there natu-

ral circumstances in which the theory SLC(A,B,Q, Q̃) has a
leading fermionic operator of∆ = 1 which can couple to c?
The theories we have constructed above naturally come

with defect operators of ∆ = 1, as indicated by our calcu-
lation of the KK spectrum on the probe M2′ branes. It is in-

teresting to consider where these come from in field theory

language. The field theory has gauge-invariant operators of

the form

∂tQ̃1Aχ2, ∂tQ̃2Bχ1, ∂tQ1Bχ̃2, ∂tQ2Aχ̃1 . (16)

(as well as related quartets of operators of the schematic form

χ̃1ψAχ2, · · · and χ̃1A∂tQ2, · · · ). These have∆ = 1 at weak
coupling, and are good candidates for the duals of the probe

defect operators we computed on the gravity side (arising in

the tower of fluctutations of the M2′ branes along x5,··· ,10).

Suppose that upon extrapolating to strong coupling (at large

N), the weak-coupling dimensions of these operators are in-

deed protected, i.e. that the weak-coupling engineering di-

mensions of the fields correspond to their scaling dimensions

under the locally critical scaling governing the defect sector

in the probe limit. Then, assigning appropriate global quan-

tum numbers to c, one can choose one of these as the lowest
dimension fermionic operator that c can couple to in the local-
ized sector.

Returning to the dual gravitational description, we can see

that the idea above does work at least in the probe approx-

imation. By appropriate choice of global quantum numbers

(under the Z4 lattice symmetry and the (subgroup of) SO(6)
preserved by the brane configuration), one can guarantee that

no lower ∆ operators from the second tower of fluctuations

in the previous subsection infect the leading-order c-fermion
correlators (14) after coupling to the large N sector. We con-

clude that we can work directly in the probe limit and obtain

a marginal Fermi liquid by identifying OF with the lowest

fermionic operator in the first tower of defect fields computed

above. This has ∆ = 1, and as emphasized in the introduc-
tion, this dimension is independent of momentum.

Backreaction Up until now we have ignored the backre-

action of the impurities on the itinerant fields, and therefore

on each other. Thus we have been studying the dynamics of a

single impurity interacting strongly with itinerant fields. The

gravity side exhibits the successes it does because the probe

branes each wrap an AdS2 region, and the symmetries of lo-

cal quantum criticality are manifest, even including the highly

nontrivial field theory interactions that are re-summed by the

tree-level gravity solution.

with obvious variations of tildes, numbers, and A vs B 
also allowed.  Naive logic would suggest that these 

should have unit scaling dimension, and would be perfect 
candidates to couple to the semi-holographic fermions 

to produce MFL behaviour.

At strong coupling, one can see that this logic is precisely 
borne out.  The masses of defect KK modes are related to 

scaling dimensions in the field theory via:

3

gauge group (and is a singlet under the other), while Q̃i trans-

forms in the conjugatemanner; these also transform as spinors

under the Lorentz group in the 1234 directions. Each boson

is accompanied by a fermion partner so there are also defect

fermions χ1,2, χ̃1,2; these do not transform as spinors in the

1234 directions, but do in the remaining directions. Starting

from the ABJM theory, the defect probe branes preserve 8 su-

percharges in the special case of k = 1, and more generally
they preserve 4 supercharges [16]. We expect a similar spec-

trum of localized degrees of freedom on the defects for all k.
While the overall system preserves at least 4 supercharges

in all cases, the superspace structure is unconventional and

we have not been able to find a packaging in the standard

superspace arising in 4d N = 1 supersymmetry. (For in-
stance, from the IIB brane configuration used to obtain the

N = 6 theories in [17], supplemented by our defects as
in [16], it is clear that there are no spatial directions along

which one could T-dualize to obtain a higher-dimensional the-

ory with a conventional superspace; either the probe branes

or the ABJM configuration itself breaks the needed higher-

dimensional translation symmetries). However, the couplings

of the Ai, Bj fields to the Qs and Q̃s can be inferred by the
following logic. Under translations of the M2 branes along

the 34 directions, the Q, Q̃ degrees of freedom should re-

main massless, while other motions should separate the M2s

and M2′s and give Q, Q̃ a mass. In a standard way, one

can identify motion in the transverse space to the M2 branes

with (eigenvalues of) appropriate gauge-invariant composites

of the A,B fields. First, we identify motion in the 34 direc-

tions with A1B1 + A2B2. Then, we expect component cou-

plings localized at the defects depending on the other bilinears

in Ai, Bi; these are of the form

∆S =

∫

dt
∑

i

|(A1B1−A2B2)Qi|2+|(A1B2−A2B1)Qi|2

+ |(A1B2 +A2B1)Qi|2 (6)

with similar couplings to Q̃i. For the fermions, there are re-

lated couplings

∆S =

∫

dt χ̃αΓM
αβX

Mχβ (7)

with XM corresponding to the real and imaginary parts of

A1B1−A2B2, A1B2±A2B1 and α,β spinor indices running
over the directions transverse to both the M2s and the M2′s.

The dimensions of the fields determined from their ki-

netic terms at weak coupling are ∆(Q) = ∆(Q̃) = − 1
2 ,

∆(χ) = ∆(χ̃) = 0, and ∆(A) = ∆(B) = 1
2 . Gauge-

invariant composite operators can be formed from these fields.

We will shortly compute the dimensions of low-lying defect

operators at strong ’t Hooft coupling and large N using the

gravity side of the correspondence, and then comment on the

field theory description of these operators.

Computation of operator dimensions using holography A

standard extension of the holographic dictionary relates the

dimensions ∆ of scalar operators localized at the lattice sites

in our construction, to the masses of scalar KK modes arising

in the M2′ brane world-volume action, via the formula

m2
localized = ∆(∆− 1) . (8)

The fermionic spectrum may be inferred by supersymmetry.

We briefly discuss the calculation in the simplest case,

k = 1. The fluctuations of the transverse scalars to a given
M2′ brane (the xI = x5, x6, .., x10 directions in space) are all

related by an SO(6) symmetry, so we may focus on a single
scalar. The M2′ brane wraps an AdS2 × S1 geometry. The

fluctuations can be expanded in Fourier modes on the S1. If

we let r denote the radial coordinate in AdS2 and focus on

static fluctuations, then

δxI(r,φ) =
∑

l

δxI,l(r)eilφ (9)

with φ the angular coordinate on the wrapped S1. The result-

ing Laplace equation for δxI,l(r) reveals that

m2
l = −1

4
+

l2

4
(10)

which corresponds to scalar operators of dimension

∆l =
1

2
+

l

2
. (11)

The lowest operator in the tower, with l = 0, gives a sextet
of scalar primaries with∆ = 1/2; its Fermi partner is a quar-
tet of ∆ = 1 fermionic defect operators. We will see in the
next subsection that this ∆ = 1 multiplet of fermionic op-
erators plays an important role in obtaining semi-holographic

descriptions of marginal Fermi liquids.

There is also a second tower of operators, arising from fluc-

tuations of the M2′ branes along the two transverse spatial

directions to their worldvolume in AdS4, i.e. the x1,2 direc-

tions in (1). The tower arising from these fluctuations is dis-

tinguished from the tower above by global quantum numbers.

For example, the fluctuations in theAdS directions transform
under the SO(2) rotation symmetry of the x1,2 plane (which

is broken to Z4 by the lattice), and are singlets under the

SO(6) global symmetry discussed above, while the fluctu-
ations in the x5,···10 directions transform non-trivially under

SO(6) but are Z4 invariant. While this second tower contains

some fermionic operators of ∆ = 1/2 which would be dan-
gerous if they coupled to the semi-holographic fermions, such

couplings can be forbidden by the SO(6) × Z4 symmetry in

a “natural” way (in the sense of the renormalization group).

The spectrum for higher k may be most easily inferred from
the k = 1 case by the following logic. We can obtain the
higher k brane configurations by Zk orbifolds of appropriate

lattice configurations on AdS4 × S7. The orbifold action is

free on the S7 (the fixed point at zi = 0 in C4 is removed

in the near-horizon limit), and therefore, all of the low-lying

modes in the orbifold theory are Zk invariant modes in the
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* At weak coupling, this has h=1.

* Gravity analysis shows that this remains true at strong 
coupling; this is the “right value” to yield a marginal Fermi 

liquid in our previous discussion.

This theory is of course very unrealistic.  One leading 
worry: backreaction.
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Three comments on backreaction in lattice models:

1.  Intuitively, we expect the backreaction to become 
important when we go deep enough into the IR to “see” 
many defects enclosed in our characteristic length scale.

We can estimate the temperature/energy scale at which 
this becomes important using the free energy (here in the 
D=3+1 case):

F = N2T 4 + N T
a3
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By the time

T ≤ N−1/3 × 1
a

the backreaction will surely be important; the defects now 
dominate the free energy of the dual field theory.

2.  Backreaction almost surely eliminates the locally critical 
behavior evident in the probe approximation in these 

systems.

* This can be seen from the following (crude) energetics 
argument.

Monday, November 7, 2011



E.g. in the M2 case, we might look for a stable solution of 
the form:

Here I just make some elementary remarks about what this 
backreaction does.

