Holography and Mottness: a Discrete Marriage

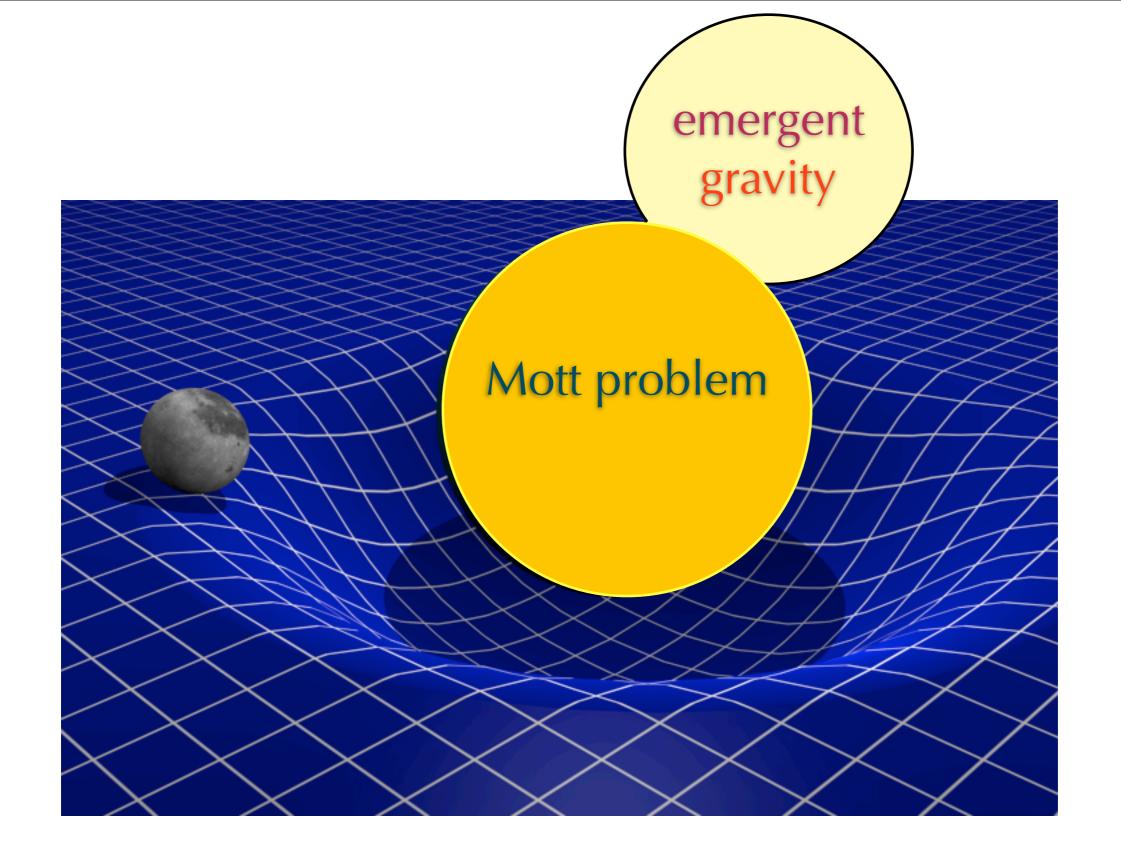
Thanks to: NSF, EFRC (DOE)

M. Edalati

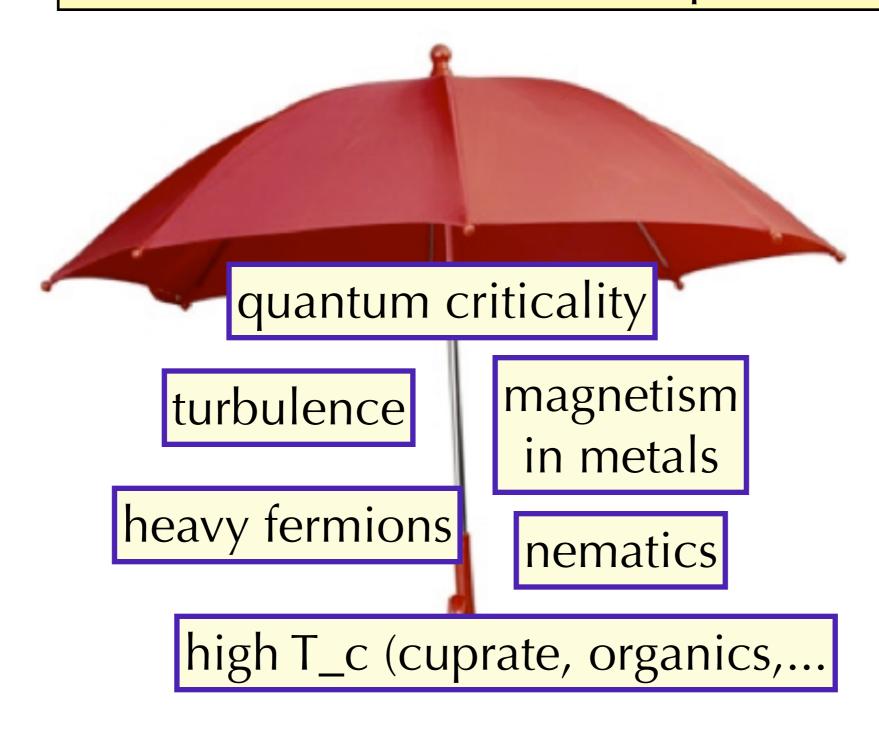
Ka Wai Lo

R. G. Leigh

Seungmin Hong

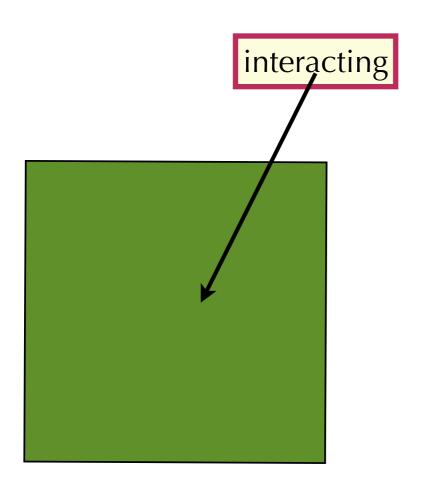


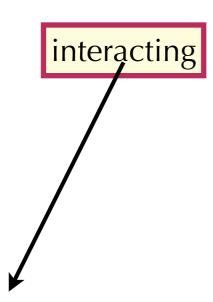
Unsolved condensed matter problems

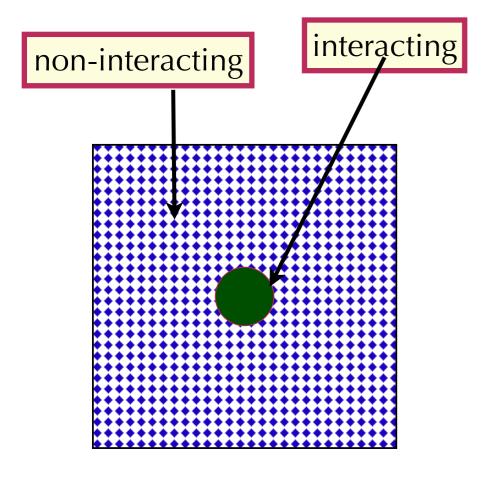


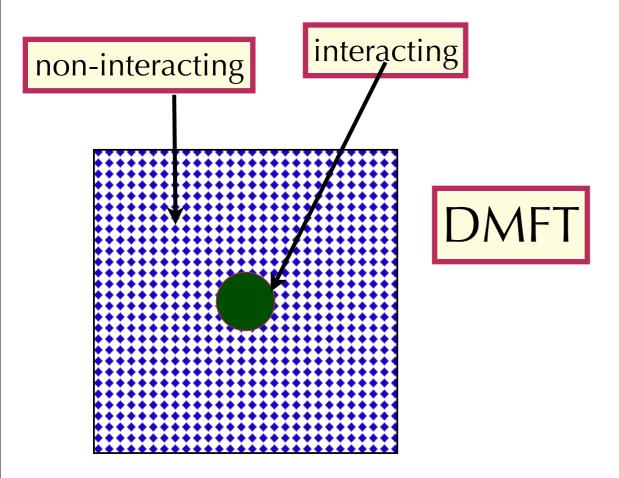
physics at strong coupling

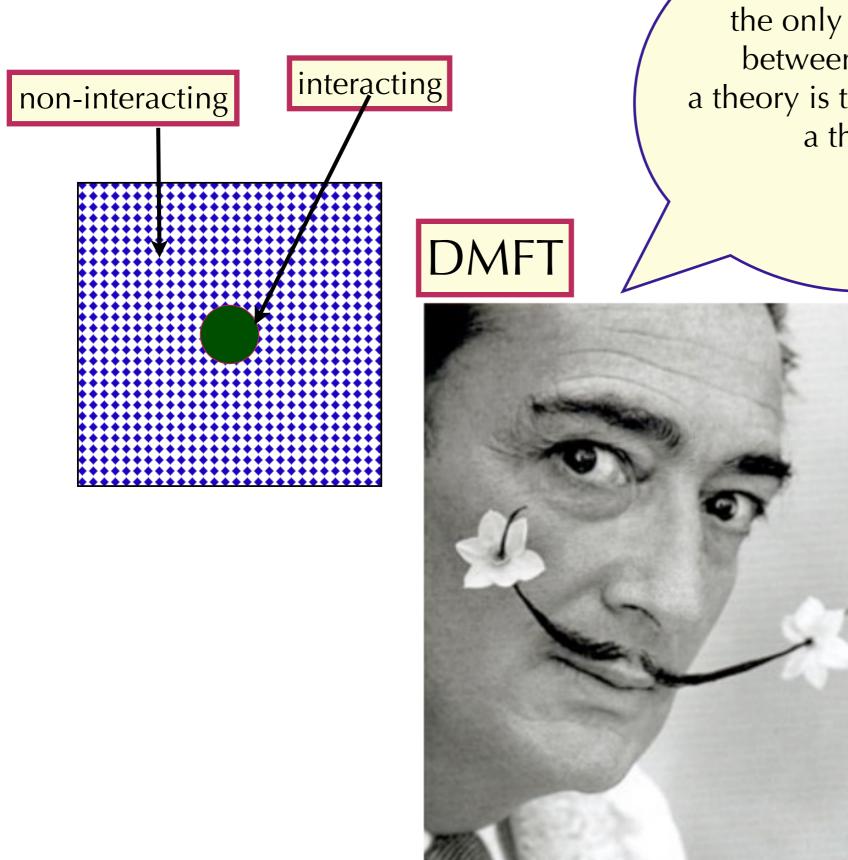
What computational tools do we have for strongly correlated electron systems?











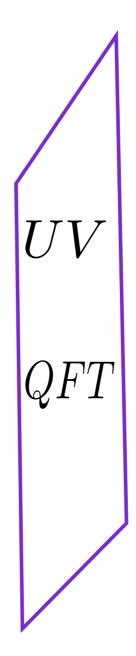
the only difference between this and a theory is that this is not a theory non-interacting interacting

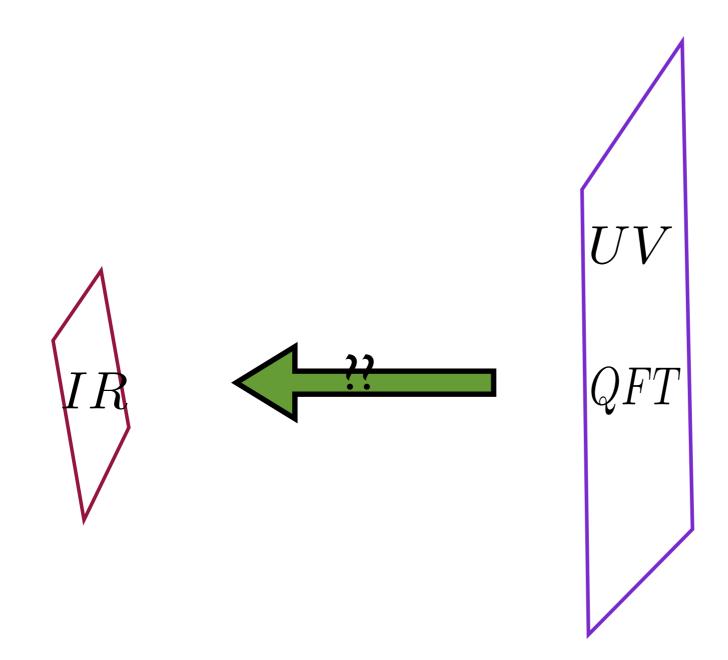
L

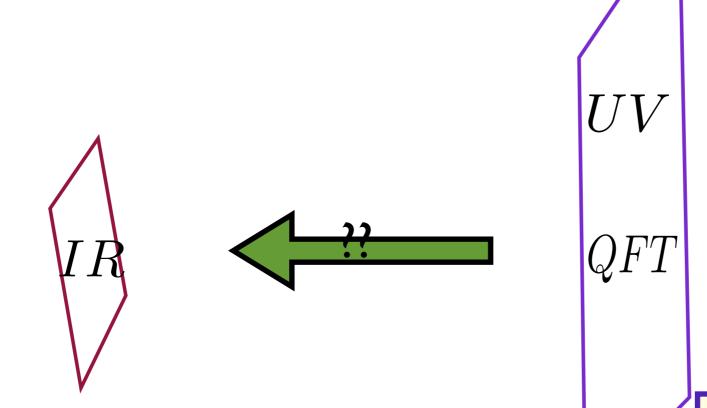
the only difference between this and a theory is that this is not a theory

DMFT

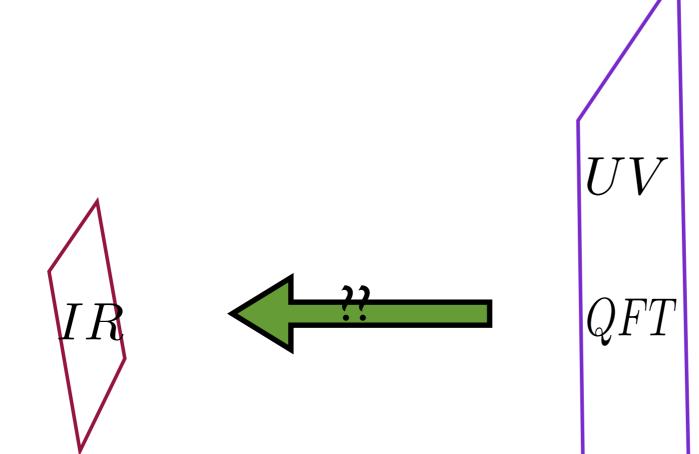
why does
this work
at long
wavelengths?



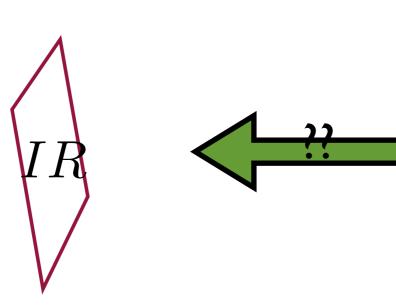




Wilsonian program (fermions: new degrees of freedom) 15



ogram
(fen ns:
ew degi
reedom



UV

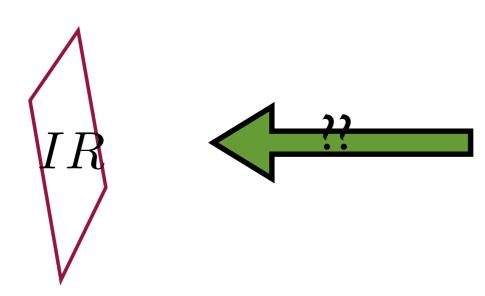
QFT

coupling constant

$$g = 1/\text{ego}$$

vilsonia.

gram
(fen ns:
ew degn



$$\frac{dg(E)}{dlnE} = \beta(g(E))$$

locality in energy

UV

coupling constant

$$g = 1/\text{ego}$$

QFT

vilsonia.

gram

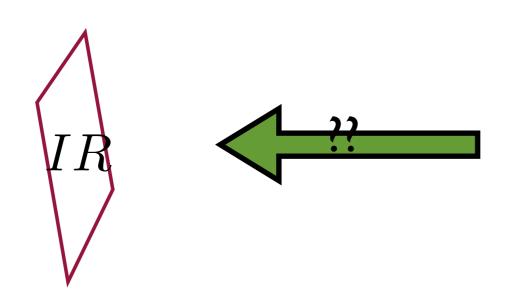
(fen ns:

ew degn concretedom

reedom

8

implement E-scaling with an extra dimension



$$\frac{dg(E)}{dlnE} = \beta(g(E))$$

locality in energy

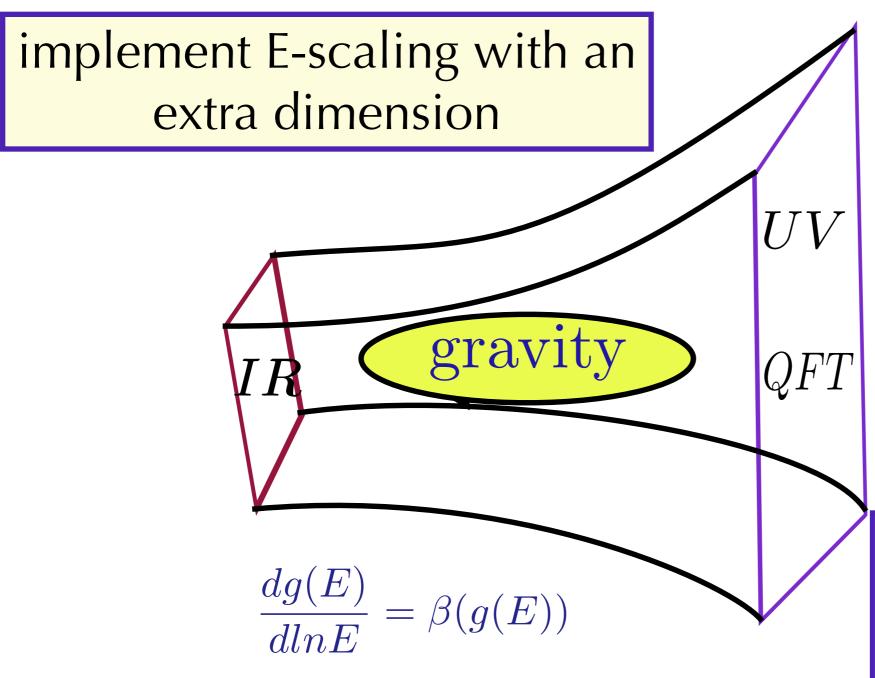
UV

coupling constant

$$g = 1/\text{ego}$$

QFT

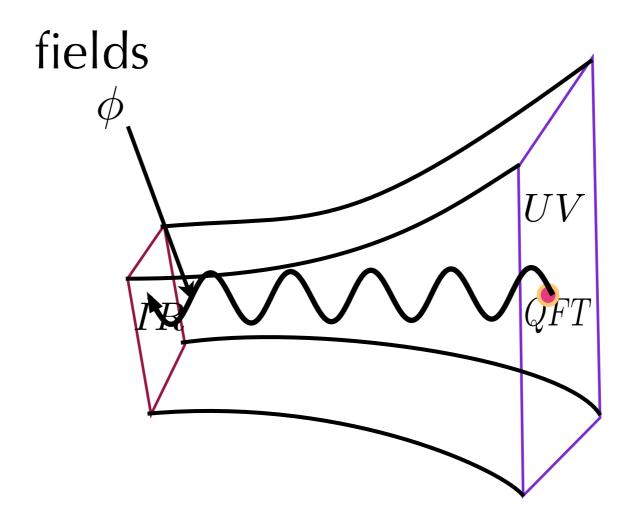
gauge-gravity duality (Maldacena, 1997)



locality in energy

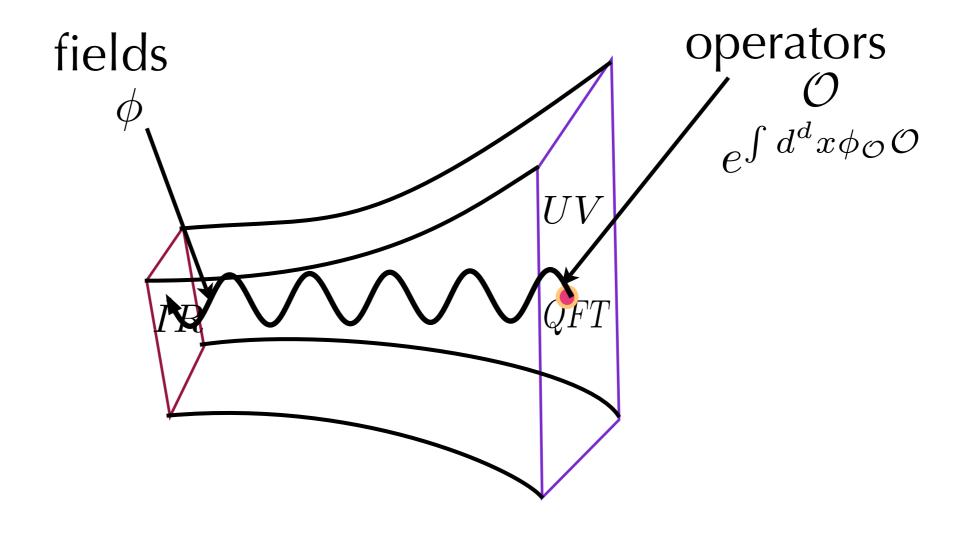
coupling constant

$$g = 1/\text{ego}$$



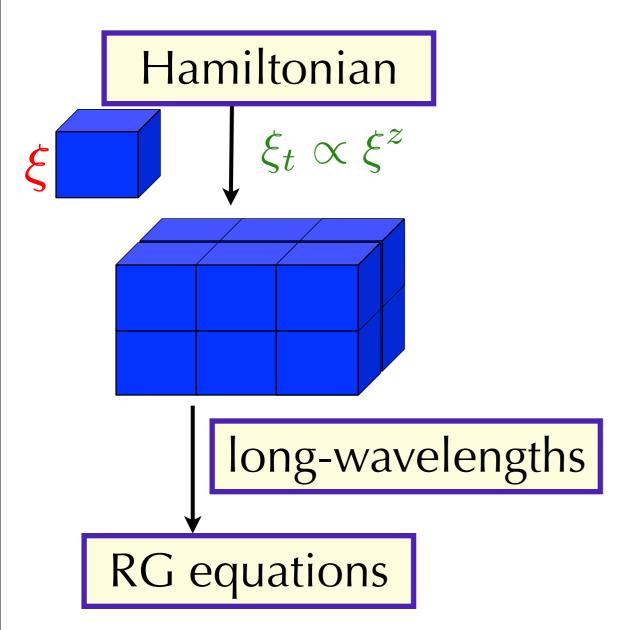
$$e^{\int d^d x \phi_{\mathcal{O}} \mathcal{O}}$$

Claim:
$$Z_{\text{QFT}} = e^{-S_{\text{ADS}}^{\text{on-shell}}(\phi(\phi_{\partial \text{ADS}=J_{\mathcal{O}}}))}$$



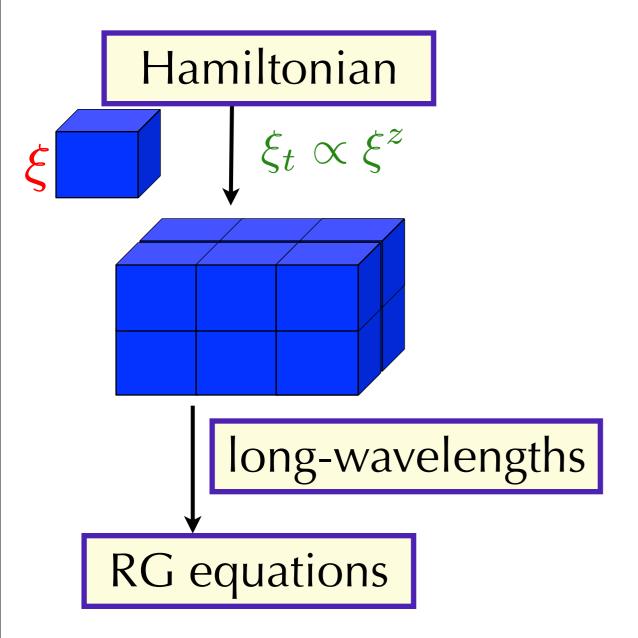
Claim:
$$Z_{\text{QFT}} = e^{-S_{\text{ADS}}^{\text{on-shell}}(\phi(\phi_{\partial \text{ADS}=J_{\mathcal{O}}}))}$$

Landau-Wilson



Landau-Wilson

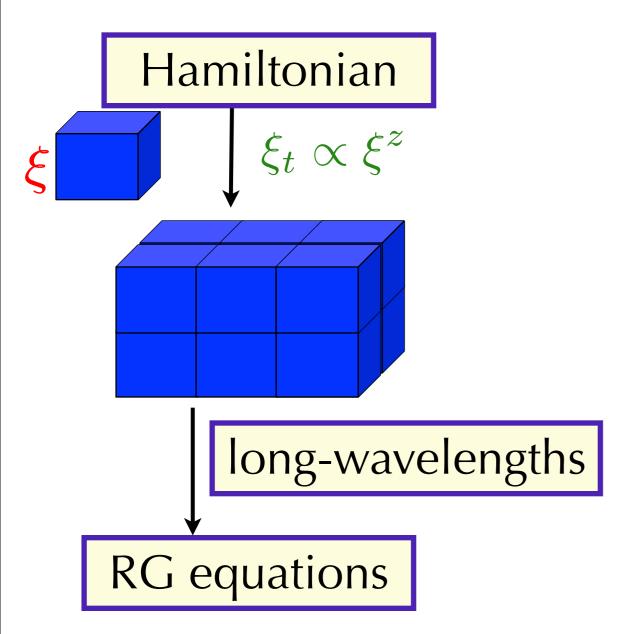
holography



Landau-Wilson

holography

RG=GR

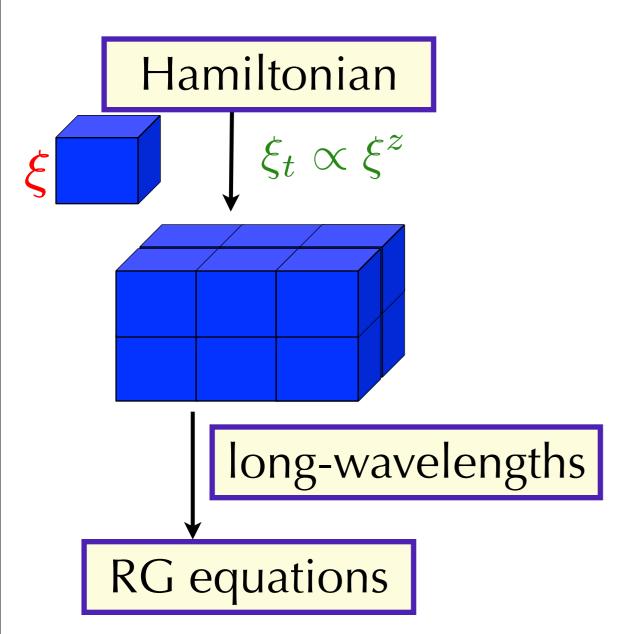


Landau-Wilson

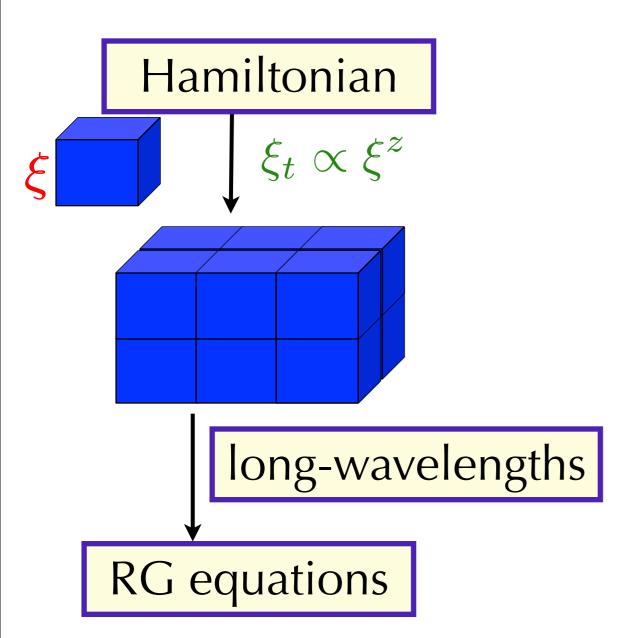
holography

RG=GR

strong-coupling is easy



Landau-Wilson



holography

RG=GR

strong-coupling is easy

microscopic UV model not easy (need M-theory)

Landau-Wilson



holography

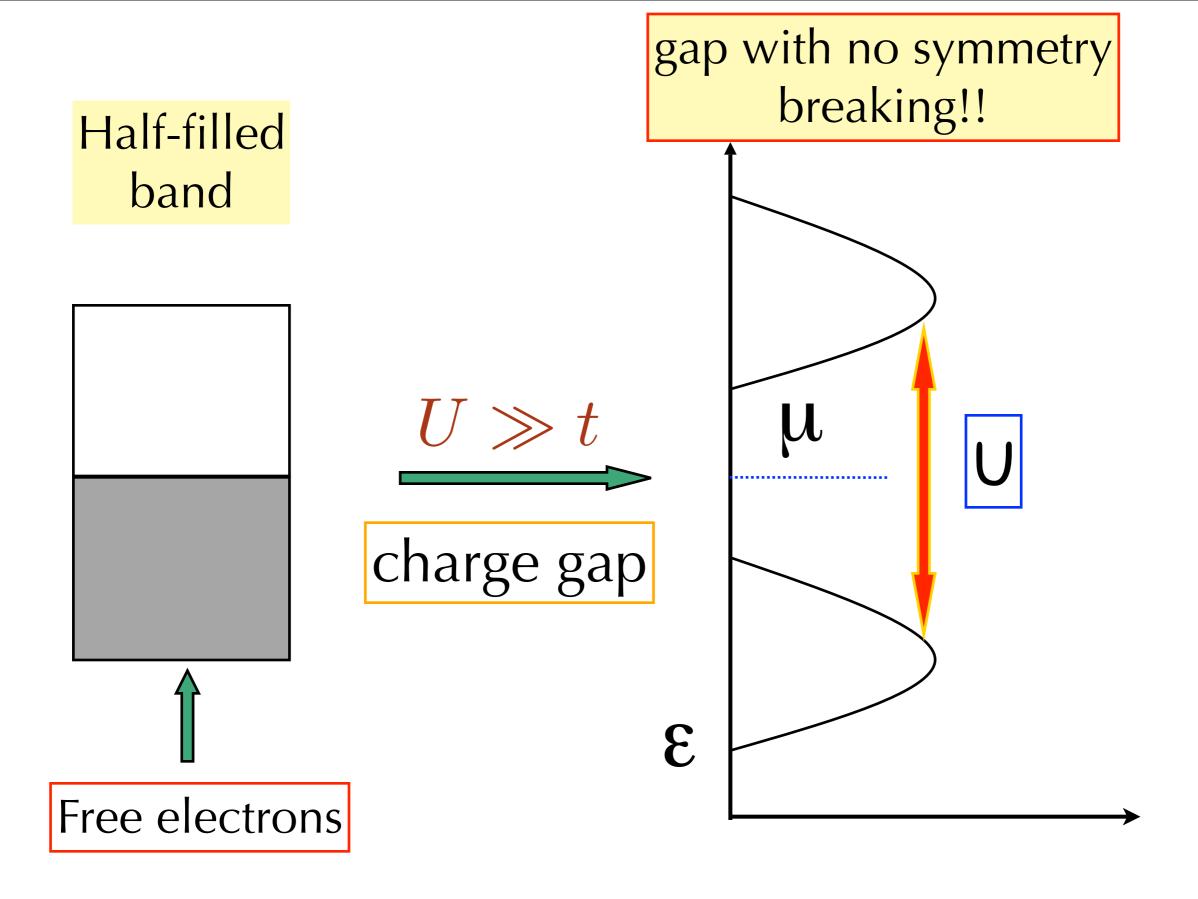
RG=GR

strong-coupling is easy

microscopic UV model not easy (need M-theory)

so what (currents, symmetries)

Can holography solve the Mott problem?



Why is the Mott problem important?