The most basic question is: does local quantum criticality 
survive?  In the gravity regime, this becomes the question: is 
there an exact solution including the lattice of M2’ branes 

and an AdS2 factor in the infrared?

Let’s think about this loosely, using an energetics argument.
We are looking for a stable solution of the form: 

AdS2 × T 2 ×X

(where we compactified the field theory spatial dimensions 
for convenience).  Call the radii of the three factors in the 

geometry A, T and S.   The effective action for these radions 
reduced to 1+1 dimensions is of rough form:
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Call the three radii of the factors in the geometry A, T and 
S.  The 1+1 dimensional effective action governing the 

radions takes the schematic form:

5

At scales of order the lattice spacing the backreaction is a

1/N effect, but at lower energies it must become important.

The scale symmetry of the itinerant fields, which the impurity

system inherits, acts on the spatial coordinates. At energies of

order N−1/2 times the fundamental scale the number of im-

purities in a scaling volume is of order N , and the effect of
the impurities on the itinerant fields and on each other can no

longer be neglected. Do these effects inevitably generate cor-

rections to the action which destroy the locally critical behav-

ior — is the behavior seen in the gravity regime a peculiarity

of very strongly coupled large N theories, which would not

extrapolate to any more realistic systems — or can it be ro-

bust in some circumstances? And, if locally critical behavior

survives to the far IR, how do the operator dimensions there

relate to those we have found at higher energy?

Staying in the limit of strong ’t Hooft coupling,

gauge/gravity duality transforms this field theory question into

the problem of finding the supergravity solution with backre-

action. This can still be a challenging problem, but one can

get insight from a simple energetics argument. We start with

the M theory brane configuration (1). We are looking for an

IR geometryAdS2 ×R2 ×X , which we will for convenience
compactify to AdS2×T 2×X . We study this with the Ansatz
X = S7, averaging the energy density of the impurity 2′

branes over the compact dimensions. Let A, T , and S be the
respective radii of the three factorsAdS2 × T 2 × S7. The ef-

fective action dimensionally reduced to 1+1 dimensions is of

the form

S =

∫

d2x

(

−T 2S7 +A2T 2S5 −N ′
2A

2S − N2
2A

2T 2

S7

)

.

(17)

We work in units where the M theory scale is one, and ignore

order one coefficients. The respective terms come from the

curvatures of AdS2 and S7, the 2′-brane tensions, and the 7-
form flux from the 2-branes. In other situations it would be

natural to Weyl transform to an effective potential, but this

is not possible for AdS2; instead we directly extremize with

respect to A in addition to T and S.
One finds that there is an extremum (with physically ac-

ceptable positive values for the moduli) such that

A ∼ S ∼ N1/6
2 , T ∼ N ′1/2

2 /N1/3
2 . (18)

The radius S is parametrically the same as for the pure M2

system. The density of defects isN ′
2/T

2 = N2/3
2 .

What is happening is that the lattice defects provide a force

acting against the contraction of the two spatial dimensions,

hence helping to drive the system towards a fixed point where

the bulk modes are locally critical. In the probe approxima-

tion, the itinerant fields retained their relativistic scaling, and

each independent impurity was invariant under a scale trans-

formation leaving its position fixed. Here there is a common

locally critical scaling of the whole geometry.

This result is encouraging, but we should improve the

Ansatz. We have averaged the action of the 2′ branes over
the S7, but in fact they are wrapped on a circle and we should

consider moduli corresponding to the contraction of this cir-

cle. Thus we represent S7 as a circle over CP 3, with radius

F for the fiber circle and B for the base. The action becomes

S =

∫

d2x

(

−T 2FB6 +A2T 2FB4 −A2T 2F 3B2

−N ′
2A

2F − N2
2A

2T 2

FB6

)

. (19)

One now finds that there is no physical extremum; the con-

traction of the fiber is not stabilized.

Nevertheless, there are brane systems that realize the so-

lution (18). Consider a system with several kinds of im-

purity brane, with different orientations in the transverse

spacetime. If the configuration of M2′ branes is suffi-
ciently uniform and isotropic, the spherical Ansatz will be a

good approximation.[30] Such a configuration will necessar-

ily break supersymmetry (for supersymmetric configurations,

at least with N ≥ 2, there will always be an unstable fiber
circle). It is also necessary to stabilize the angular configu-

ration, for example by taking a sufficiently symmetric config-

uration, and by keeping relatively nonsupersymmetric branes

far enough apart to avoid tachyons. With the scaling (18) the

typical transverse distance between the branes is larger than

the M theory scale, so one expects that the latter difficulty

may be avoided. Although with a symmetric distribution there

should be a solution of the equations of motion, it may be an

unstable saddle point; with the lack of supersymmetry there

is no a priori guarantee against disallowed tachyons. With-

out having addressed all the possible instabilities, something

that might benefit from further model building, we simply take

from this construction the lesson already noted that lattice fla-

vors contribute to producing local criticality on the gravity

side.

As an aside, the absence of supersymmetric solutions could

also be anticipated from another point of view. We are look-

ing for solutions where the color branes remain localized in

the 3-4 directions in which the impurity branes are extended.

In Refs. [22] it is shown that these do not exist for brane inter-

sections of spatial dimension 0 (as here) or 1. The interpreta-

tion was that the scalar fieldsQ on the intersection are spread

out on their moduli space due to low-dimensional quantum

effects, which implies that the brane intersection delocalizes

and theAdS IR region disappears. In nonsupersymmetric sys-
tems, masses will generically be generated for these scalars.

In the appendix we analyze an impurity system that has no

such impurity scalars.

Orbifolding by Zk does not affect the energetics, and so the

discussion above can be applied withN2 → Nk, giving in M
theory units

A ∼ S ∼ N1/6k1/6 , R11 ∼ N1/6/k5/6 ,

T ∼ N ′1/2
2 /N1/3k1/3 (20)

and in string units

A ∼ S ∼ N1/4k1/4 , gs ∼ N1/4/k5/4 ,

T ∼ N ′1/2
2 /N1/4k1/4 . (21)

The four terms come from the AdS and internal 
curvatures; the M2’ brane tensions; and the 7-form flux 
from the M2 branes.  We have smeared the M2’ branes, 

averaging their energy over the internal directions.

There is an extremum of this schematic action, with:
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IR geometryAdS2 ×R2 ×X , which we will for convenience
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S =
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We work in units where the M theory scale is one, and ignore

order one coefficients. The respective terms come from the

curvatures of AdS2 and S7, the 2′-brane tensions, and the 7-
form flux from the 2-branes. In other situations it would be

natural to Weyl transform to an effective potential, but this

is not possible for AdS2; instead we directly extremize with

respect to A in addition to T and S.
One finds that there is an extremum (with physically ac-

ceptable positive values for the moduli) such that

A ∼ S ∼ N1/6
2 , T ∼ N ′1/2

2 /N1/3
2 . (18)

The radius S is parametrically the same as for the pure M2

system. The density of defects isN ′
2/T

2 = N2/3
2 .

What is happening is that the lattice defects provide a force

acting against the contraction of the two spatial dimensions,

hence helping to drive the system towards a fixed point where

the bulk modes are locally critical. In the probe approxima-

tion, the itinerant fields retained their relativistic scaling, and

each independent impurity was invariant under a scale trans-

formation leaving its position fixed. Here there is a common

locally critical scaling of the whole geometry.

This result is encouraging, but we should improve the

Ansatz. We have averaged the action of the 2′ branes over
the S7, but in fact they are wrapped on a circle and we should

consider moduli corresponding to the contraction of this cir-

cle. Thus we represent S7 as a circle over CP 3, with radius

F for the fiber circle and B for the base. The action becomes

S =

∫

d2x

(

−T 2FB6 +A2T 2FB4 −A2T 2F 3B2

−N ′
2A

2F − N2
2A

2T 2

FB6

)

. (19)

One now finds that there is no physical extremum; the con-

traction of the fiber is not stabilized.

Nevertheless, there are brane systems that realize the so-

lution (18). Consider a system with several kinds of im-

purity brane, with different orientations in the transverse

spacetime. If the configuration of M2′ branes is suffi-
ciently uniform and isotropic, the spherical Ansatz will be a

good approximation.[30] Such a configuration will necessar-

ily break supersymmetry (for supersymmetric configurations,

at least with N ≥ 2, there will always be an unstable fiber
circle). It is also necessary to stabilize the angular configu-

ration, for example by taking a sufficiently symmetric config-

uration, and by keeping relatively nonsupersymmetric branes

far enough apart to avoid tachyons. With the scaling (18) the

typical transverse distance between the branes is larger than

the M theory scale, so one expects that the latter difficulty

may be avoided. Although with a symmetric distribution there

should be a solution of the equations of motion, it may be an

unstable saddle point; with the lack of supersymmetry there

is no a priori guarantee against disallowed tachyons. With-

out having addressed all the possible instabilities, something

that might benefit from further model building, we simply take

from this construction the lesson already noted that lattice fla-

vors contribute to producing local criticality on the gravity

side.

As an aside, the absence of supersymmetric solutions could

also be anticipated from another point of view. We are look-

ing for solutions where the color branes remain localized in

the 3-4 directions in which the impurity branes are extended.