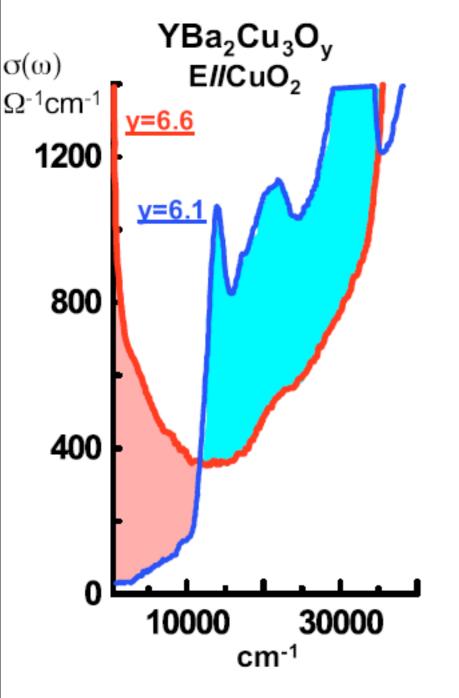
$$U/t = 10 \gg 1$$

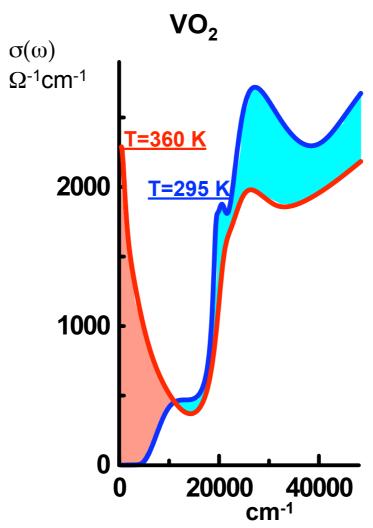
interactions dominate: Strong Coupling Physics

Y Ba Cu O 7 Cuprate Superconductors

Experimental facts: Mottness

$$\Delta = 0.6 eV > \Delta_{
m dimerization}$$
 (Mott, 1976) $\Delta \over T_{
m crit} pprox 20$



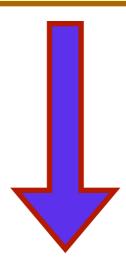


M. M. Qazilbash, K. S. Burch, D. Whisler, D. Shrekenhamer, B. G. Chae, H. T. Kim, and D. N. Basov PRB 74, 205118 (2006)

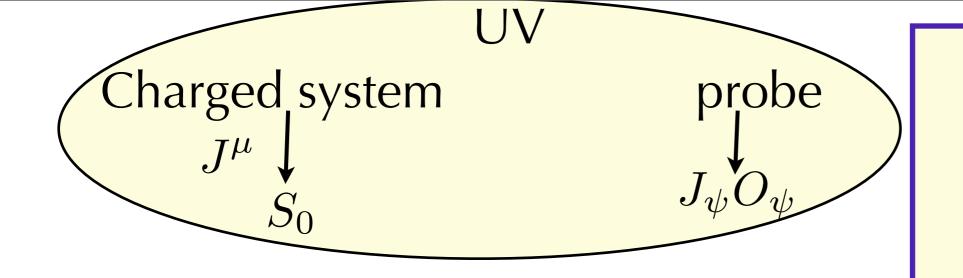
transfer
of spectral
weight to
high energies
beyond any ordering
scale

Recall, $eV = 10^4 K$

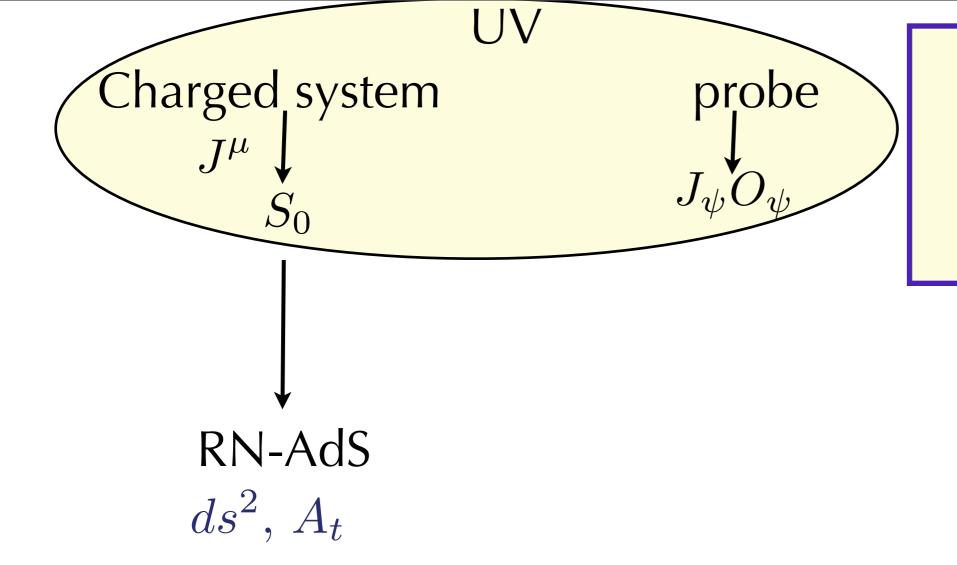
What bulk gravitational theory gives rise to a gap in ImG without `spontaneous' symmetry breaking?



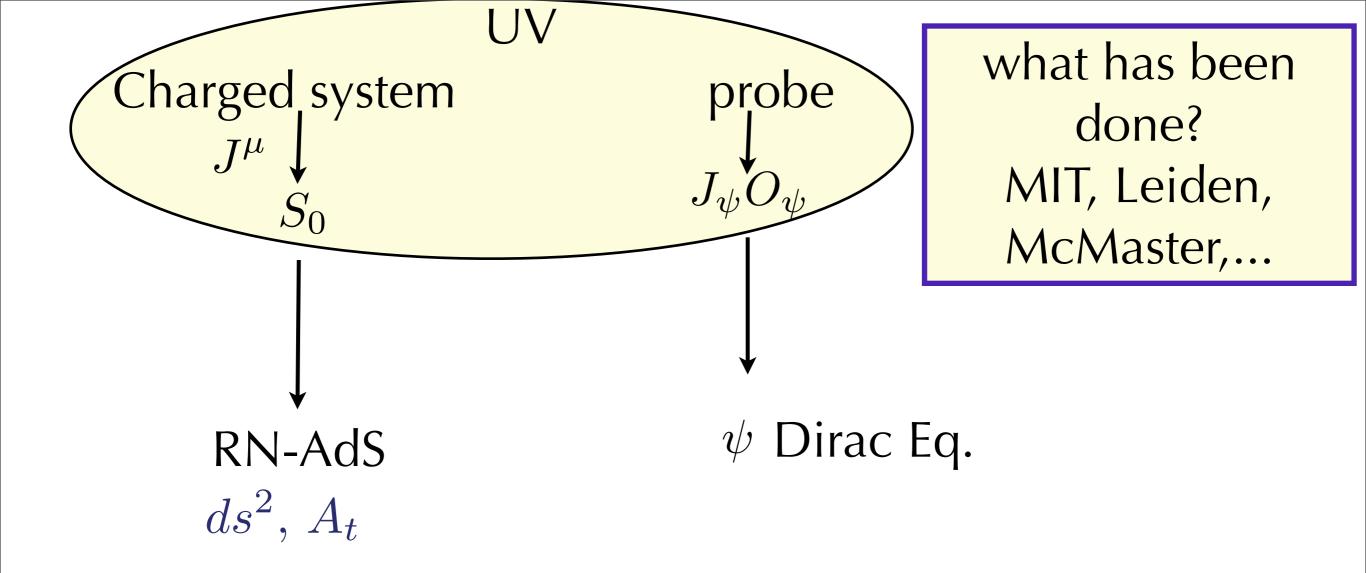
dynamically generated gap: Mott gap (for probe fermions)

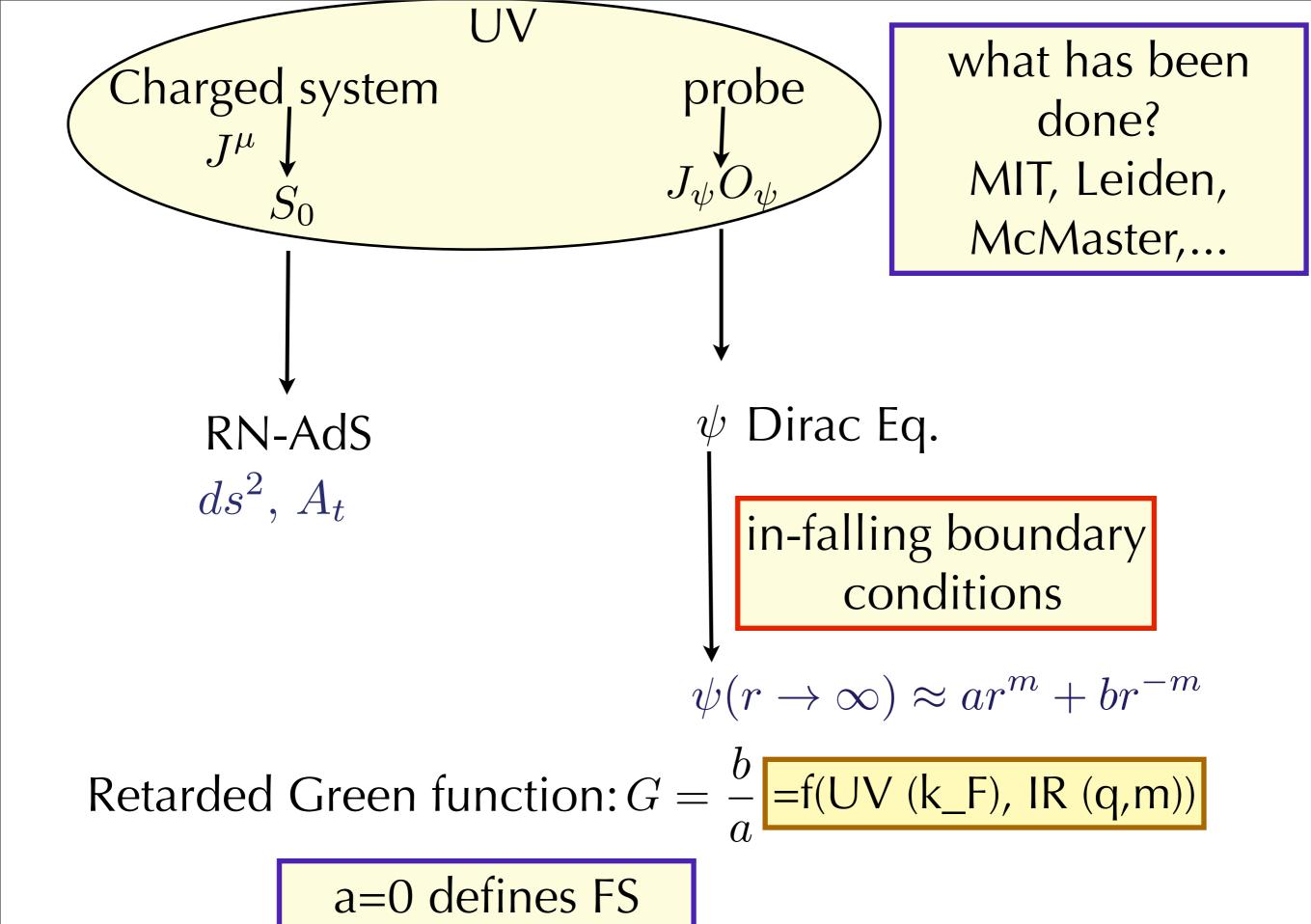


what has been done?
MIT, Leiden,
McMaster,...

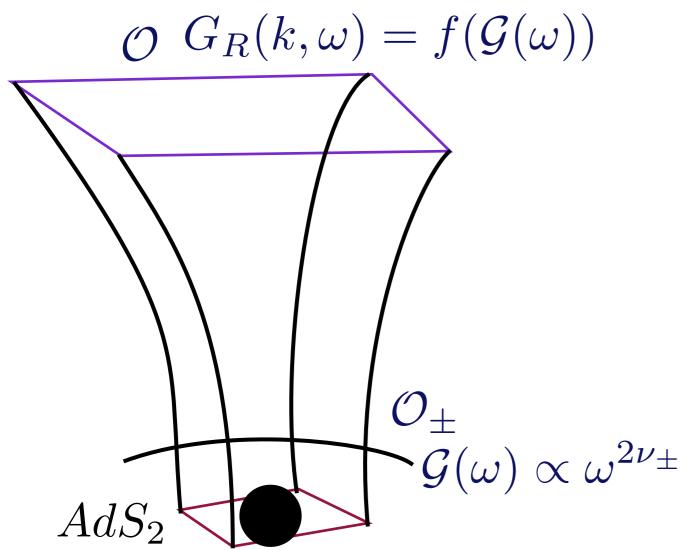


what has been done?
MIT, Leiden,
McMaster,...

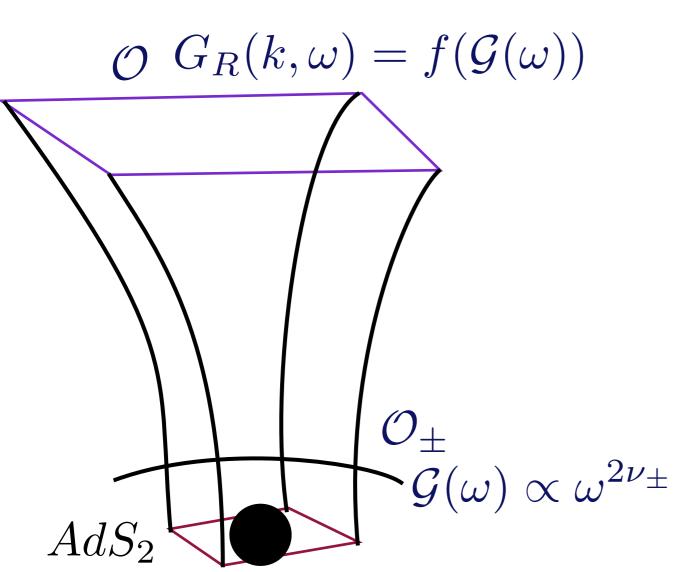




$$ds^{2} = \frac{L_{2}^{2}}{\zeta^{2}} \left(-d\tau^{2} + d\zeta^{2} \right) + \frac{r_{0}^{2}}{R^{2}} d\vec{x}$$
$$\zeta = \omega L_{2}^{2} / (r - r_{0})$$



$$ds^{2} = \frac{L_{2}^{2}}{\zeta^{2}} \left(-d\tau^{2} + d\zeta^{2} \right) + \frac{r_{0}^{2}}{R^{2}} d\vec{x}$$
$$\zeta = \omega L_{2}^{2} / (r - r_{0})$$



$$\{\vec{x}, \vec{\eta}\zeta \} \rightarrow \{\vec{x}, \lambda \tau, \lambda \zeta\}$$

$$ds^2 = \frac{L_2^2}{\zeta^2} \left(-d\tau^2 + d\zeta^2\right) + \frac{r_0^2}{R^2} d\vec{x}$$

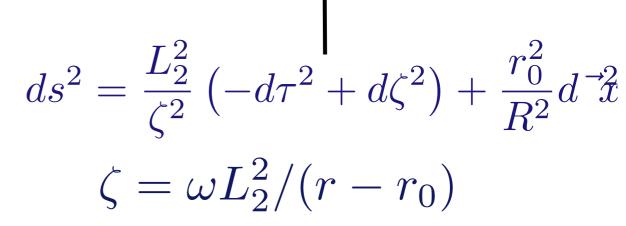
$$\zeta = \omega L_2^2 / (r - r_0)$$

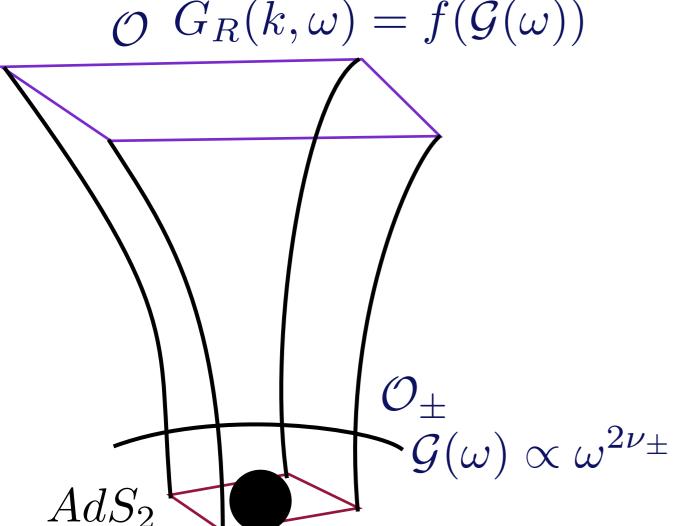
finite T=0 entropy

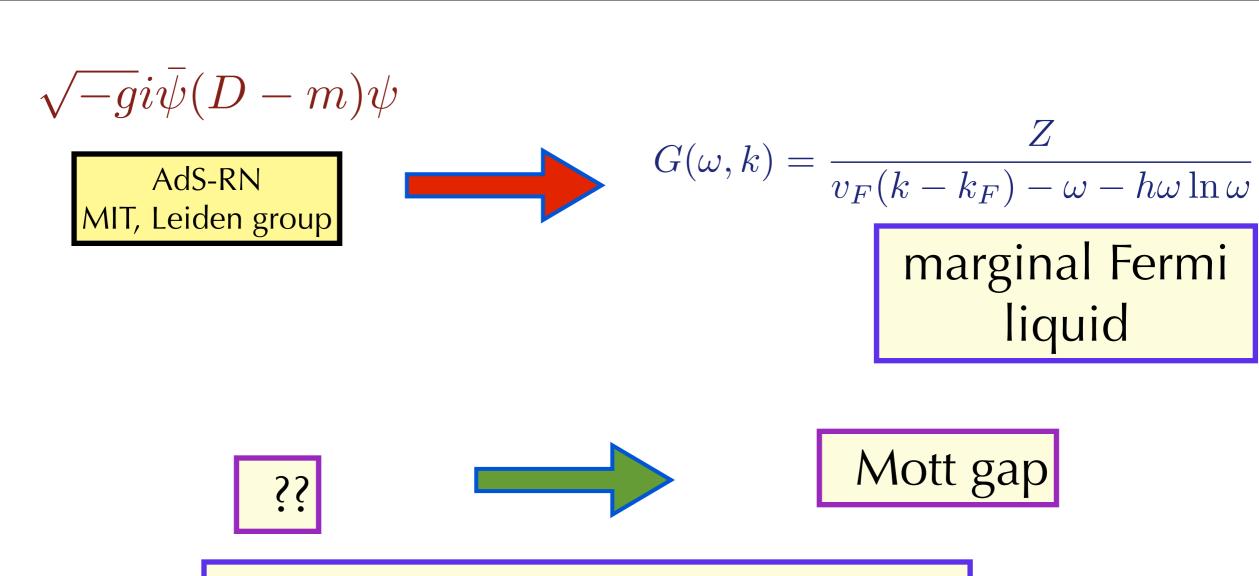
$$S \propto T^{2/z} \neq 0 \quad T \to 0$$

$$\vec{x} \to \lambda^{(1/z = \infty)} \vec{x} = \vec{x}$$

$$\{\vec{x}, \vec{\eta}\} \rightarrow \{\vec{x}, \lambda \tau, \lambda \zeta\}$$







How to Destroy the Fermi surface?

decoherence

$$\sqrt{-g}i\bar{\psi}(D-m)\psi$$

AdS-RN MIT, Leiden group

$$G(\omega, k) = \frac{Z}{v_F(k - k_F) - \omega - h\omega \ln \omega}$$

marginal Fermi liquid

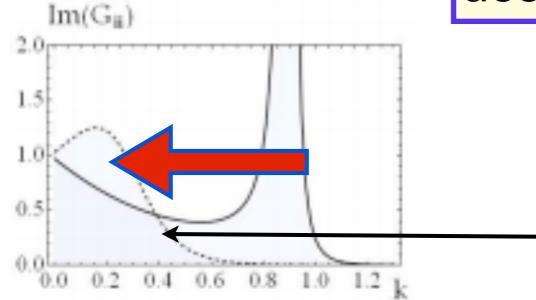
??



Mott gap

How to Destroy the Fermi surface?

decoherence



log-oscillatory regime

$$S_{\text{probe}}(\psi, \bar{\psi}) = \int d^d x \sqrt{-g} i \bar{\psi} (\Gamma^M D_M - m + \cdots) \psi$$

$$S_{\text{probe}}(\psi, \bar{\psi}) = \int d^d x \sqrt{-g} i \bar{\psi} (\Gamma^M D_M - m + \dot{\psi}) \psi$$

what is hidden here?

$$S_{\text{probe}}(\psi, \bar{\psi}) = \int d^d x \sqrt{-g} i \bar{\psi} (\Gamma^M D_M - m + \mathbf{y} \cdot) \psi$$

what is hidden here?

$$F_{\mu\nu}\Gamma^{\mu\nu}$$
 consider
$$\sqrt{-g}i\bar{\psi}(\not\!\!D-m-ip\not\!\!F)\psi$$

$$S_{\mathrm{probe}}(\psi,\bar{\psi}) = \int d^dx \sqrt{-g} i \bar{\psi} (\Gamma^M D_M - m + \cdot \cdot \cdot) \psi$$
 what is hidden here?

 $F_{\mu\nu}\Gamma^{\mu\nu}$ consider $\sqrt{-g}i\bar{\psi}(\not\!\!D-m-ip\not\!\!F)\psi$

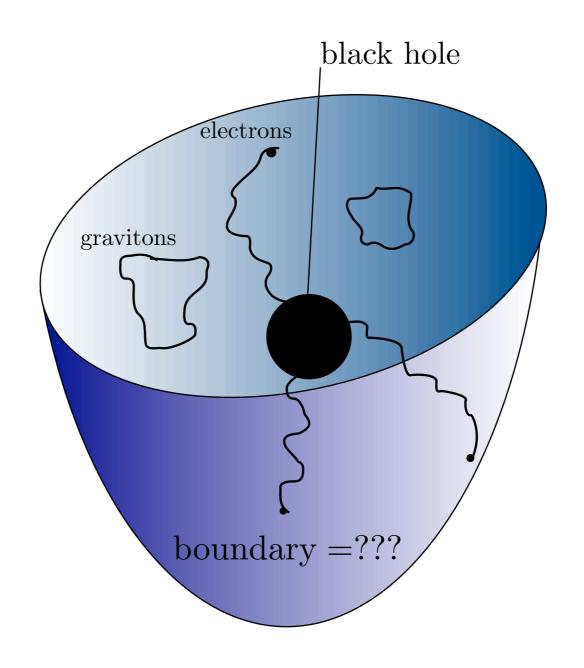
QED anomalous magnetic moment of an electron (Schwinger 1949)

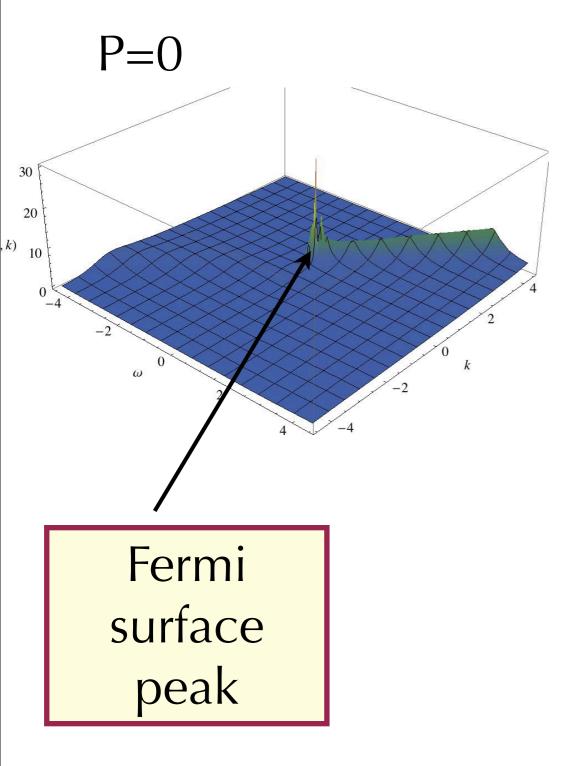
$$S_{\text{probe}}(\psi,\bar{\psi}) = \int d^dx \sqrt{-g} i \bar{\psi} (\Gamma^M D_M - m + \cdot \cdot \cdot) \psi$$
 what is hidden here?

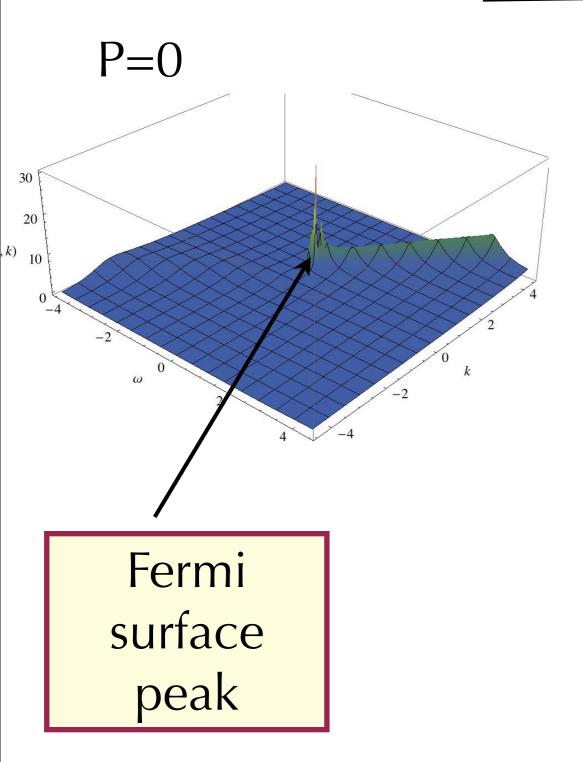
$$F_{\mu\nu}\Gamma^{\mu\nu}$$
 consider
$$\sqrt{-g}i\bar{\psi}(\not\!\!D-m-ip\not\!\!F)\psi$$

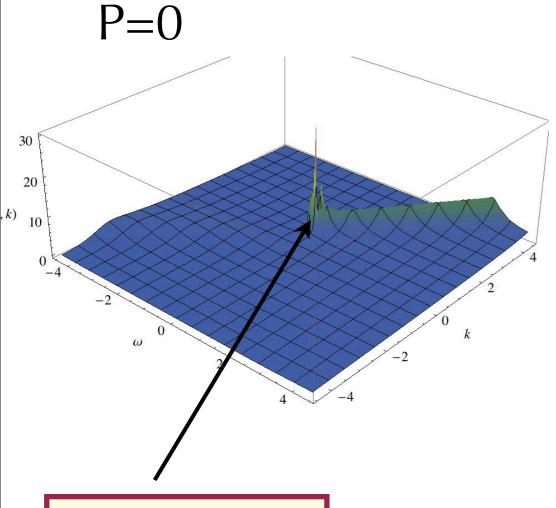
QED anomalous magnetic moment of an electron (Schwinger 1949)

fermions in RN Ads_{d+1} coupled to a gauge field through a dipole interaction









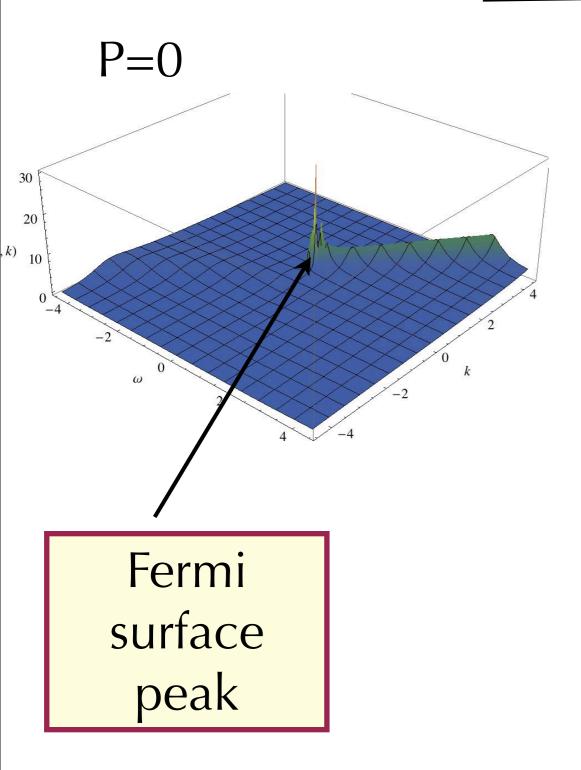
peak

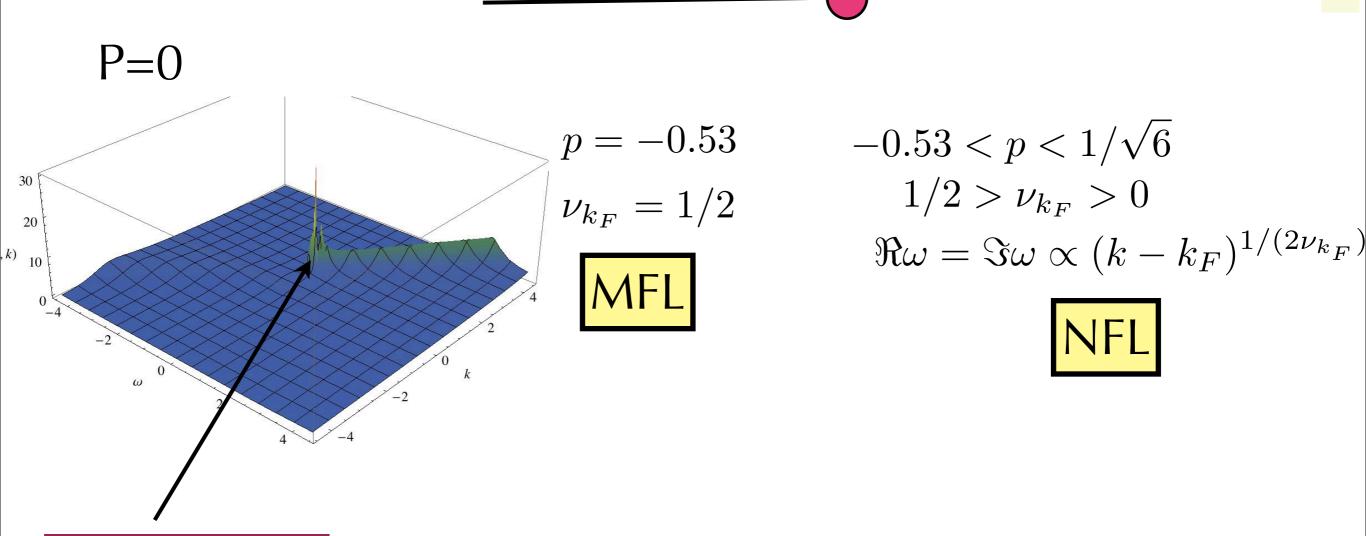
$$-1.54
$$1 > \nu_{k_F} > 1/2$$

$$\Re \omega \propto k - k_F$$

$$\Im \omega \propto (k - k_F)^{2\nu_{k_F}}$$$$

Fermi surface `Fermi Liquid'