In Refs. [22] it is shown that these do not exist for brane inter-

sections of spatial dimension 0 (as here) or 1. The interpreta-

tion was that the scalar fieldsQ on the intersection are spread

out on their moduli space due to low-dimensional quantum

effects, which implies that the brane intersection delocalizes

and theAdS IR region disappears. In nonsupersymmetric sys-
tems, masses will generically be generated for these scalars.

In the appendix we analyze an impurity system that has no

such impurity scalars.

Orbifolding by Zk does not affect the energetics, and so the

discussion above can be applied withN2 → Nk, giving in M
theory units

A ∼ S ∼ N1/6k1/6 , R11 ∼ N1/6/k5/6 ,

T ∼ N ′1/2
2 /N1/3k1/3 (20)

and in string units

A ∼ S ∼ N1/4k1/4 , gs ∼ N1/4/k5/4 ,

T ∼ N ′1/2
2 /N1/4k1/4 . (21)

Physically, what’s happening is that the M2’ branes provide a 
force opposing the contraction of the “T2” directions 

(which would contract in the AdS4 solution), helping to 
drive the system to a fixed point with local criticality.
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1/N effect, but at lower energies it must become important.

The scale symmetry of the itinerant fields, which the impurity

system inherits, acts on the spatial coordinates. At energies of
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of very strongly coupled large N theories, which would not
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relate to those we have found at higher energy?
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the problem of finding the supergravity solution with backre-

action. This can still be a challenging problem, but one can
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the M theory brane configuration (1). We are looking for an

IR geometryAdS2 ×R2 ×X , which we will for convenience
compactify to AdS2×T 2×X . We study this with the Ansatz
X = S7, averaging the energy density of the impurity 2′

branes over the compact dimensions. Let A, T , and S be the
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the form

S =
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d2x

(

−T 2S7 +A2T 2S5 −N ′
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2S − N2
2A

2T 2

S7
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(17)

We work in units where the M theory scale is one, and ignore

order one coefficients. The respective terms come from the

curvatures of AdS2 and S7, the 2′-brane tensions, and the 7-
form flux from the 2-branes. In other situations it would be

natural to Weyl transform to an effective potential, but this

is not possible for AdS2; instead we directly extremize with

respect to A in addition to T and S.
One finds that there is an extremum (with physically ac-

ceptable positive values for the moduli) such that

A ∼ S ∼ N1/6
2 , T ∼ N ′1/2

2 /N1/3
2 . (18)

The radius S is parametrically the same as for the pure M2

system. The density of defects isN ′
2/T

2 = N2/3
2 .

What is happening is that the lattice defects provide a force

acting against the contraction of the two spatial dimensions,

hence helping to drive the system towards a fixed point where

the bulk modes are locally critical. In the probe approxima-

tion, the itinerant fields retained their relativistic scaling, and

each independent impurity was invariant under a scale trans-

formation leaving its position fixed. Here there is a common

locally critical scaling of the whole geometry.

This result is encouraging, but we should improve the

Ansatz. We have averaged the action of the 2′ branes over
the S7, but in fact they are wrapped on a circle and we should

consider moduli corresponding to the contraction of this cir-

cle. Thus we represent S7 as a circle over CP 3, with radius

F for the fiber circle and B for the base. The action becomes
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∫

d2x
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−N ′
2A

2F − N2
2A

2T 2

FB6

)

. (19)
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locally critical scaling of the whole geometry.

This result is encouraging, but we should improve the

Ansatz. We have averaged the action of the 2′ branes over
the S7, but in fact they are wrapped on a circle and we should

consider moduli corresponding to the contraction of this cir-

cle. Thus we represent S7 as a circle over CP 3, with radius

F for the fiber circle and B for the base. The action becomes

S =

∫

d2x

(

−T 2FB6 +A2T 2FB4 −A2T 2F 3B2

−N ′
2A

2F − N2
2A

2T 2

FB6

)

. (19)

One now finds that there is no physical extremum; the con-

traction of the fiber is not stabilized.

Nevertheless, there are brane systems that realize the so-

lution (18). Consider a system with several kinds of im-

purity brane, with different orientations in the transverse

spacetime. If the configuration of M2′ branes is suffi-
ciently uniform and isotropic, the spherical Ansatz will be a

good approximation.[30] Such a configuration will necessar-

ily break supersymmetry (for supersymmetric configurations,

at least with N ≥ 2, there will always be an unstable fiber
circle). It is also necessary to stabilize the angular configu-

ration, for example by taking a sufficiently symmetric config-

uration, and by keeping relatively nonsupersymmetric branes

far enough apart to avoid tachyons. With the scaling (18) the

typical transverse distance between the branes is larger than

the M theory scale, so one expects that the latter difficulty

may be avoided. Although with a symmetric distribution there

should be a solution of the equations of motion, it may be an

unstable saddle point; with the lack of supersymmetry there

is no a priori guarantee against disallowed tachyons. With-

out having addressed all the possible instabilities, something

that might benefit from further model building, we simply take

from this construction the lesson already noted that lattice fla-

vors contribute to producing local criticality on the gravity

side.

As an aside, the absence of supersymmetric solutions could

also be anticipated from another point of view. We are look-

ing for solutions where the color branes remain localized in

the 3-4 directions in which the impurity branes are extended.

In Refs. [22] it is shown that these do not exist for brane inter-

sections of spatial dimension 0 (as here) or 1. The interpreta-

tion was that the scalar fieldsQ on the intersection are spread

out on their moduli space due to low-dimensional quantum

effects, which implies that the brane intersection delocalizes

and theAdS IR region disappears. In nonsupersymmetric sys-
tems, masses will generically be generated for these scalars.

In the appendix we analyze an impurity system that has no

such impurity scalars.

Orbifolding by Zk does not affect the energetics, and so the

discussion above can be applied withN2 → Nk, giving in M
theory units

A ∼ S ∼ N1/6k1/6 , R11 ∼ N1/6/k5/6 ,

T ∼ N ′1/2
2 /N1/3k1/3 (20)

and in string units

A ∼ S ∼ N1/4k1/4 , gs ∼ N1/4/k5/4 ,

T ∼ N ′1/2
2 /N1/4k1/4 . (21)

Physically, what’s happening is that the M2’ branes provide a 
force opposing the contraction of the “T2” directions 

(which would contract in the AdS4 solution), helping to 
drive the system to a fixed point with local criticality.

Wednesday, May 18, 2011

However, in the real system the branes are unsmeared and 
there is another preferred circle.  Including its radion, we 

find no AdS2 vacua in the SUGRA regime.
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At scales of order the lattice spacing the backreaction is a
1/N effect, but at lower energies it must become important.
The scale symmetry of the itinerant fields, which the impurity
system inherits, acts on the spatial coordinates. At energies of
order N−1/2 times the fundamental scale the number of im-
purities in a scaling volume is of order N , and the effect of
the impurities on the itinerant fields and on each other can no
longer be neglected. Do these effects inevitably generate cor-
rections to the action which destroy the locally critical behav-
ior — is the behavior seen in the gravity regime a peculiarity
of very strongly coupled large N theories, which would not
extrapolate to any more realistic systems — or can it be ro-
bust in some circumstances? And, if locally critical behavior
survives to the far IR, how do the operator dimensions there
relate to those we have found at higher energy?

Staying in the limit of strong ’t Hooft coupling,
gauge/gravity duality transforms this field theory question into
the problem of finding the supergravity solution with backre-
action. This can still be a challenging problem, but one can
get insight from a simple energetics argument. We start with
the M theory brane configuration (1). We are looking for an
IR geometry AdS2×R2×X , which we will for convenience
compactify to AdS2×T 2×X . We study this with the Ansatz
X = S7, averaging the energy density of the impurity 2′
branes over the compact dimensions. Let A, T , and S be the
respective radii of the three factors AdS2 × T 2 × S7. The ef-
fective action dimensionally reduced to 1+1 dimensions is of
the form

S =
∫

d2x

(
−T 2S7 + A2T 2S5 −N ′

2A
2S − N2

2 A2T 2

S7

)
.

(17)
We work in units where the M theory scale is one, and ignore
order one coefficients. The respective terms come from the
curvatures of AdS2 and S7, the 2′-brane tensions, and the 7-
form flux from the 2-branes. In other situations it would be
natural to Weyl transform to an effective potential, but this
is not possible for AdS2; instead we directly extremize with
respect to A in addition to T and S.

One finds that there is an extremum (with physically ac-
ceptable positive values for the moduli) such that

A ∼ S ∼ N1/6
2 , T ∼ N ′1/2

2 /N1/3
2 . (18)

The radius S is parametrically the same as for the pure M2
system. The density of defects is N ′

2/T 2 = N2/3
2 .

What is happening is that the lattice defects provide a force
acting against the contraction of the two spatial dimensions,
hence helping to drive the system towards a fixed point where
the bulk modes are locally critical. In the probe approxima-
tion, the itinerant fields retained their relativistic scaling, and
each independent impurity was invariant under a scale trans-
formation leaving its position fixed. Here there is a common
locally critical scaling of the whole geometry.

This result is encouraging, but we should improve the
Ansatz. We have averaged the action of the 2′ branes over
the S7, but in fact they are wrapped on a circle and we should

consider moduli corresponding to the contraction of this cir-
cle. Thus we represent S7 as a circle over CP 3, with radius
F for the fiber circle and B for the base. The action becomes

S =
∫

d2x

(
−T 2FB6 + A2T 2FB4 −A2T 2F 3B2

−N ′
2A

2F − N2
2 A2T 2

FB6

)
. (19)

One now finds that there is no physical extremum; the con-
traction of the fiber is not stabilized.

Nevertheless, there are brane systems that realize the so-
lution (18). Consider a system with several kinds of impu-
rity brane, with different orientations in the transverse space-
time. These will be dual to field theories with an action sim-
ilar to that in eqns. (6) and (7), but with couplings of the
defect fields to the bulk fields given by suitable SO(8) rota-
tions of those appearing in (6), (7). If the configuration of
M2′ branes is sufficiently uniform and isotropic, the spherical
Ansatz will be a good approximation.[? ] Such a configu-
ration will necessarily break supersymmetry (for supersym-
metric configurations, at least with N ≥ 2, there will always
be an unstable fiber circle). It is also necessary to stabilize
the angular configuration, for example by taking a sufficiently
symmetric configuration, and by keeping relatively nonsuper-
symmetric branes far enough apart to avoid tachyons. With
the scaling (18) the typical transverse distance between the
branes is larger than the M theory scale, so one expects that
the latter difficulty may be avoided. Although with a sym-
metric distribution there should be a solution of the equations
of motion, it may be an unstable saddle point; with the lack
of supersymmetry there is no a priori guarantee against dis-
allowed tachyons. Without having addressed all the possible
instabilities, something that might benefit from further model
building, we simply take from this construction the lesson al-
ready noted that lattice flavors contribute to producing local
criticality on the gravity side.

As an aside, the absence of supersymmetric solutions could
also be anticipated from another point of view. We are look-
ing for solutions where the color branes remain localized in
the 3-4 directions in which the impurity branes are extended.
In Refs. [22] it is shown that these do not exist for brane inter-
sections of spatial dimension 0 (as here) or 1. The interpreta-
tion was that the scalar fields Q on the intersection are spread
out on their moduli space due to low-dimensional quantum
effects, which implies that the brane intersection delocalizes
and the AdS IR region disappears. In nonsupersymmetric sys-
tems, masses will generically be generated for these scalars.
In the appendix we analyze an impurity system that has no
such impurity scalars.

Orbifolding by Zk does not affect the energetics, and so the
discussion above can be applied with N2 → Nk, giving in M
theory units

A ∼ S ∼ N1/6k1/6 , R11 ∼ N1/6/k5/6 ,

T ∼ N ′1/2
2 /N1/3k1/3 (20)

In this approximation one finds an AdS2 vacuum with:
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3.  There is a generic field theory argument that suggests 
that local criticality can never persist down to zero energy.  

The general form of the density of states, for a locally 
critical theory, should take the form:

Integrating out the gauge fields at tree level does not 
induce any interactions between the defect fermions.  

Similarly the bulk A,B fields of the ABJM model couple to 
the defects quadratically, and do not induce couplings at 

tree-level.  Especially in the k=1 case where there is a lot of 
SUSY, corrections may be very highly constrained.

Speaking more generally, there IS a good reason to
to think that local criticality will never be absolutely stable 

down to zero temperature.  The density of states in a 
locally critical theory takes the form:

6

The same applies if the orbifold action (2) is replaced by one
acting only on two complex coordinates z3,4, generating the
brane configuration

0 1 2 3 4 5 6 7 8 9
D2 x x x
D6 x x x x x x x
D2′ x :: :: x x

(22)

with N color D2-branes and k D6-branes. This is a nice exam-
ple, having a weakly coupled conformal point for N2 ! N6

(as in Refs. [23]) and an AdS4 dual description for N2 "
N6 [24]. The radius S and coupling gs are parametrically the
same as for the pure D2-D6 system. In particular one sees
that the condition that the radius be large (in string units) is
N2 " N6, and that there then is a weakly coupled IIA dual
for N2 ! N5

6 and an M-theory dual for N2 " N5
6 . The

density of defects is N ′
2/T 2 = N1/2

2 N1/2
6 .

Even if we find a supergravity solution, there is a general
argument that suggests that the local critical scaling cannot
persist indefinitely into the IR. The scaling would imply a den-
sity of states ρ(E) = Aδ(E) + B/E per energy and volume.
The first term is the widely noted zero-temperature entropy. If
only this term is present, the Hamiltonian in the critical sec-
tor is zero: there is no dynamics (e.g. a dimension 1 operator
would have a correlator δ′(t) rather than 1/t2). So the B term
is necessary, but its integral diverges, so local criticality must
always break down at sufficiently low energy. In the gravity
description, the density B comes from bulk states, and so is of
order 1/N2. Thus the breakdown takes place at exponentially
small scales, which seems more promising than the N−1/2

breakdown scale of the probe approximation.
Ref. [8] identified a specific breakdown mechanism,

whereby the scaling exponents of the spatial directions were
shifted (at all scales) from 0 to O(1/N), thus rendering the
density of states convergent. This is a rather special property
of the system studied there. More generally, local critical-
ity might persist until the finite density of states per volume
forces it to break down.

Backreaction at weak coupling It is encouraging that we
have found possible stable systems with the desired IR prop-
erties, but the gravity methods are still only controlled in a
peculiar limit, from the field theory perspective. Here we dis-
cuss some related issues in direct analysis of the dual field
theory. We start with the field theory corresponding to the
brane system (22). This is an N = 8 supersymmetric 3d
Yang-Mills theory, with defect hypermultiplets. In such theo-
ries, with a Maxwell action, the conformal symmetry that will
emerge in the IR is far from manifest. A second approach, via
the Chern-Simons theories of [17], has been the one we’ve
followed in the bulk of the paper. The IR conformal behavior
of the bulk theory is much clearer here, as the gauge fields
do not appear with a dimensionful coupling, and the starting
(bulk) Lagrangian has no dimensionful parameters. It is in-
teresting to contrast our expectations for radiative corrections
arising from the two approaches.

Starting from the 3d N = 8 Yang-Mills theory with hy-
permultiplet defects, and following the techniques of [25], it
is easy to write a superspace Lagrangian. The problems with
finding a 4dN = 1 superspace do not arise in this perspective;
the additional complications of the ABJM brane construction
[17] are not present, and one can straightforwardly T-dualize
to find an N = 1 presentation. In terms of the brane con-
struction with D2 branes wrapping x1,2 and D2′ branes wrap-
ping x3,4, it is convenient to perform the T-duality is along the
7, 8, 9 directions and to treat those as the spatial directions of
the N = 1 field theory, with x1,2 being internal dimensions.
The bulk action is

S =
1
g2
3

∫
dtd2x Tr[

∫
d2θ

1
2
WαWα

+ εijkφi(∂jφk − [φj , φk]/3
√

2) + h.c.

+ 2
∫

d4θ(
√

2∂̄i + φ̄i)e−V (−
√

2∂i + φi)eV + ∂̄ie−V ∂ie
V ]

+ WZW term . (23)

Here, ∂1 = ∂x1 + i∂x2 , while ∂2,3 → 0, and (φi)† = φ̄i. Wα

is an SU(N) gauge field strength superfield, while V is the
vector superfield. In 3d N = 4 language, one should think of
φ1,2 as the scalars in a hypermultiplet and φ3 as the complex
adjoint scalar in the vector multiplet. In Wess-Zumino gauge,
the WZW term vanishes. The fields in the above action can be
interpreted as follows: D2 gauge field Wilson lines along x1,2

and D2 motions along x3,4 are packaged in φ1,2; D2 motions
along x5,6 are contained in φ3; and the vector multiplet V has
θθ̄ components consisting of A0 and x7,8,9.

The hypermultiplets H , which transform in the fundamen-
tal of SU(N), have localized actions

∑

n

∫
dt

∫
d4θ (Hc

neVnH̄c
n + H̄ne−VnHn)

−
∫

d2θ Hc
nφ3,nHn − h.c. . (24)

The index n runs over the lattice sites, and n subscripts on a
bulk field simply indicate that the field is to be evaluated at
position of the nth site. This has the intuitively expected fea-
tures; for instance, motions of the D2 branes along x5,6,7,8,9,
given the correspondence with fields above, can be seen to
mass up the defect hypermultiplets.

Integrating out the auxiliary D-field in the gauge multiplet
generates inter-defect interactions. For simplicity we focus on
the Abelian (N = 1) case; defect hypermultiplet scalars are
denoted by η. Then the couplings of the auxiliary field are:

SD =
1
g2
3

∫
dt d2x (

1
2
D2 − 2

√
2(φ1∂̄

1D + φ̄1∂1D)

+ φ̇1φ̇1) +
1
2

∑

n

Dn(|ηc
n|2 − |ηn|2) . (25)

Integrating out D, the action becomes:

SD =
1
g2
3

∫
dt d2x (−2[∂̄1Z1 +∂1Z̄1]2 + |Ż1− ζ̇|2) (26)

Sunday, July 3, 2011 ∫
ρ(E) dE

* B should be non-zero in a non-trivial theory

* But then                  has an IR divergence.