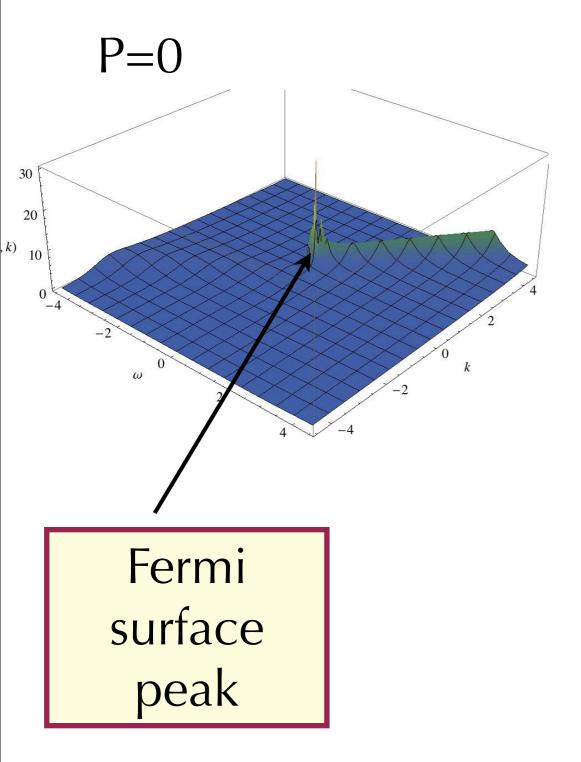


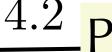
Fermi

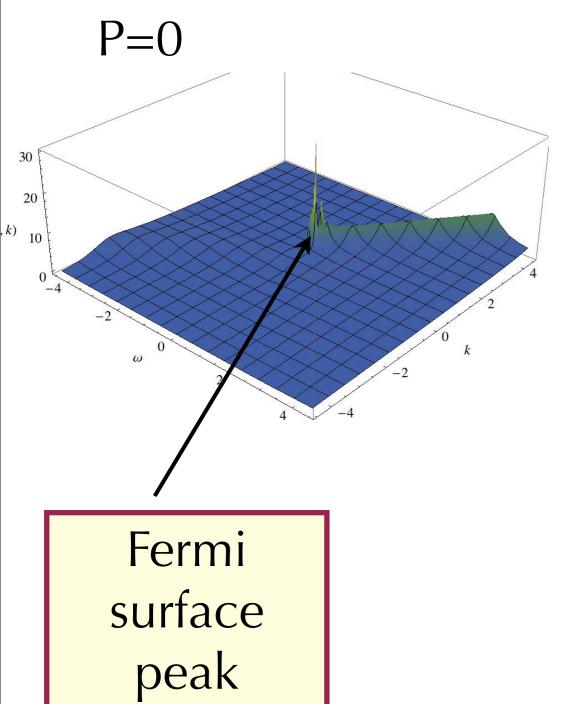
surface

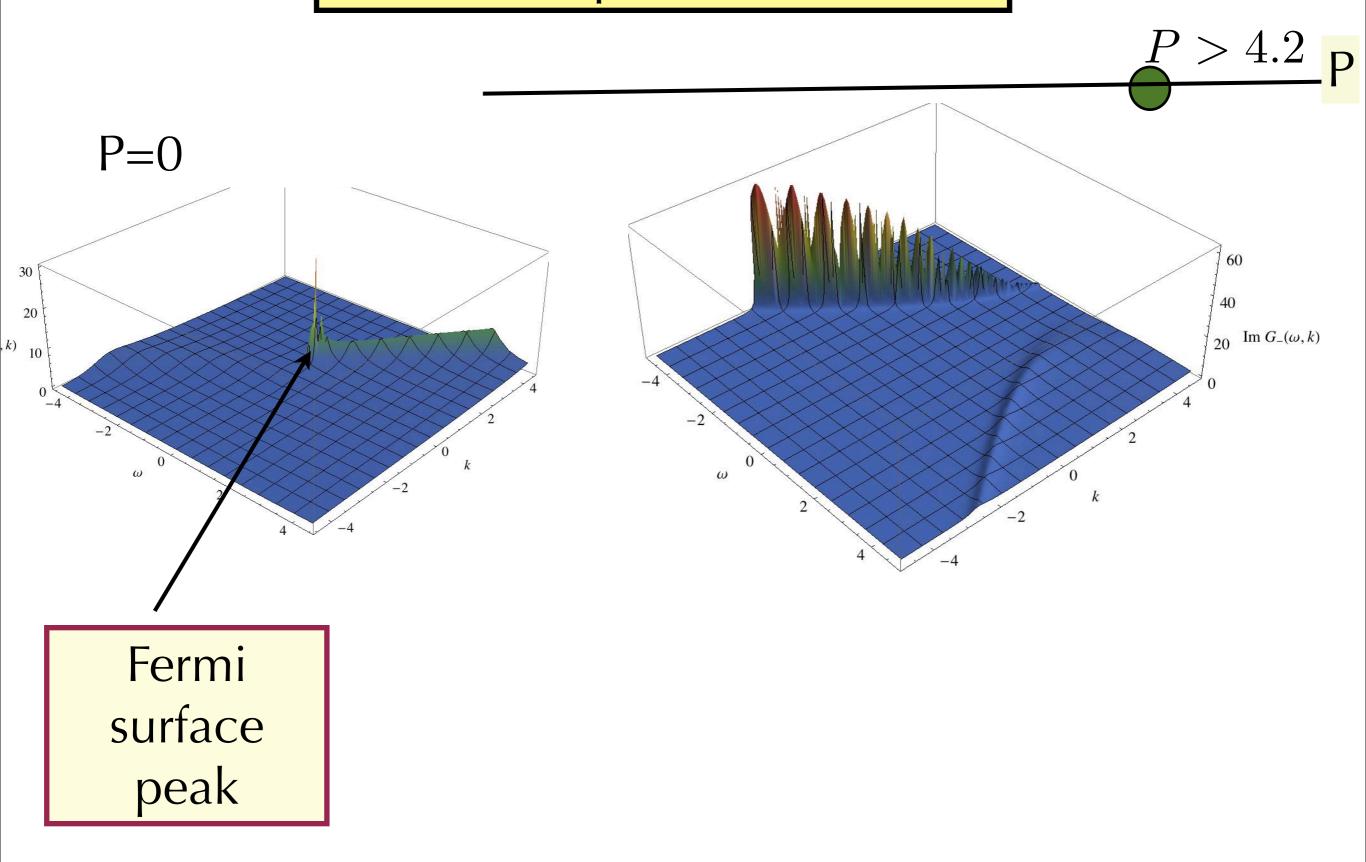
peak

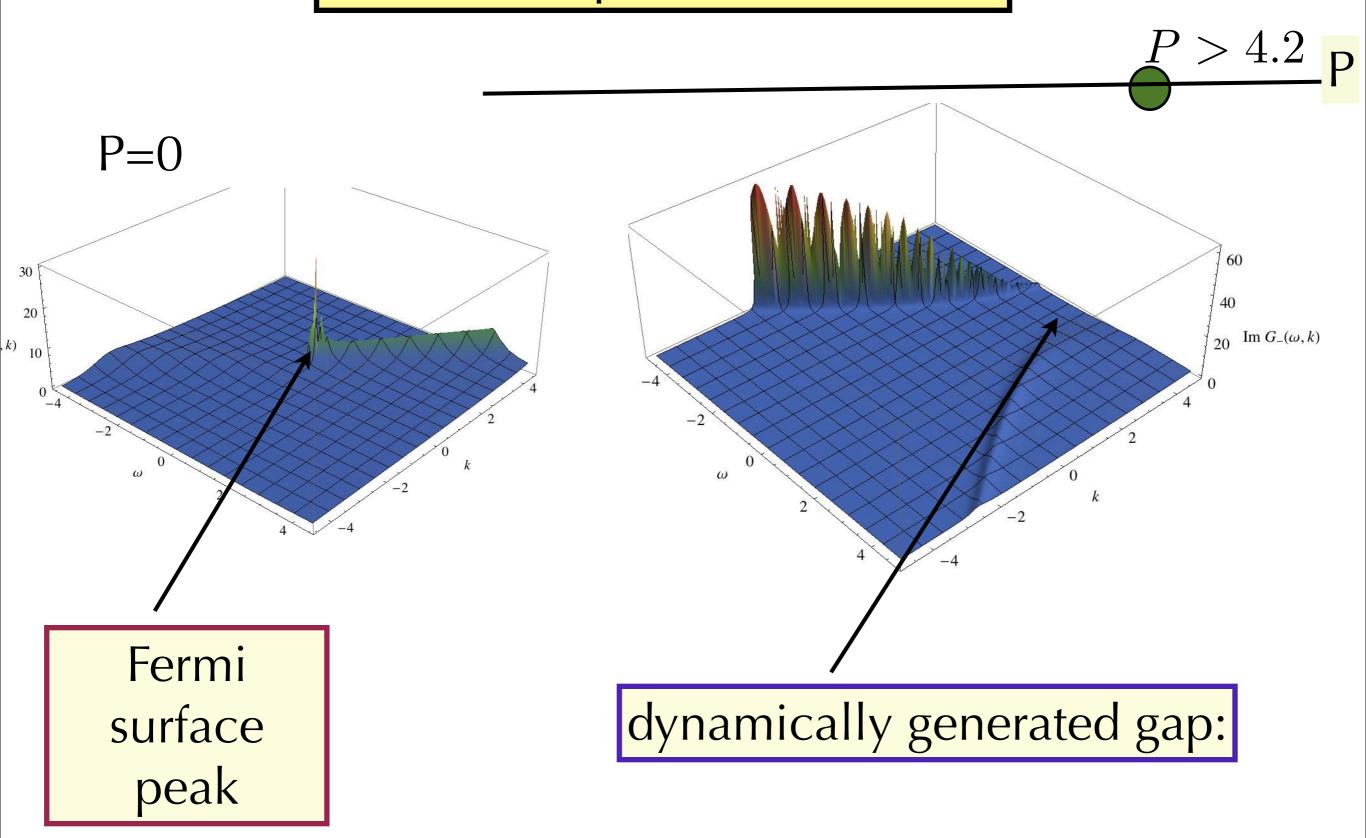
55

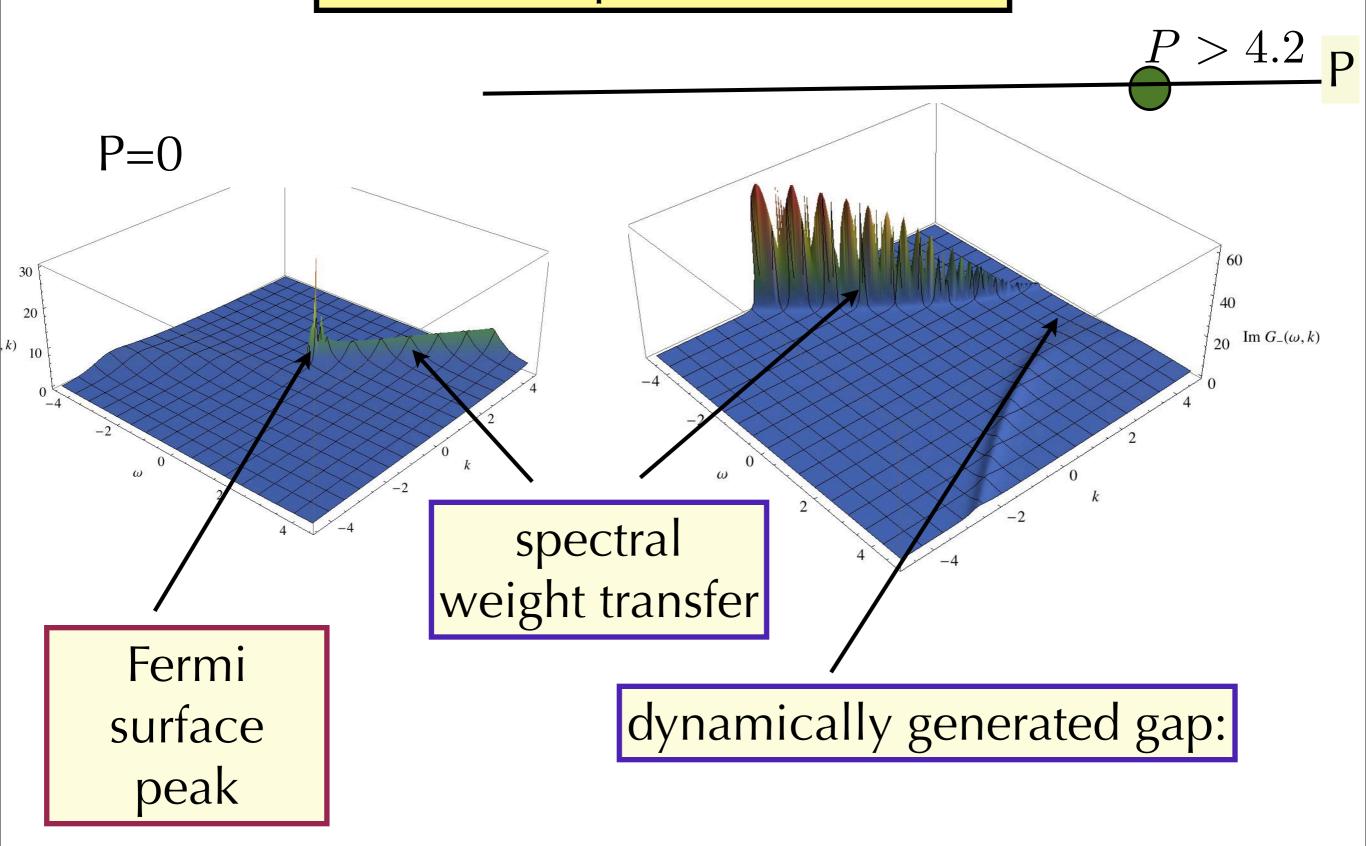


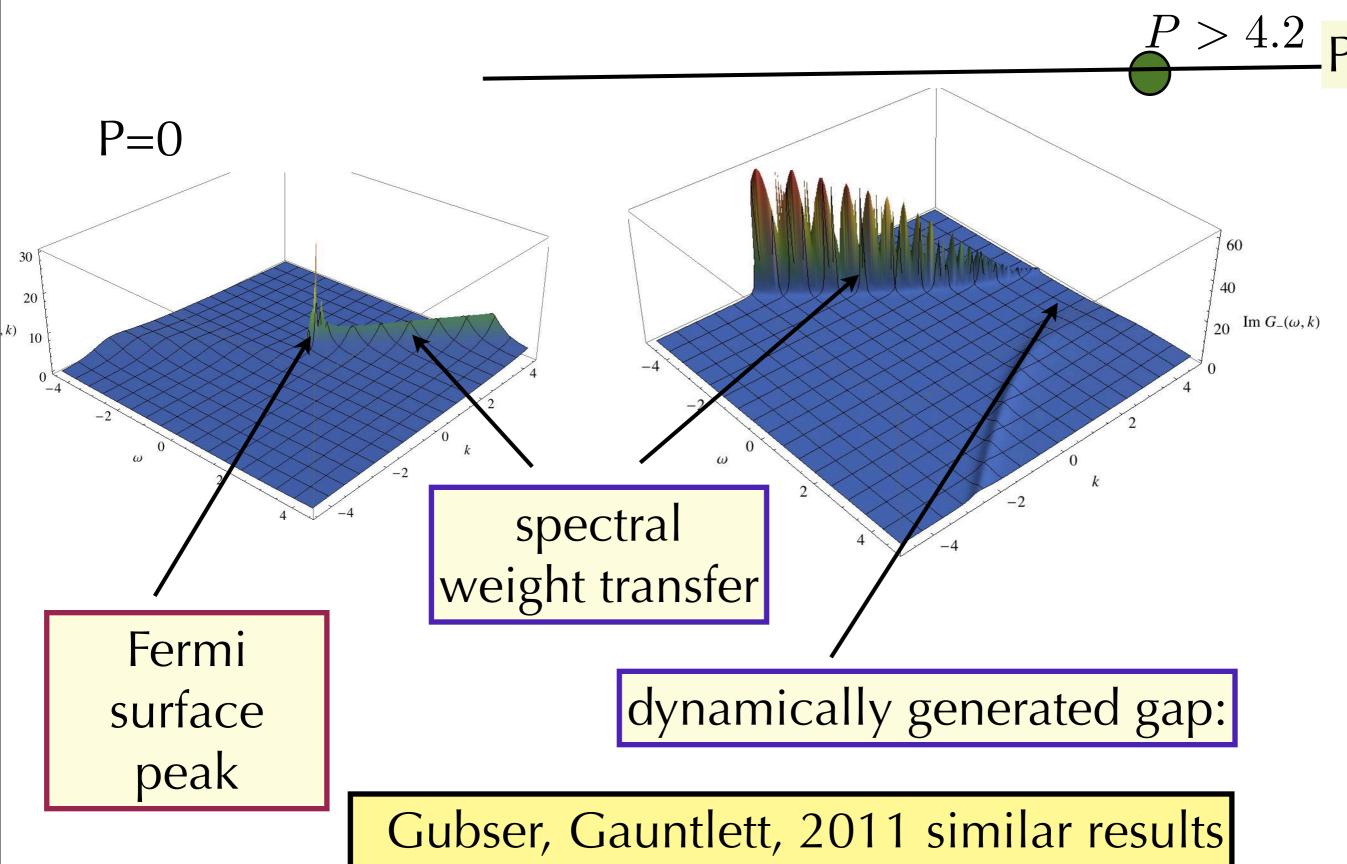


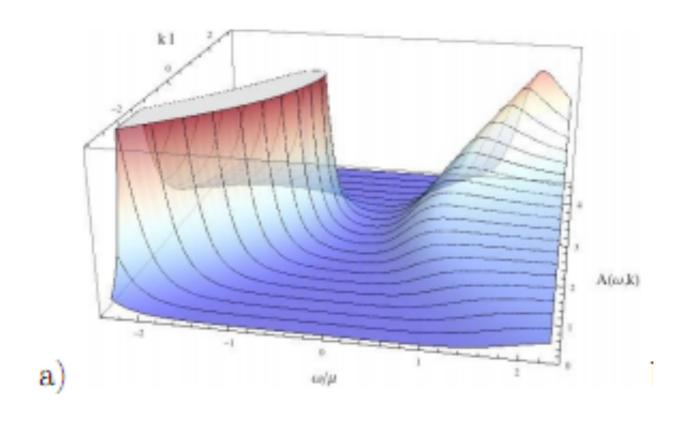


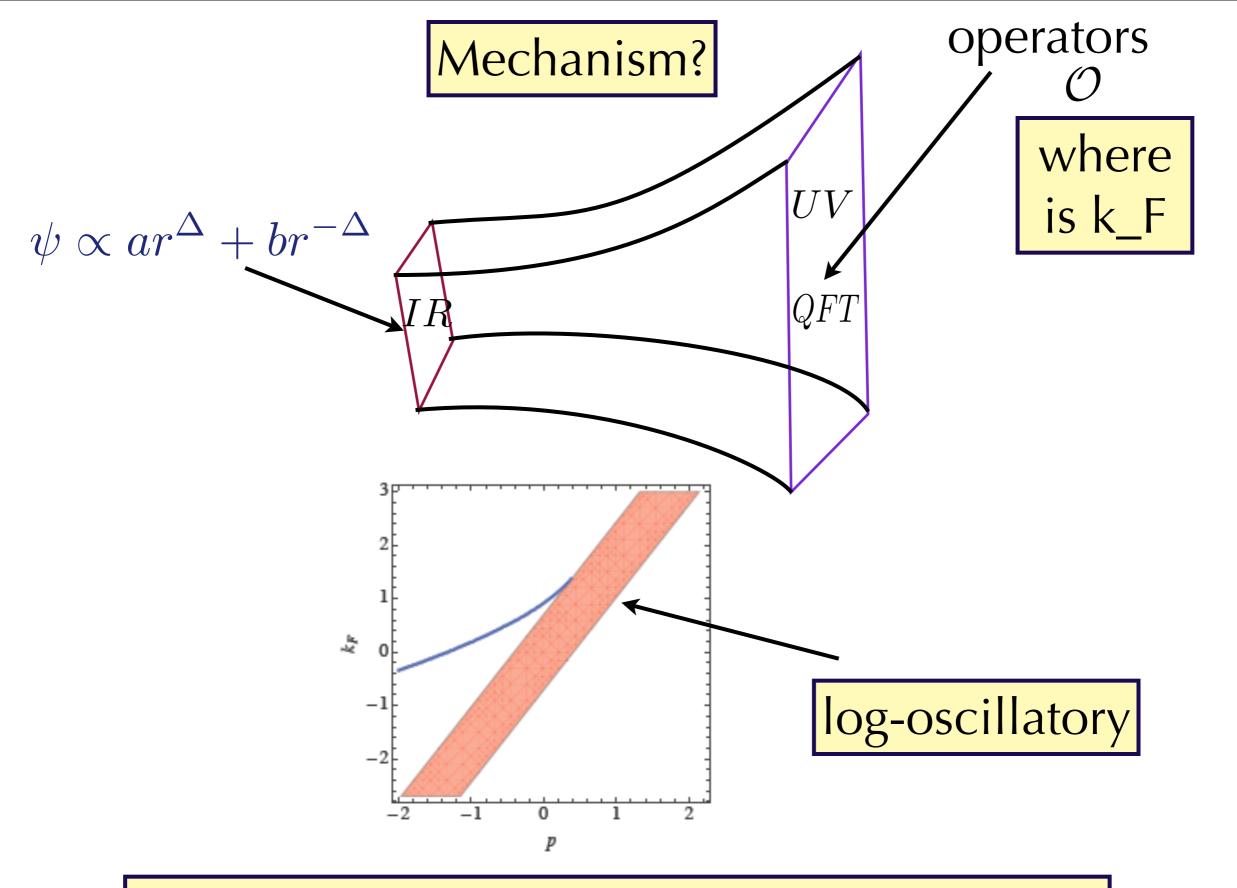












k_F moves into log-oscillatory region: IR \mathcal{O}_{\pm} acquires a complex dimension

near horizon

radial Dirac Equation

$$\psi_{I\pm}(\zeta) = \psi_{I\pm}^{(0)}(\zeta) + \omega \, \psi_{I\pm}^{(1)}(\zeta) + \omega^2 \psi_{I\pm}^{(2)}(\zeta) + \cdots$$

$$-\psi_{I\pm}^{(0)"}(\zeta) = i\sigma_2 \left(1 + \frac{qe_d}{\zeta}\right) - \frac{L_2}{\zeta} \left[m\sigma_3 + \left(pe_d \pm \frac{kL}{r_0}\right)\sigma_1\right] \psi_{I\pm}^{(0)}(\zeta),$$

$$e_d = 1/\sqrt{2d(d-1)}$$

$$m_k^2 = m^2 + \left(pe_d \pm \frac{kL}{r_0}\right)^2$$

p: time-reversal breaking mass term (in bulk)

$$\nu_k^{\pm} = \sqrt{m_{k\pm}^2 L_2^2 - q^2 e_d^2 - i\epsilon, \delta} \quad \pm = \nu_k^{\pm} + 1/2$$

near horizon

radial Dirac Equation

$$\psi_{I\pm}(\zeta) = \psi_{I\pm}^{(0)}(\zeta) + \omega \, \psi_{I\pm}^{(1)}(\zeta) + \omega^2 \psi_{I\pm}^{(2)}(\zeta) + \cdots$$