* This should be cut off in a realistic system.  But it is a 
logarithmic divergence, so locally critical behavior could 
conceivably persist down to exponentially low energies.
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IV.  SUSY Kondo model: including backreaction

Let us return to the single-site model, with M D5 branes     
g2

Y MM ! 1.and

Can we find a smooth backreacted solution with no 
“probes”?

In the Kondo model itself, in the simplest cases, the 
fermionic defect  “disappears”  in the IR,  just leaving a 

disturbance on a region of order the confinement scale to 
the behaviour of the bulk electrons.
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 Could the D5 defects similarly “disappear” in our 
problem?

They would have to leave behind a signature of their D5 
charge.  This can happen; if a non-trivial three-sphere is 

created, M units of three-form flux could replace the D5s.

 We’ll see that this does happen.  The D5 branes squash the 
5-sphere so much that is splits into two, and replace 
themselves with three-form flux in a new smooth 

geometry.
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In fact, the relevant supergravity solutions have already 
been found, by D’Hoker, Estes and Gutperle.

They were not studying impurity models.  Their interest 
was BPS Wilson loops in maximally supersymmetric Yang-

Mills theory.

3. Relation to supergravity

A natural proposal for the expectation value of the Wilson loop is

〈W (C)〉 ∼ e−S (3.1)

where, in the large gN approximation, S is the proper area of a fundamental string world-

sheet which at the boundary of AdS describes the loop C and lies along θI(s) on S5.

See figure 2. In general we should consider the full partition function of string theory on

AdS5 × S5 with the condition that a string worldsheet is ending on the loop C and the

points "θ(s) on S5 at the boundary of AdS. This is a natural proposal in terms of the iden-

tification proposed in [7,5] for relating gauge theory observables to calculations on AdS.

However the right hand side in (3.1) contains also the contribution from the mass of the

W-boson and it is therefore infinity. Subtracting this contribution we find a finite result

for the Wilson loop operator

〈W (C)〉 ∼ lim
Φ→∞

e−(SΦ−!Φ) (3.2)

Where # is the total length of the Wilson loop, measured with the flat Minkowski metric

appropriate to the gauge theory, and Φ is the mass of the W-boson. The equation (3.2) is

our final recipe for computing the Wilson loop. This result is not “zig-zag” invariant, in

the sense of [2], since the operator (2.4) is not invariant, as opposed to (2.1).

U=0

U= 8

Figure 2: Proposal to calculate Wilson loop expectation values. We should
consider the partition function of string theory on AdS5 × S5 with a string
worldsheet ending on the contour C on the boundary of AdS.

3
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But, the two problems turn out to be equivalent.

Lets sketch this equivalence in the simplest case, for the 
case of the k-fold antisymmetric representation of SU(N).

This is the case M=1, with k fermions present at the D3/D5 
intersection.

* Recall that the action of our full gauge theory is:

B)  Our second class of models arises in type IIB string 
theory.   To those of you for whom this is helpful, the brane 

configuration is:

I will mostly talk about the kind of lattice model one can 
make microscopically, in M-theory, by studying the following 

brane configuration:

2

field theoretic toy-models suggest that lattices of defects inter-

acting with itinerant electrons could be a reasonable starting

point for strange metal phenomenology (see e.g. [13–15]).

Such lattices can be implemented in various ways, differing

in their symmetries and in the quantum numbers of the oper-

ators in the theory. The model of [11] involves a lattice of de-

fect fermions interacting with the 4d N = 4 supersymmetric
Yang-Mills theory, and is engineered by intersecting D3 and

D5-branes (with the D5-branes wrapping AdS2 × S4 regions

in the near-horizon AdS5 × S5 geometry of the D3-branes).

The supersymmetry preserved by that lattice model is some-

what unconventional (allowing e.g. purely fermionic defect

representations); therefore we will mostly focus on a different

lattice system which is 2+1 dimensional and enjoys a more

powerful supersymmetry algebra for some values of our dis-

crete parameters. This, however, entails extraneous bosonic

degrees of freedom at the lattice sites, and the examples con-

taining only fermions on the defects can be analyzed similarly.

In the most symmetric case, the brane configuration we

study is given, in M-theory, by M2 and M2′ branes:

0 1 2 3 4 5 6 7 8 9 10

M2 x x x

M2′ x :: :: x x

(1)

Here, an x denotes a dimension wrapped by the given brane
stack, blanks denotes dimensions where the given branes are

localized at a common point, and :: denotes dimensions in

which the given branes are individually localized but form a

lattice. In this configuration, the two stacks intersect along a

lattice in the 1-2 plane.

Our family of theories will depend on two parameters: N
and k. N denotes the number of M2 branes in the stack above;

the M2′ branes are equally spaced in a square lattice, and the

lattice spacing is the only scale in the problem (so it doesn’t

constitute a new parameter). The second parameter k arises as
follows. We consider a Zk orbifold which acts as follows on

the four complex coordinates transverse to the M2s:

gk : zi = x2i+1 + ix2i+2, zi → e
i2π
k zi, i = 1...4 . (2)

The set of M2′ branes wrap the locus [16]

z1 = z2 = 0, z3 = z̄4 . (3)

and their orbifold images under (2). For k = 1 this embedding
is equivalent to the one in (1). We treat even and odd k sym-
metrically, defining the orbifold action to identify points on

different, mirror branes (rather than taking the gk/2k element

to identify points on the same brane in the case k even).
The global symmetry of the M2-brane theory is partially

broken by the orbifolding and the presence of the M2′ probes;

from SO(8) × SO(2) to SO(6) × U(1) × Z4 for k = 1,
and down to SU(2) × U(1)2 × Z4 for k > 1. The Z4 factor

here represents the symmetry of the lattice. At large k (such
that k5 # N # 1), it follows from the analysis in [17] that

the near-horizon region of the system of M2 and M2′ branes is

described more accurately using different variables in terms of

type IIA string theory with D2 and D2′ branes on a nontrivial

geometry with background 2-form gauge flux.

The field theory The field theory on the M2 branes in

these geometries has been studied in great detail [17]. A

general 3d supersymmetric Chern-Simons theory with at least

N = 2 supersymmetry has an action including the terms [18]:

S =

∫

d3x
k

4π
Tr(A∧dA+2

3
A3)+Dµφ̄iD

µφi+iψ̄iγ
µDµψi

− 16π2

k2
(φ̄iT

a
Ri
φi)(φ̄jT

b
Rjφj)(φ̄kT

a
Rk

T b
Rk

φk)

− 4π

k
(φ̄iT

a
Ri
φi)(ψ̄jT

a
Rj

ψj)−
8π

k
(ψ̄iT

a
Ri
φi)(φ̄jT

a
Rj

ψj) .

(4)

Here T a
R are the generators of the gauge group in representa-

tion R, and the scalars φi and fermions ψi are superpartners

in a chiral multiplet. These terms arise from integrating out

the scalars and fermions of the massive vector multiplet and

flowing to the deep infrared limit of the theory.

The field theory on our M2 branes is a special case of this

theory, with gauge groups U(N) × U(N) appearing at lev-
els ±k. The ‘t Hooft coupling of this theory is N/k and so
is large in the holographic limits. The matter fields φi are

four bi-fundamental fields A1,2 and B1,2, in the (N, N̄) and
(N̄ ,N) representations respectively. In addition to the basic
supersymmetric action written above for these fields, we add

an N = 3 superpotential

W =
2π

k
εabεȧḃTr(AaBȧAbBḃ) . (5)

Here a, b = 1, 2 and the superpotential has been written in
a manifestly SU(2) × SU(2) symmetric manner. The full
symmetry of the field theory is in fact enhanced to an SO(6)×
U(1)b (with the baryonic U(1)b acting with charge±1 on the
A and B fields), and the theory with these choices enjoys an

enhancedN = 6 supersymmetry [17].[29]
The probe M2′ branes give rise to localized degrees of free-

dom; in the type IIA string theory limit of the brane con-

struction these arise from strings stretching between the D2

branes and a lattice of probe D2′ branes. In the simplest case

of k = 1, these are hypermultiplets, with the fermions trans-
forming as spinors in the dimensions transverse to both branes

(and the bosons transforming as spinors along 1234). The in-

frared Chern-Simons theory is more difficult to analyze di-

rectly, since the appropriate type IIB brane construction in-

volves non-perturbative ingredients. However, by generaliz-

ing the methods of [17] one can obtain a plausible hypothe-

sis for the spectrum [16], in which defect hypermultiplets are

added to both gauge groups. One reason that this is plausible

is that the dual probe branes respect parity, which in the field

theory exchanges the gauge group factors. The bosonic quan-

tum mechanical degrees of freedomQ1,2 and Q̃1,2 at each site

transform as follows. Qi transforms in the N of the ith U(N)

(as well as its orbifolds).

But for some purposes, the IIB configuration:
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where we’ve defined

ζ(z1) =
1

8π
√
2

∑

n

(|ηcn|2 − |ηn|2)
z1 − z1n

(27)

and

φ1 = Z1 − ζ . (28)

The |ζ̇|2 term in (26) exhibits cross-couplings between theη
hypermultiplet fields that would naively ruin local criticality.

One would also get similar terms by integrating out A0 and

φ3. The generation of inter-defect interactions is not tied to

supersymmetry, but these terms sum to a cross-coupling term

in the Kähler potential for the defect hypermultiplets. [31]

This makes it seem unlikely that the local criticality of the

gravity regime can survive to finite N and coupling, where a

field theory analysis should be reliable. However, it is impor-

tant to remember that our starting point here has been the 3d

N = 8 Yang-Mills theory, and this UV Lagrangian is valid
only far from the IR fixed point which we know governs the

physics on the N M2 branes (even at finiteN ).
To get an alternate perspective, we can also try to com-

pute the inter-defect corrections arising from coupling the

defect hypermultiplets to the doubled Chern-Simons theory

which captures the fixed-point physics. In fact, a simple toy-

model already illustrates the important difference between the

Chern-Simons defect theories and the Yang-Mills defect theo-

ries. An Abelian Chern-Simons gauge field coupled to defect

fermions χn would be governed by an action

S =

∫

dt d2z [A0(∂zAz̄ − ∂z̄Az)−Az(∂0Az̄ − ∂z̄A0)

+Az̄(∂0Az − ∂zA0)] +

∫

dt
∑

n

δ(2)(z − zn)χ
†
nA0χn .

(29)

One can see directly that integrating out A0 will not gen-

erate a dangerous inter-defect coupling here, as it is a non-

propagating field. The A and B fields do propagate, but these

couple to the defect fields only quadratically as in Eqs. (6, 7)

and so do not generate tree level corrections.

A full field-theoretic analysis of the radiative corrections

to the ABJM theory coupled to hypermultiplet defects is be-

yond the scope of our work. It will be interesting to see to

what extent the absence of induced inter-defect couplings ap-

plies in the full model; the simple computation above suggests

that at least the most obvious dangerous cross-couplings vis-

ible from the Yang-Mills perspective, do not characterize the

physics of the IR fixed point theory coupled to hypermulti-

plet defects. Especially in the cases k = 1, 2, where the full
model enjoys enhanced supersymmetry, non-renormalization

theorems strongly constrain the possible generation of four-

fermion cross-coupling terms (see for instance [26]); con-

straints on higher multi-fermion terms are less obvious. It

would be most interesting to push this analysis further, and

construct systems of defect fermions interacting with itinerant

fields where local criticality can be seen robustly directly from

field theoretic arguments.
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Appendix: The 3.5 system
To begin let us consider a variant of the construction of [11],

who studied the brane configuration

0 1 2 3 4 5 6 7 8 9

D3 x x x x

D5(5̄) x :: :: :: x x x x x

(30)

As before, an x indicates a direction in which the given branes

are extended, and a :: indicates a direction in which they are in
a lattice configuration. The 3-5 intersections are 0+ 1 dimen-
sional, representing defects in the dual gauge theory. For this

system, with 8 ND directions, only fermions live on the inter-

sections, which is very natural for the intended applications.

In the limit that the 5-branes are probes, the D3-branes gen-

erate an AdS5×S5 spacetime, with each 5-brane wrapped on

an AdS2 × S4 subspace. However, the spatial directions con-

tract in the IR of the AdS5 geometry, so the 5-brane density

diverges there and their backreaction cannot be neglected. At

large N , the backreaction becomes a large effect at energies
which are parametrically small compared to the lattice scale

(as noted in [11]). [32]

We are looking for an IR geometryAdS2×R3×X , which
we will for convenience compactify to AdS2 × T 3 ×X . We
study this with the Ansatz X = S5, averaging the energy

density of the 5-branes over the compact dimensions. Let A,
T , and S be the respective radii of the three factors AdS2 ×
T 3 × S5. The effective action dimensionally reduced to 1+1

dimensions is of the form

S =

∫

d2x

(

−T 3S5

g2s
+

A2T 3S3

g2s
− N5A2S4

gs
− N2

3A
2T 3

S5

)

.

(31)

We work in units where the string length is one, and ignore

order one coefficients. The respective terms come from the

curvatures of AdS2 and S5, the 5-brane tensions, and the RR

5-form flux, and do not distinguish between pure D5-branes

and a mix of D5s andD5s. In other situations it would be nat-
ural to Weyl transform to an effective potential, but this is not

possible forAdS2; instead we directly extremize with respect

to A. One readily verifies that the action has no stationary

(or its T-duals) would be advantageous, as I’ll occasionally 
mention.
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The N D3 branes give rise to a large N maximally 
supersymmetric 4D gauge theory.  The D5 branes add 

fermionic defects localized at a lattice of points in this field 
theory.   The action of this theory is:

ν ≡ 1

π
(θν − sinθνcosθν) ,

n ≡ νN ∈ Z.

ν ≡ 1

π
(θν − sinθνcosθν) ,

n ≡ νN ∈ Z.

In the (dual) field theory language, the change to the N=4 
super Yang-Mills theory in the setup with a given value of n, 

is governed by the action:

Sfield theory = SN=4 +

∫
dt

[
iχ†

b∂tχ
b + χ†

b

{
(A0(t,

−→
0 ))bc + vI(φI(t,

−→
0 ))bc

}
χc
]
,
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* Choose a gauge where the combination A0 + vIφI

has constant eigenvalues (m1, ...,mN ).
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The equation of motion for the defect fermions is then:

Let us review how the Wilson loop is generated in the simplest case M = 1; we follow [15].

It is convenient to choose a gauge where A0 + naφa has constant eigenvalues m1, . . . ,mN .

The equation of motion for the defect fermions is

(i∂t +mi)χi = 0 , i = 1, . . . , N . (2.24)

We have a Fock space of N fermions, each with energy mi, and in the partition function we

only need to sum over states with k fermions. The partition function of the defect fermions

then becomes

Zdefect =
∑

i1<i2<...<ik

ei
∫
dtmi1 . . . ei

∫
dtmik , (2.25)

where an infrared regulator is assumed. Reintroducing the combination A0 + naφa, (2.25)

is recognized as the trace of the Wilson line in the k-th antisymmetric representation of

SU(N),

∑

i1<i2<...<ik

ei
∫
dtmi1 . . . ei

∫
dtmik = TrAk

P exp

(
i

∫
dt(A0 + naφa)

)
. (2.26)

This shows that integrating out the degrees of freedom that live on the defect produces a

supersymmetric Wilson loop insertion in the N = 4 theory.

In the case M > 1 we have NM fermions with total fermion number k. This allows for

general representations for the Wilson line, where the Young tableaux has at most N rows

and M columns, and the number of boxes is determined by k. (For M = 1 this simply

gives k rows). Now the matrix structure of Ã0 needs to be specified as well; choosing

Ã0 = diag(Ω1, . . . ,ΩM) , (2.27)

obtains an equation of motion

(i∂t +mi + ΩI)χ
I
i = 0 . (2.28)

So there are NM fermions, with energy mi + ΩI and total fermion number k. The chem-

ical potential ΩI determines the number of boxes in the I-th column as the value of the

propagator 〈χ̄I(τ)χJ(0)〉 as τ → 0.

3 D3-D5 system in the probe approximation

Having understood the basic properties of the field theory with a quantum impurity at weak

coupling, in what follows we will study the Kondo model at large ’t Hooft coupling using

12
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I.e. integrating out the defect fermions produces a 
supersymmetric Wilson-loop insertion.

The representations are a bit more complicated for M > 1, 
but the same basic idea holds.

Most basic properties of DEG solutions

A natural ansatz for the metric building in the symmetries 
we are guaranteed to have, is to take:

Nevertheless, it is important to go beyond the probe approximation and understand how

the insertion of the impurity deforms the ambient gauge theory and its correlators. These

effects become important for g2YMM ! 1. What type of field theory do we expect after

taking into account the backreaction from the impurity? In the boundary CFT approach,

the impurity disappears completely and is replaced by appropriate boundary conditions on

the ambient fields. In this section we study the backreacted solution for the supersymmetric

model, and find a realization of this effect in terms of a geometric transition in the gravity

description. The gravity solution can be trusted when all the cycles are large, which in

particular requires g2YMM ! 1.

6.1 Basic properties of the backreacted solution

Fortunately, the full solution including backreaction from the Wilson line defect is already

known. The gravitational description of antisymmetric Wilson loops was first considered in

[25, 26], and, impressively, the complete gravity solution was found by [7]. It is described

by a “bubbling geometry” of the type introduced in [27]. Backreaction of the impurity

can also be calculated in terms of a matrix model for the zero mode of A0 + naφa (when

placing the theory on S4).6 Here we will summarize the gravity solution of [7], reserving

some comments on the matrix model approach to the last part of the section.

Physically, taking into account backreaction replaces the D5 branes by 3-form field strengths

F3 and H3, and the gravity solution does not include explicit source branes. This requires

the appearance of new topologically nontrivial cycles (“bubbles”) to support the fluxes.

This is known as a geometric transition. Recalling the description of the AdS5 × S5 limit

in terms of (3.3) and since the full solution should still have SL(2,R) × SO(3) × SO(5)

symmetry, the most general metric is of the form

ds2

R2
= f 2

1ds
2
AdS2

+ f 2
2dΩ

2
2 + f 2

4dΩ
4 + dΣ2 , (6.1)

where Σ is a Riemann surface with boundary (see below), and the radii fi are functions on

Σ. Locally the space is of the form AdS2×S2×S4×Σ, and the factors AdS2×S2×S4 are

fibered over Σ. In the AdS5 × S5 case, which we will revisit shortly, the Riemann surface

is given by (u, θ), and dΣ2 = du2 + dθ2.