$$-\psi_{I\pm}^{(0)"}(\zeta) = i\sigma_2 \left(1 + \frac{qe_d}{\zeta}\right) - \frac{L_2}{\zeta} \left[m\sigma_3 + \left(pe_d \pm \frac{kL}{r_0}\right)\sigma_1\right] \psi_{I\pm}^{(0)}(\zeta),$$

$$e_d = 1/\sqrt{2d(d-1)}$$

$$m_k^2 = m^2 + \left(pe_d \pm \frac{kL}{r_0}\right)^2$$

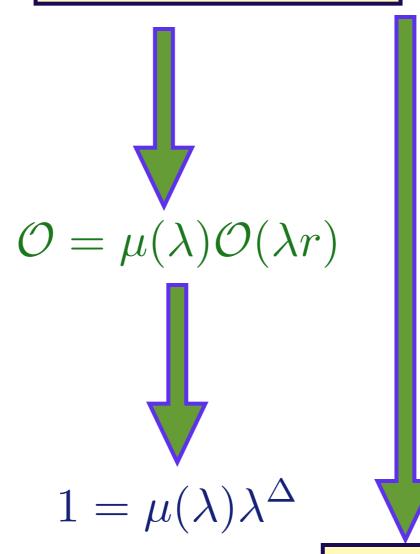
p: time-reversal breaking mass term (in bulk)

$$\nu_k^{\pm} = \sqrt{m_{k\pm}^2 L_2^2 - q^2 e_d^2 - i\epsilon, \delta} \quad \pm = \nu_k^{\pm} + 1/2$$

scaling dimension is complex!

What does a complex scaling dimension mean?

continuous scale invariance



$$\Delta = -\frac{\ln \mu}{\ln \lambda}$$

 Δ is real, independent of scale

what about complex Δ

$$1 = \mu \lambda^{\Delta}$$

$$e^{2\pi in} = 1 = \mu \lambda^{\Delta}$$

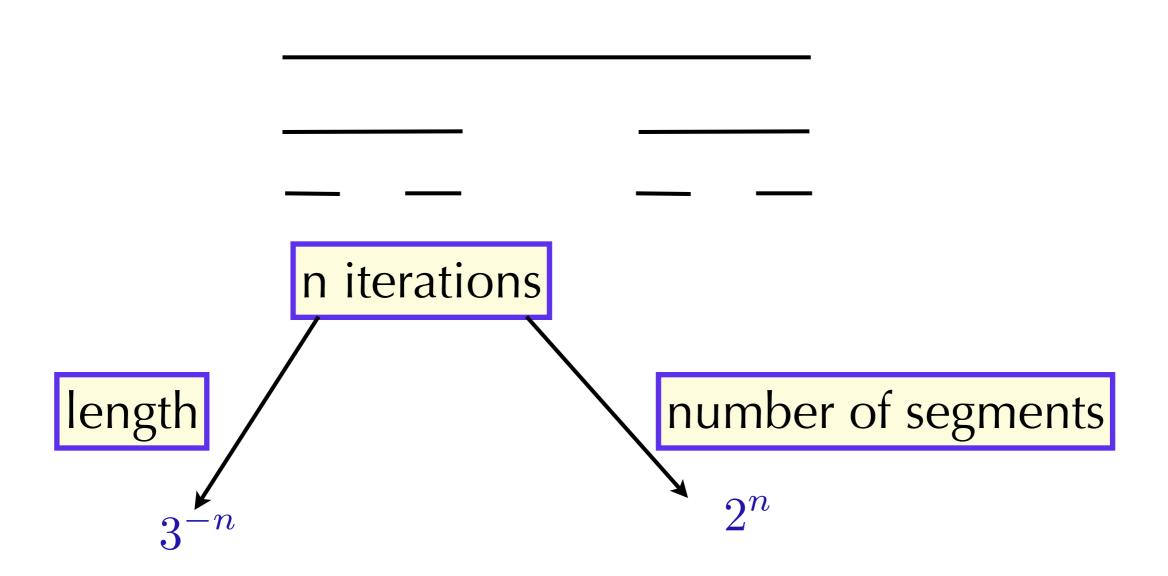
Discrete scale invariance (DSI)

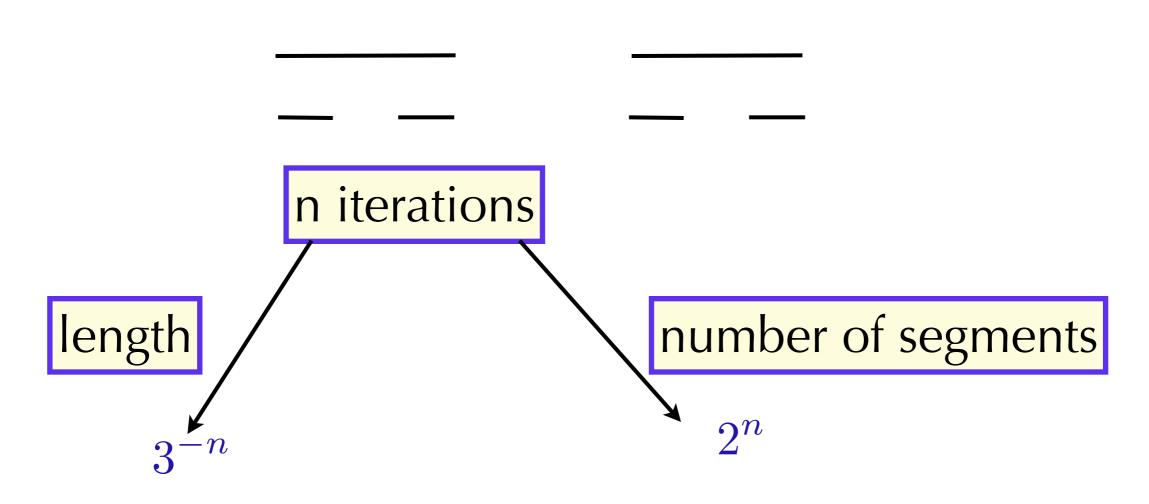
Discrete scale invariance (DSI)

scaling dimension depends on scale

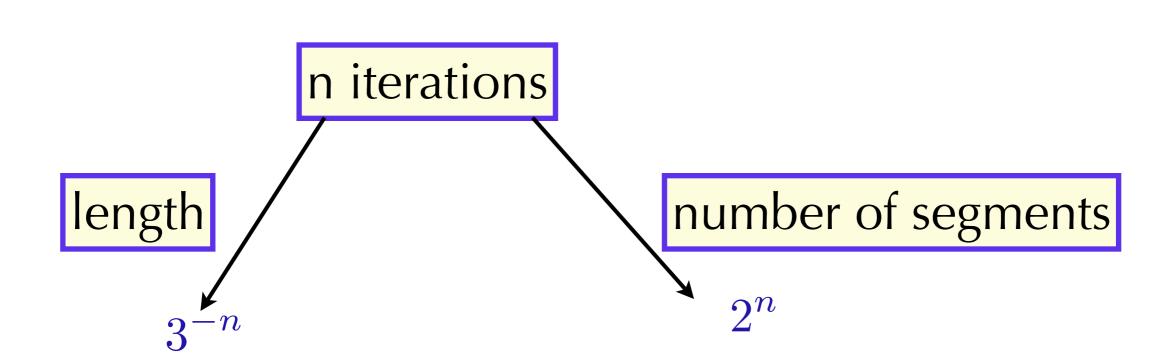
$$\lambda_n = \lambda^n$$
magnification

example





scale invariance only for $\lambda_p = 3^p$



scale invariance only for $\lambda_p = 3^p$

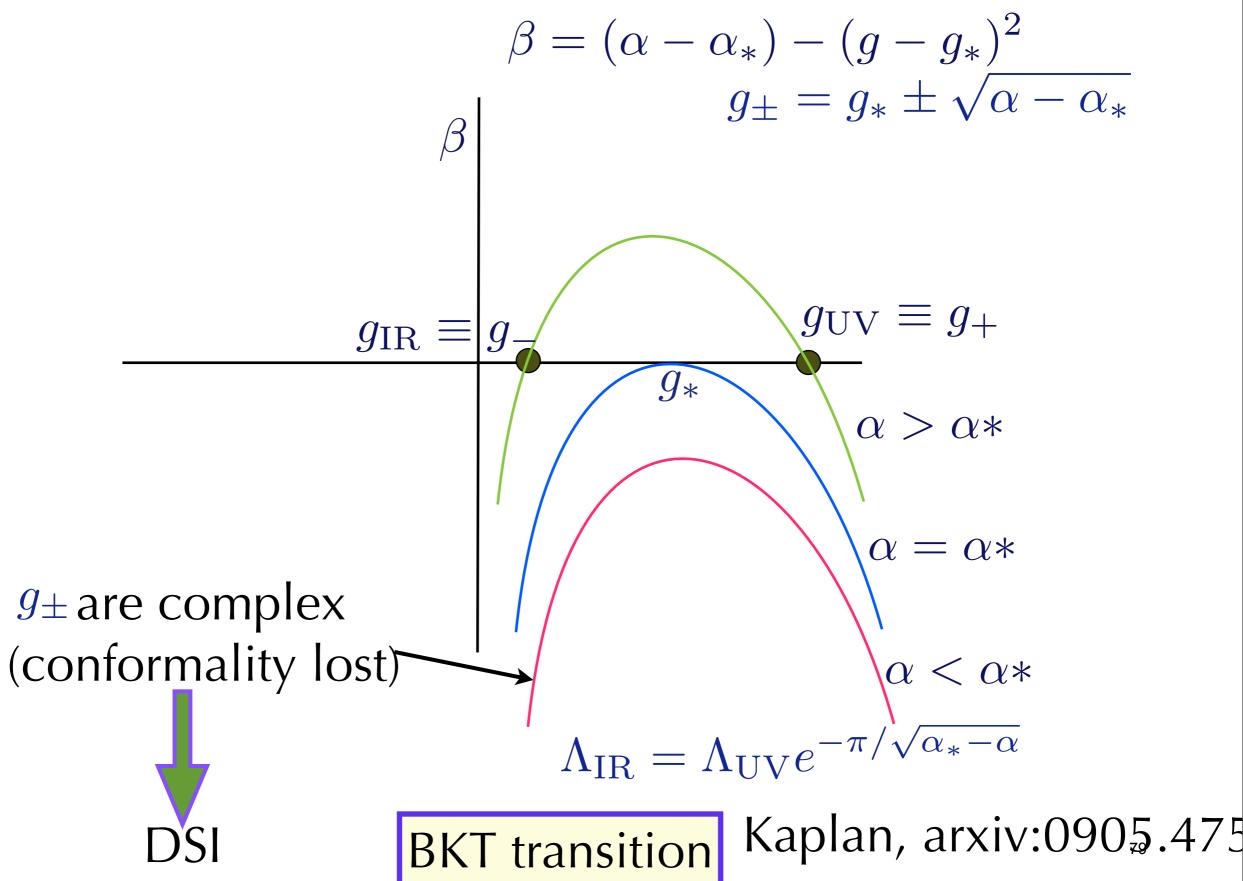
discrete scale invariance:

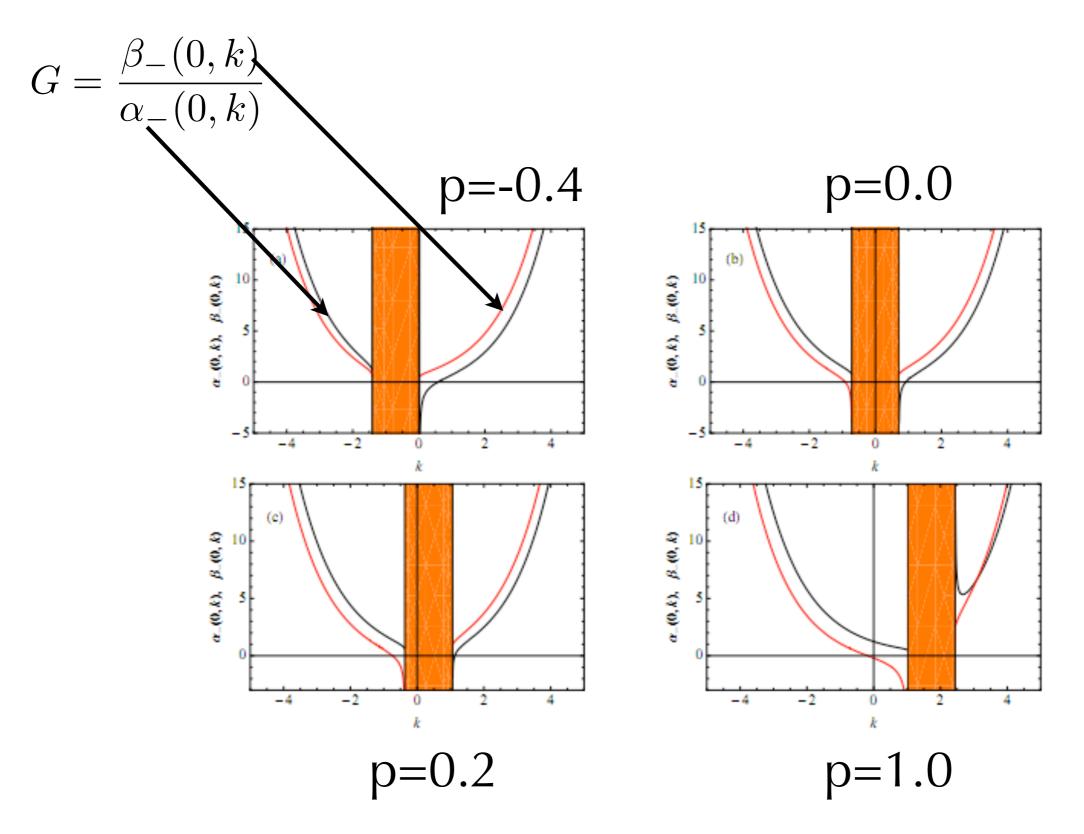
$$D = -\frac{\ln 2}{\ln 3} + \frac{2\pi in}{\ln 3}$$

discrete scale invariance

hidden scale (length, energy,...)

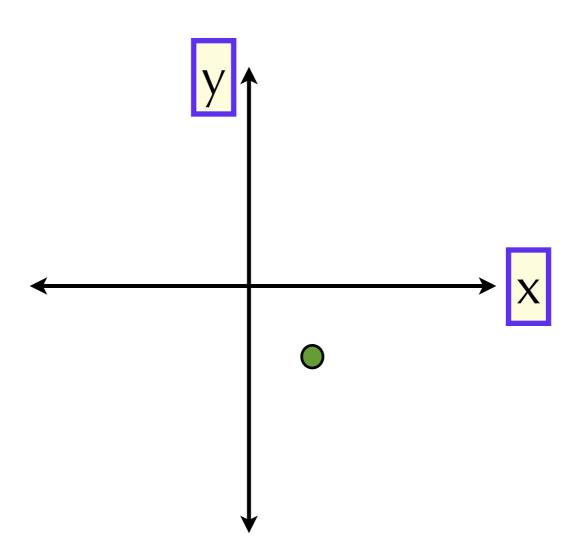
toy model: merging of UV and IR fixed points

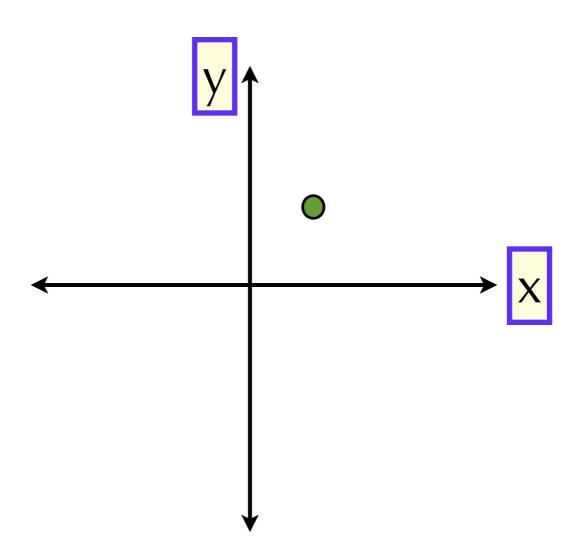


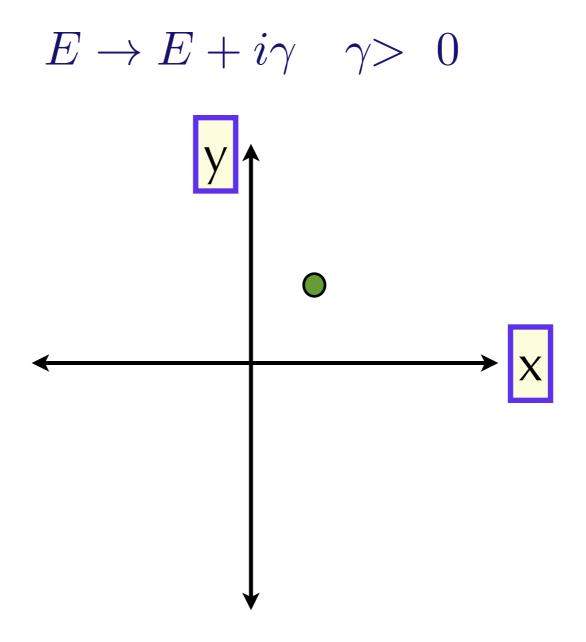


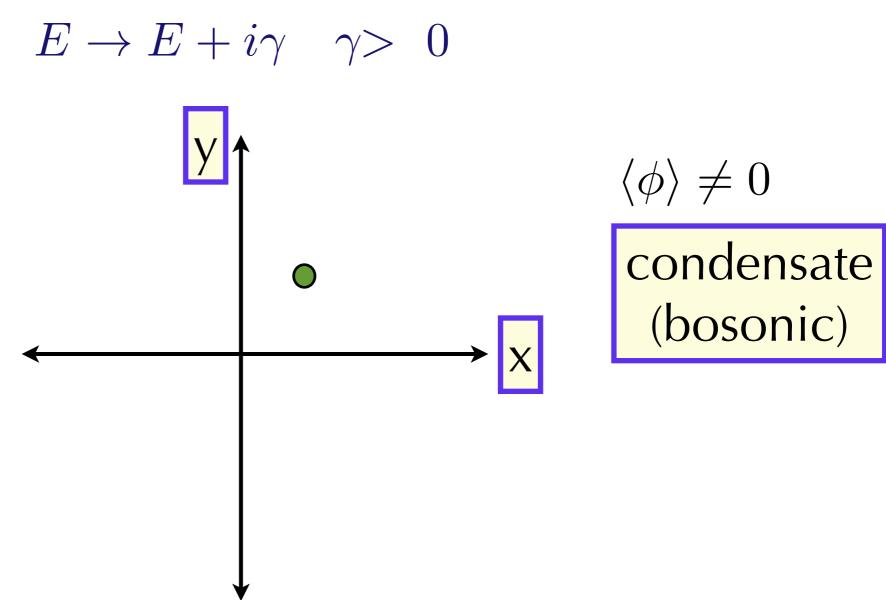
no poles outside log-oscillatory region for $p > 1/\sqrt{6}$

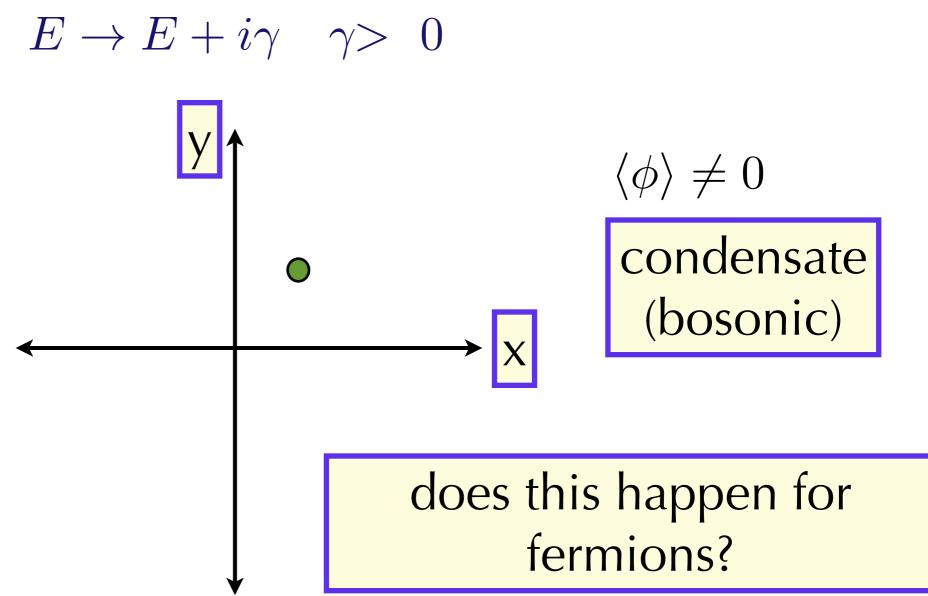
Mott physics and DSI are linked!