In [7] it was found that the full solution is determined in terms of two real harmonic

6As recognized by [16, 17], matrix models provide powerful techniques to compute exactly certain

quantities in N = 4 SYM. This connection was recently proved by [18]; the matrix model for antisymmetric

Wilson loops was developed in [22, 8, 28, 29]

27

Here Σ is a Riemann surface with boundary, and the 
functions f vary over the surface.
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For instance in the case of AdS5 × S5

In order to realize the defect symmetries transparently, it is useful to slice AdS5 × S5 by

ds2 = R2
(
du2 + cosh2 u ds2AdS2

+ sinh2 u dΩ2
2 + dθ2 + sin2 θ dΩ2

4

)
, (3.3)

with u ≥ 0 and 0 ≤ θ ≤ π. The potential C4 that gives rise to the five form flux can be

written as [8]

C4 = R4

[(
−u

2
+

1

8
sinh 4u

)
e0e1e4e5 +

(
3

2
θ − sin 2θ +

1

8
sin 4θ

)
e6e7e8e9

]
, (3.4)

where (e0, e1) are the vielbeins for ds2AdS2
, (e4, e5) are the vielbeins for dΩ2

2, and (e6, e7, e8, e9)

are those for dΩ2
4.

The D5-brane worldvolume is AdS2 × S4, given by the embedding conditions

u = 0 , θ = θk . (3.5)

As we review shortly, this angle is related to the number of defect fermions k by

k =
N

π

(
θk −

1

2
sin 2θk

)
. (3.6)

This configuration was studied originally by [20]. The bosonic symmetries SL(2,R) ×
SO(3)× SO(5) are explicitly realized in the way of writing the metric (3.3).

Ignoring nonabelian interactions, the D5 branes are described by the DBI action

S5 = −T5

∫
d6ξ

√
− det(G+ F ) + T5

∫
F ∧ C4 , (3.7)

with worldvolume metric

ds2D5 = R2(ds2AdS2
+ sin2 θk dΩ

2
4) . (3.8)

The background value (3.4) induces a tadpole for F due to the Chern-Simons interaction.

As a result, there is nonzero worldvolume flux given by

F = cos θk e
0 ∧ e1 , (3.9)

and the fundamental string charge k is given by δSD5/δF01.

3.3 Defect free energy and entropy

As a first step towards solving the supersymmetric Kondo model, we now evaluate the

boundary free energy and entropy (g-function) in the probe approximation, and compare

with the multichannel Kondo model of §2.1.

15

the Riemann surface is coordinatized by u, θ.

The general solution is determined in terms of two real 
harmonic functions             onh1, h2 Σ :

functions h1 and h2 on Σ, given by the combinations

h2
1 =

1

4
e−φf 2

1 f
2
4 , h2

2 =
1

4
eφf 2

2 f
2
4 , (6.2)

where φ is the dilaton. The fi and the dilaton are nonvanishing inside Σ, and the solution

has a single asymptotic AdS5 ×S5 (corresponding to moving far away from the impurity).

The boundary ∂Σ is defined by the locus where either S2 or S4 shrink to zero. Since f2 or

f4 vanish on the boundary, h2 = 0 everywhere on ∂Σ. Furthermore, in regular solutions f1
is nonvanishing on ∂Σ; so h1 = 0 on segments on ∂Σ only when S4 shrinks to zero. Given

this structure, a topologically nontrivial 3-cycle is obtained by fibering S2 over a one-cycle

in Σ that connects two boundary segments where f2 = 0. Similarly, a homology 5-sphere

can be constructed by fibering S4 over a cycle between two boundary segments where

f4 = 0. These are the cycles that support nonzero fluxes and represent the backreaction

of the branes on the geometry. A concrete solution is studied in detail in §6.2, and the

topology is illustrated in Fig. 2.

Let us choose conformally flat coordinates on the Riemann surface,

dΣ2 = 4ρ2dvdv̄ . (6.3)

It is also convenient to introduce the combinations

W = ∂h1∂̄h2 + ∂̄h1∂h2

V = ∂h1∂̄h2 − ∂̄h1∂h2

N1 = 2h1h2|∂h1|2 − h2
1W

N2 = 2h1h2|∂h2|2 − h2
2W . (6.4)

In terms of these quantities, the metric functions fi and ρ are given by [7]

f1 =

(
−4

√
−N2

N1
h4
1

W

N1

)1/4

, f2 =

(
−4

√
−N1

N2
h4
2

W

N2

)1/4

f4 =

(
−4

√
−N2

N1

N2

W

)1/4

, ρ =

(
−W 2N1N2

h4
1h

4
2

)1/8

. (6.5)

The dilaton g2s = e2φ is determined by

e2φ = −N2

N1
> 0 . (6.6)

In what follows we first formulate AdS5×S5 in this language. Then explain how to choose

h1 and h2 and consider and study the simplest case of one new 3-cycle.
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At each point on      , one of the spheres shrinks. ∂Σ
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We can therefore visualize the boundary as being divided 
into red and black segments, on which the four-sphere / 

two-sphere vanishes.

Now, as in §2, let us pick some angle θ on the S5, and wrap M D5-branes there. Along the

real w axis, we expect three segments where h1 = 0, broken up by two finite regions where

h1 != 0. If we call the real coordinates where the transitions between h1 = 0 and h1 != 0

take place e1,2,3,4, then without loss of generality we can set e4 = ∞. The Riemann surface

with boundary and the homology 3- and 5-cycles are shown in Fig. 2.

Figure 2: Backreacted solution in the presence of a single D5 stack. The upper figure shows how

the original cylinder corresponding to AdS5 × S5 is deformed by the introduction of D5 branes,

which create a new boundary segment with f4 = 0. The lower figure shows the Riemann surface

with boundary after the conformal transformations described in the text. The topologically

nontrivial 3- and 5-cycles are shown in dotted blue lines.

The defining equation of the genus one Riemann surface (where h1, h2 are single-valued)

is given by

s2(w) = (w − e1)(w − e2)(w − e3) . (6.14)

We can always redefine the w variable so that e1 + e2 + e3 = 0, so there are two real

parameters in the ei. These parameters will govern the integrated fluxes over the non-

31

 The non-trivial three-sphere is constructed by fibering 
two-spheres over a one-cycle connecting different black 

regions.  The non-trivial five-spheres arise by fibering four-
spheres over cycles connecting different red regions.
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The full set of allowable solutions involves rather 
complicated  “topology and regularity conditions” on the 

harmonic functions.  

We will not discuss these conditions here.

The basic intuition should be clear: the boundary 
conditions on the harmonic functions are given by where 
they vanish at the boundary together with the nature of 

their pole at the AdS5 asymptotic, and they are then 
uniquely fixed.  We give the explicit form of h for the

one-stack transition, in our paper.
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One can be painfully explicit about the solutions in terms 
of h.  Introducing conformally flat coordinates on the 

Riemann surface

functions h1 and h2 on Σ, given by the combinations

h2
1 =

1

4
e−φf 2

1 f
2
4 , h2

2 =
1

4
eφf 2

2 f
2
4 , (6.2)

where φ is the dilaton. The fi and the dilaton are nonvanishing inside Σ, and the solution

has a single asymptotic AdS5 ×S5 (corresponding to moving far away from the impurity).

The boundary ∂Σ is defined by the locus where either S2 or S4 shrink to zero. Since f2 or

f4 vanish on the boundary, h2 = 0 everywhere on ∂Σ. Furthermore, in regular solutions f1
is nonvanishing on ∂Σ; so h1 = 0 on segments on ∂Σ only when S4 shrinks to zero. Given

this structure, a topologically nontrivial 3-cycle is obtained by fibering S2 over a one-cycle

in Σ that connects two boundary segments where f2 = 0. Similarly, a homology 5-sphere

can be constructed by fibering S4 over a cycle between two boundary segments where

f4 = 0. These are the cycles that support nonzero fluxes and represent the backreaction

of the branes on the geometry. A concrete solution is studied in detail in §6.2, and the

topology is illustrated in Fig. 2.

Let us choose conformally flat coordinates on the Riemann surface,

dΣ2 = 4ρ2dvdv̄ . (6.3)

It is also convenient to introduce the combinations

W = ∂h1∂̄h2 + ∂̄h1∂h2

V = ∂h1∂̄h2 − ∂̄h1∂h2

N1 = 2h1h2|∂h1|2 − h2
1W

N2 = 2h1h2|∂h2|2 − h2
2W . (6.4)

In terms of these quantities, the metric functions fi and ρ are given by [7]
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−4

√
−N2

N1
h4
1

W

N1

)1/4

, f2 =

(
−4

√
−N1

N2
h4
2

W

N2

)1/4

f4 =

(
−4

√
−N2

N1

N2

W

)1/4

, ρ =

(
−W 2N1N2

h4
1h

4
2

)1/8

. (6.5)

The dilaton g2s = e2φ is determined by

e2φ = −N2

N1
> 0 . (6.6)

In what follows we first formulate AdS5×S5 in this language. Then explain how to choose

h1 and h2 and consider and study the simplest case of one new 3-cycle.
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28

one finds that the IIB supergravity fields are:
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functions h1 and h2 on Σ, given by the combinations

h2
1 =

1
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1 f
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4
eφf 2

2 f
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4 , (6.2)

where φ is the dilaton. The fi and the dilaton are nonvanishing inside Σ, and the solution

has a single asymptotic AdS5 ×S5 (corresponding to moving far away from the impurity).

The boundary ∂Σ is defined by the locus where either S2 or S4 shrink to zero. Since f2 or

f4 vanish on the boundary, h2 = 0 everywhere on ∂Σ. Furthermore, in regular solutions f1
is nonvanishing on ∂Σ; so h1 = 0 on segments on ∂Σ only when S4 shrinks to zero. Given

this structure, a topologically nontrivial 3-cycle is obtained by fibering S2 over a one-cycle

in Σ that connects two boundary segments where f2 = 0. Similarly, a homology 5-sphere

can be constructed by fibering S4 over a cycle between two boundary segments where

f4 = 0. These are the cycles that support nonzero fluxes and represent the backreaction

of the branes on the geometry. A concrete solution is studied in detail in §6.2, and the

topology is illustrated in Fig. 2.

Let us choose conformally flat coordinates on the Riemann surface,

dΣ2 = 4ρ2dvdv̄ . (6.3)

It is also convenient to introduce the combinations

W = ∂h1∂̄h2 + ∂̄h1∂h2

V = ∂h1∂̄h2 − ∂̄h1∂h2

N1 = 2h1h2|∂h1|2 − h2
1W

N2 = 2h1h2|∂h2|2 − h2
2W . (6.4)

In terms of these quantities, the metric functions fi and ρ are given by [7]
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(
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√
−N2

N1
h4
1

W

N1

)1/4

, f2 =

(
−4

√
−N1

N2
h4
2

W

N2

)1/4

f4 =

(
−4

√
−N2

N1

N2

W

)1/4

, ρ =

(
−W 2N1N2

h4
1h

4
2

)1/8

. (6.5)

The dilaton g2s = e2φ is determined by

e2φ = −N2

N1
> 0 . (6.6)

In what follows we first formulate AdS5×S5 in this language. Then explain how to choose

h1 and h2 and consider and study the simplest case of one new 3-cycle.

28

functions h1 and h2 on Σ, given by the combinations

h2
1 =

1

4
e−φf 2

1 f
2
4 , h2

2 =
1

4
eφf 2

2 f
2
4 , (6.2)

where φ is the dilaton. The fi and the dilaton are nonvanishing inside Σ, and the solution

has a single asymptotic AdS5 ×S5 (corresponding to moving far away from the impurity).

The boundary ∂Σ is defined by the locus where either S2 or S4 shrink to zero. Since f2 or

f4 vanish on the boundary, h2 = 0 everywhere on ∂Σ. Furthermore, in regular solutions f1
is nonvanishing on ∂Σ; so h1 = 0 on segments on ∂Σ only when S4 shrinks to zero. Given

this structure, a topologically nontrivial 3-cycle is obtained by fibering S2 over a one-cycle

in Σ that connects two boundary segments where f2 = 0. Similarly, a homology 5-sphere

can be constructed by fibering S4 over a cycle between two boundary segments where

f4 = 0. These are the cycles that support nonzero fluxes and represent the backreaction

of the branes on the geometry. A concrete solution is studied in detail in §6.2, and the

topology is illustrated in Fig. 2.

Let us choose conformally flat coordinates on the Riemann surface,

dΣ2 = 4ρ2dvdv̄ . (6.3)

It is also convenient to introduce the combinations

W = ∂h1∂̄h2 + ∂̄h1∂h2

V = ∂h1∂̄h2 − ∂̄h1∂h2

N1 = 2h1h2|∂h1|2 − h2
1W

N2 = 2h1h2|∂h2|2 − h2
2W . (6.4)

In terms of these quantities, the metric functions fi and ρ are given by [7]

f1 =

(
−4

√
−N2

N1
h4
1

W

N1

)1/4

, f2 =

(
−4

√
−N1

N2
h4
2

W

N2

)1/4

f4 =

(
−4

√
−N2

N1

N2

W

)1/4

, ρ =

(
−W 2N1N2

h4
1h

4
2

)1/8

. (6.5)

The dilaton g2s = e2φ is determined by

e2φ = −N2

N1
> 0 . (6.6)

In what follows we first formulate AdS5×S5 in this language. Then explain how to choose

h1 and h2 and consider and study the simplest case of one new 3-cycle.

28

And writing

trivial S3 and S5s in the geometry; they are related to the number of D5 branes inserted,

M , and the “shift from N” in the amount of F5 flux through the two S5s, which will be

given by N − k and k, with k determined in terms of the angle of the S4 which the D5s

wrap (see (3.6)).

In the form (6.14), the surface is still non-compact. We can make it into a compact

Riemann surface by going to Weierstrass form. In terms of the Weierstrass P function, we

can define the z coordinate by the equation

w = P(z) . (6.15)

Since the Weierstrass function identically satisfies

P ′(z)2 = 4
3∏

i=1

(P(z)− ei) , (6.16)

we see that s(w) automatically satisfies s(w) = 1
2P

′(z).

Let us define the images in the z-plane of the special points in the w-plane via

w0 = P(z0), ei = P(ωi) . (6.17)

Also, define the Weierstrass ζ and σ functions via

ζ ′(z) = −P(z), ζ(z) =
σ′(z)

σ(z)
. (6.18)

Then the harmonic functions are given by [7]

h1 = 2i

(
ζ(z − z0) + ζ(z + z0)− 2

ζ(ω3)

ω3
z − c.c.

)
(6.19)

and

h2 =
i

P ′(z0)
(ζ(z + z0)− ζ(z − z0)− c.c.) . (6.20)

This is the desired final expression for h1 and h2, which provides an explicit solution for

the single D5-stack case. Generalizations to more stacks can be similarly worked out in

terms of hyperelliptic Riemann surfaces and harmonic functions on them.

The number of D5-branes and the θ angle of the S4 in S5 which they wrap, should be

indicated by the amounts of three-form and five-form flux threading the various topologi-

cally non-trivial spheres in the geometry. In terms of the holomorphic and antiholomorphic

parts

h1 = A+A, h2 = B + B , (6.21)

32the fluxes are given by (for the case we drew, with I=1,2):
the expressions governing the fluxes are as follows [7, 28]:

∫

S3

F3 = 4π2α′M = 8π

∫ e3

e2

(i∂A+ c.c.) (6.22)

and ∫

S5
I

F5 = 4π4(α′)2NI = 8π2

∫ e2I−1

e2I

(A∂B − B∂A+ c.c.) . (6.23)

In (6.23), the two different 5-spheres are labeled by I = 1, 2, and the integration contour

should actually be taken just a bit below the real line segment running from e2I to e2I−1 -

i.e., with small negative imaginary component.

6.3 Matrix model approach

We just described the solution very explicitly in terms of elliptic functions and geometric

transitions where new topologically nontrivial cycles appear. At this stage, it is natural to

ask how all these properties are understood in field theory language. The simplest answer

is given in terms of a matrix model that keeps the zero mode of A0 + φ when the theory is

placed on S4. Intuitively, the distribution of eigenvalues in the matrix model will describe

the homology cycles, and the Riemann surface will correspond to the spectral parameter.

Let us briefly explain this approach, following [8, 28, 29].

The claim is as follows. LetM in this section denote an N×N Hermitian matrix associated

to the zero mode of A0+naφa.7 The expectation value of a gauge-invariant function f(M)

–i.e. f(VMV −1) = f(M) for a unitary matrix V – is given by

〈f(M)〉 ≡ 1

Z

∫
dM f(M) exp

(
−2N

λ
tr[M2]

)
, (6.24)

where the partition function Z is defined by

Z ≡
∫

dM exp

(
−2N

λ
tr[M2]

)
. (6.25)

Here the measure dM denotes
∏

dMij subject to the constraint of hermiticity. Then, the

claim is that the BPS Wilson loop (whose action is identical to that discussed in §2.2),
in the R representation of the gauge group, can be calculated in the matrix model by

computing 〈trR[eM ]〉.
7This is not to be confused with a number of D5-branes, which was denoted by M in earlier sections.
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What’s next

* We would like to “enjoy” the backreacted solutions (or 
bottom-up versions of similar solutions) by computing 

corrections to transport, e.g. looking for analogues of the 
famous “resistivity minimum” that initiated interest in the 

Kondo problem.

* We would like to solve lattice models at the same level of 
explicitness.  This is probably hard.

* The boundary CFT methods of Affleck and Ludwig, 
applied to s-wave reduction, might allow a direct solution 
of the maximally supersymmetric Kondo model.  It would 

be fun to obtain this and compare to supergravity.

Dong, Harrison, 
SK, Torroba
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* There is a matrix model which captures the correlation 
functions of certain bulk operators in the presence of a 

Wilson loop; its eigenvalue distribution mimics beautifully 
aspects of the supergravity solution we sketched.  It would 

be interesting to try and develop the matrix model to 
answer questions about correlators of boundary operators.

Gomis, Matsuura,
Okuda, Trancanelli;
Yamaguchi; Pestun; 
many earlier works
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