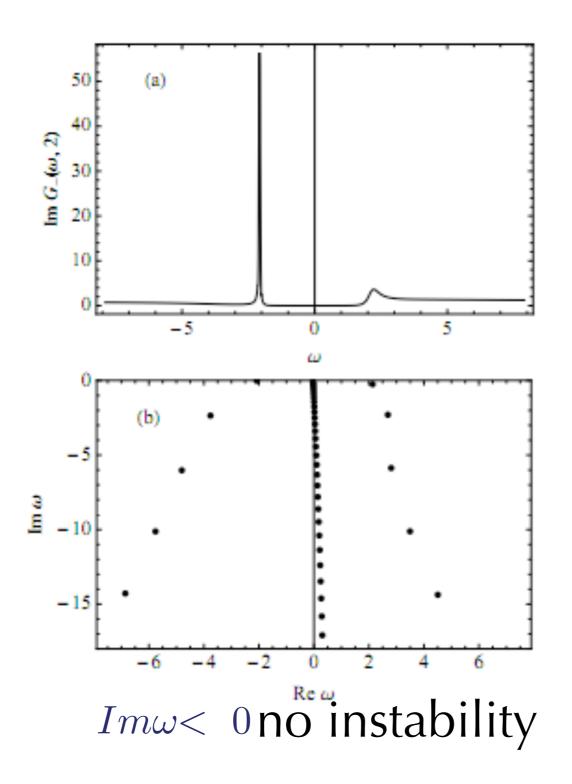




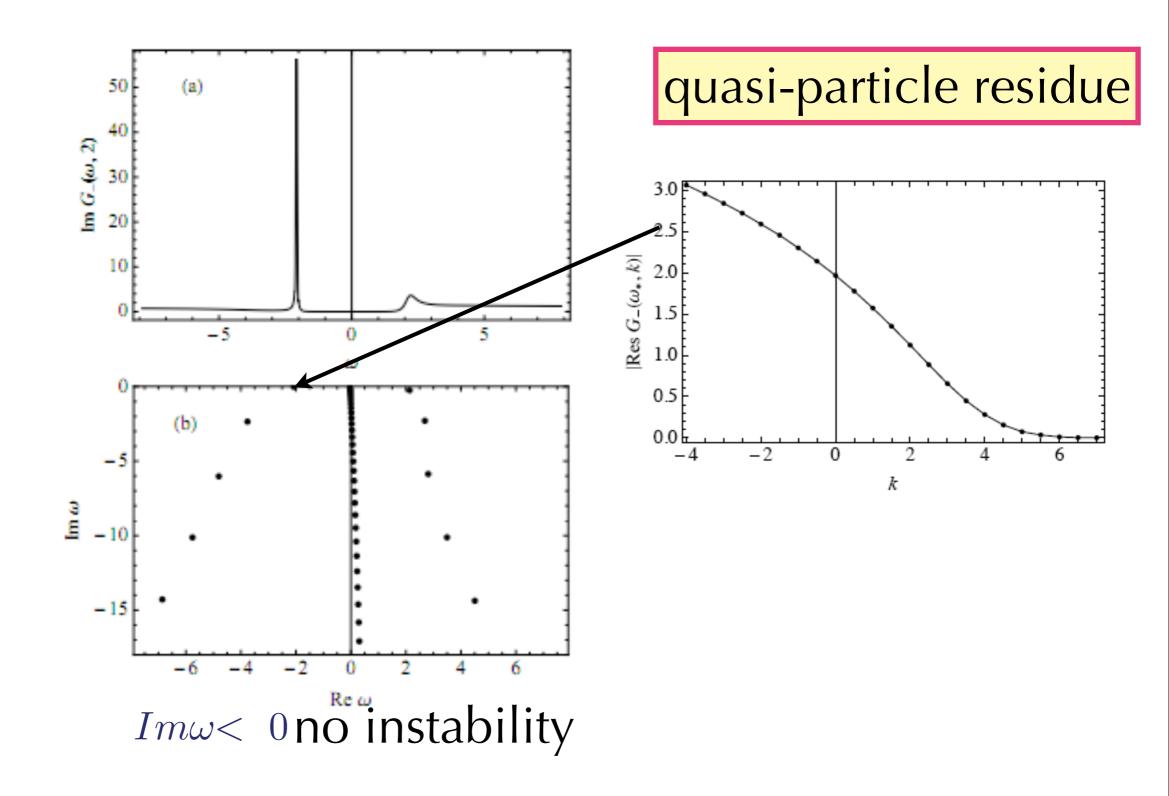




quasi-normal modes

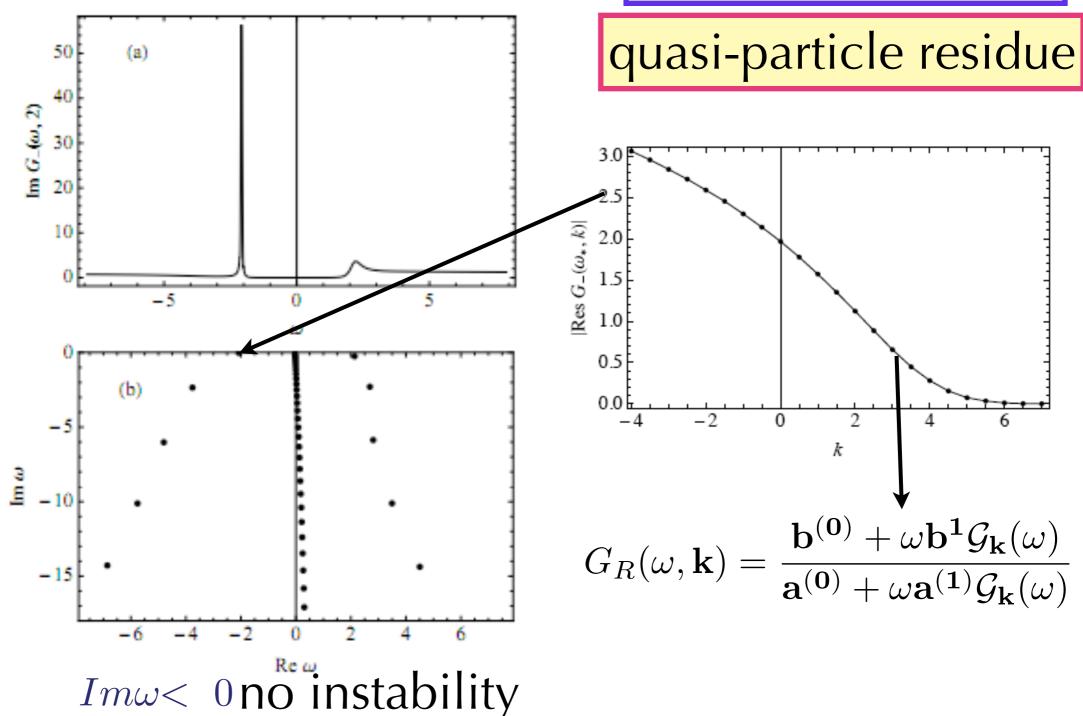


quasi-normal modes

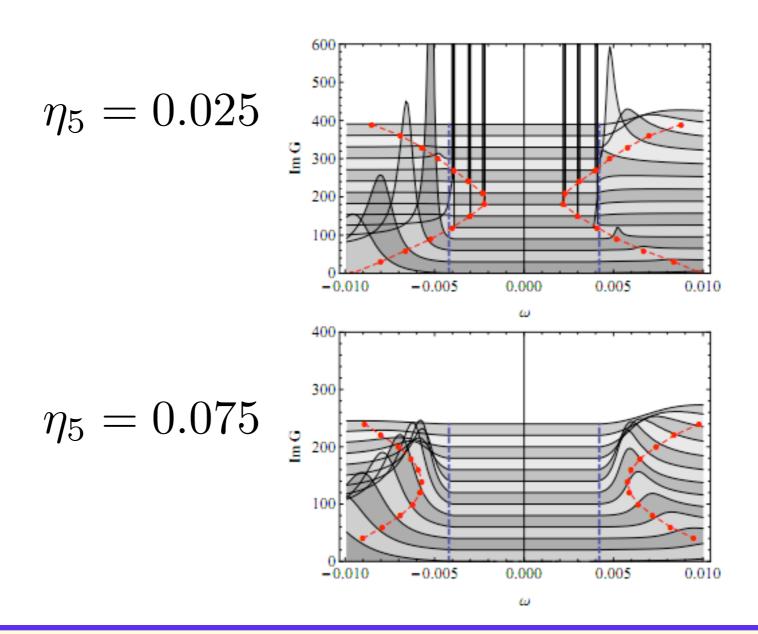


quasi-normal modes

but the residue drops to zero: opening of a gap

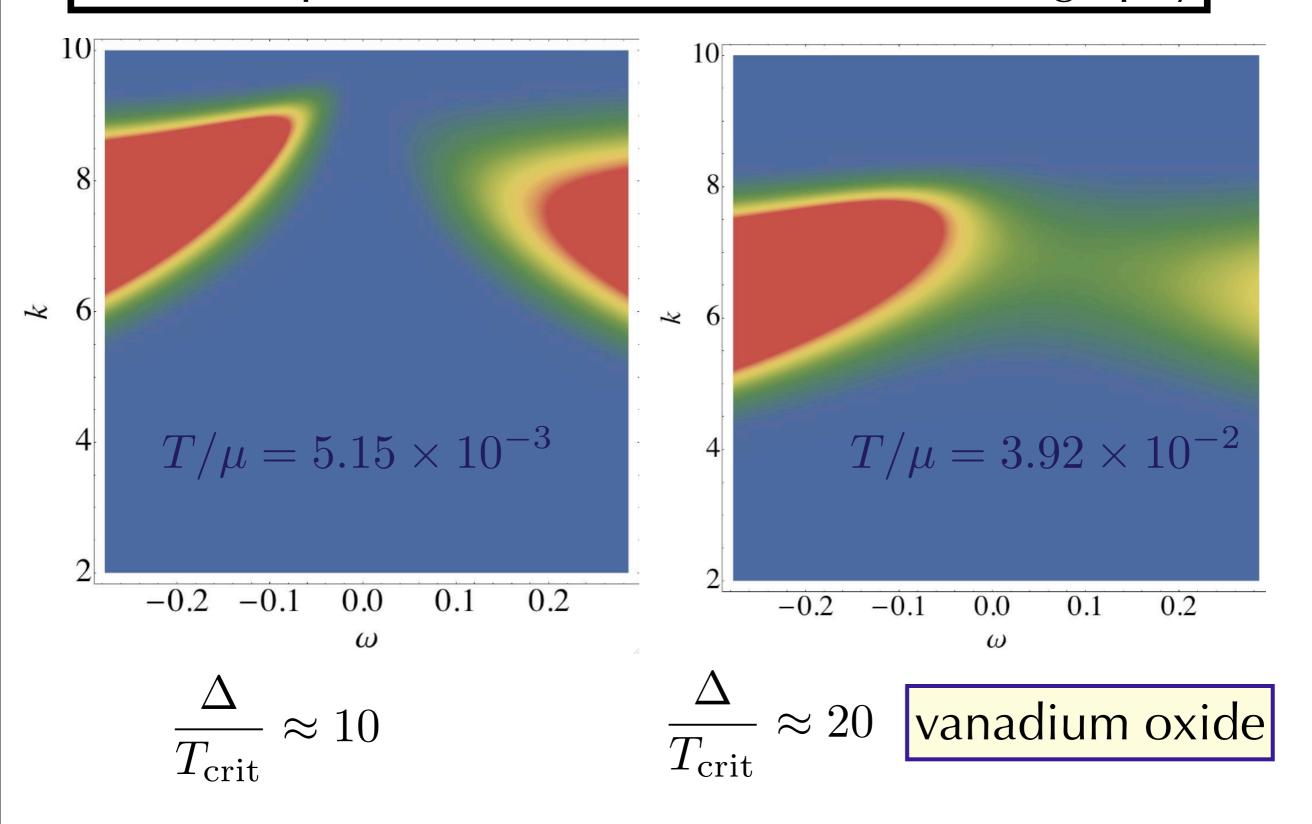


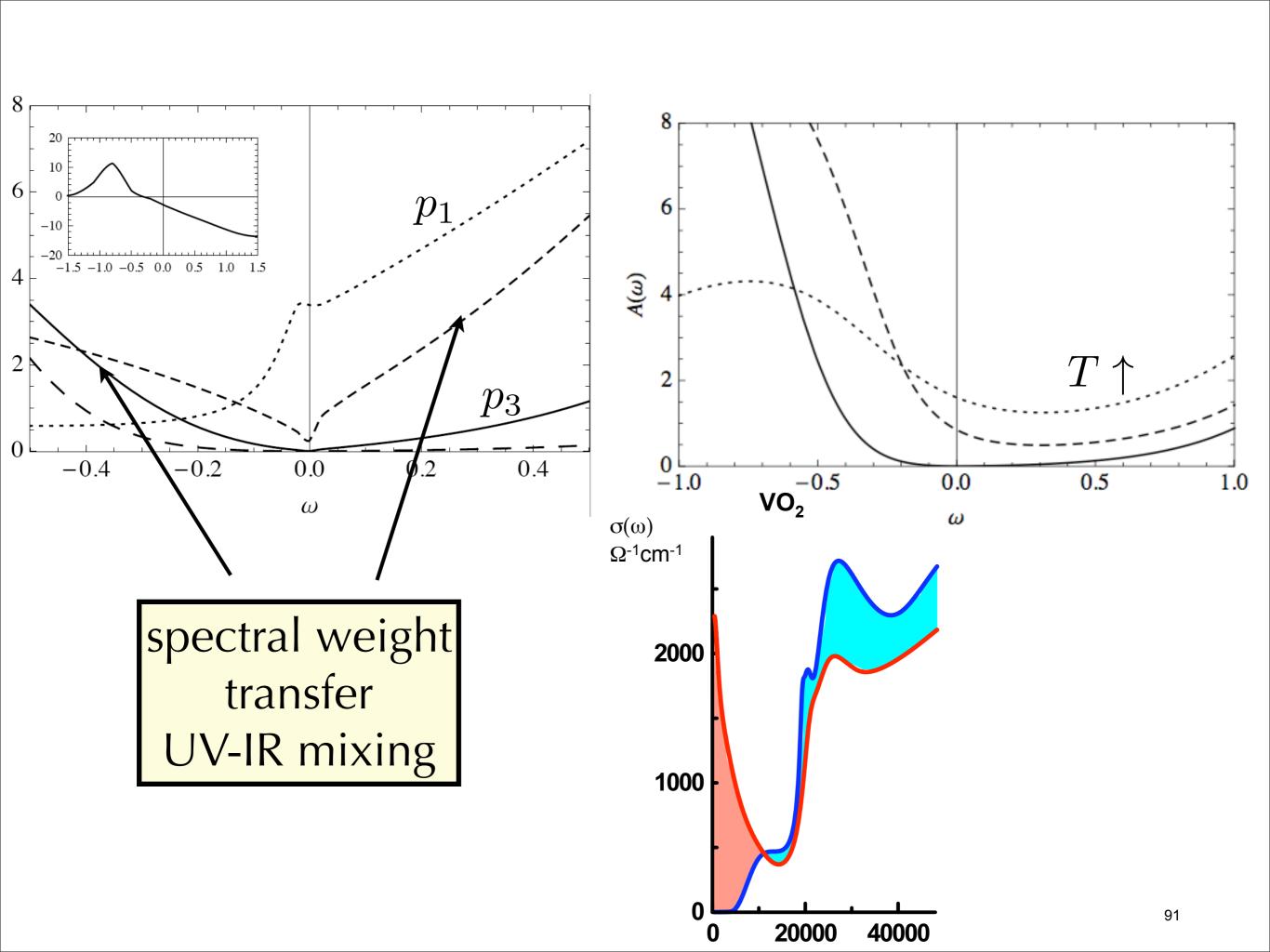
$$S(\varphi) + S_D(\zeta) + \eta_5 \int d^{d+1}x \sqrt{-g} \varphi \bar{\zeta} C \Gamma^5 \bar{\zeta}^T + cc$$

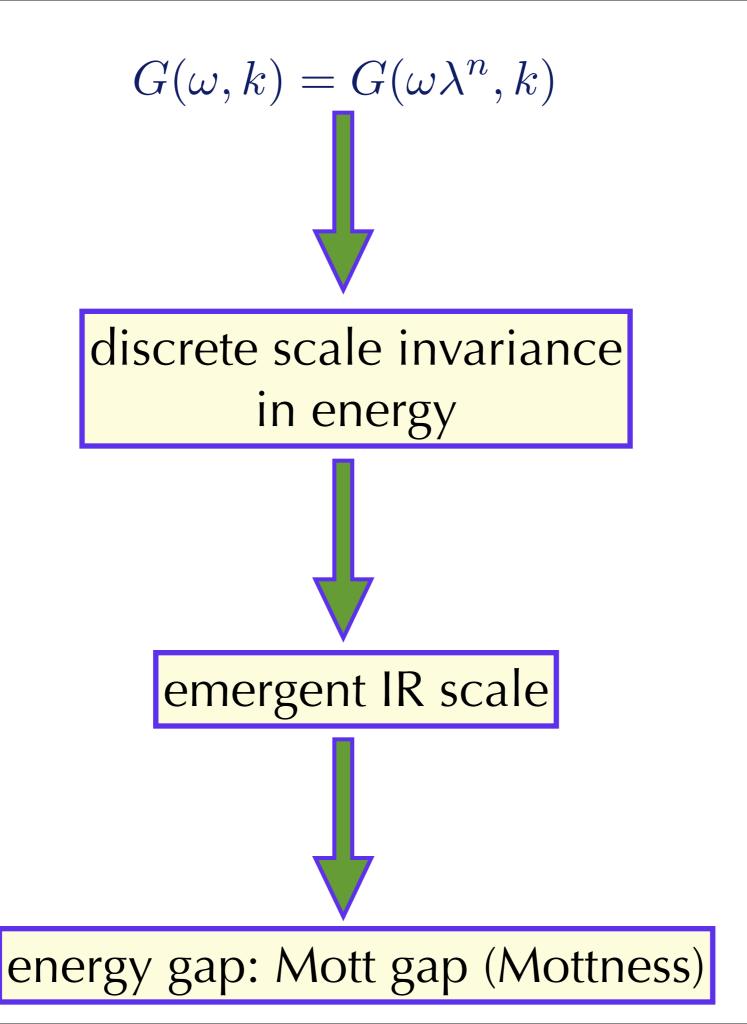


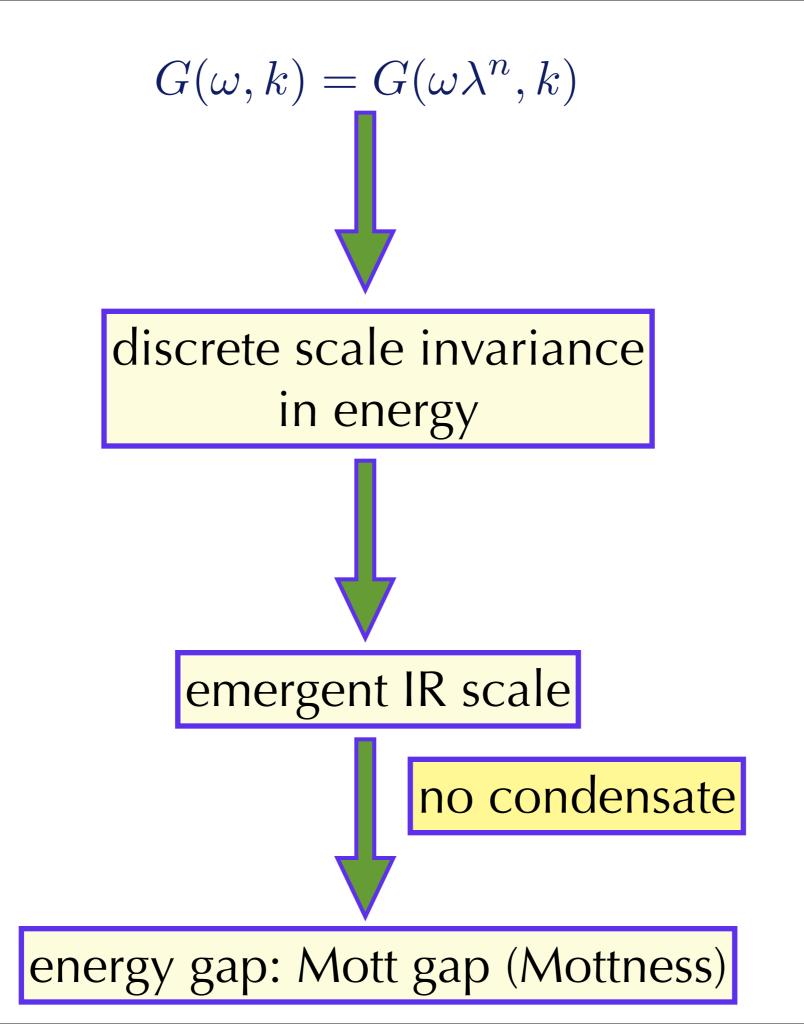
majorana coupling kills qp peaks through coupling to scaling dimension of spinor field

Finite Temperature Mott transition from Holography

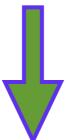








continuous scale invariance



discrete scale invariance in energy

is this the symmetry that is ultimately broken in the Mott problem?

a.) yes

b.) no

a.) yes

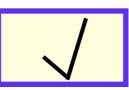
b.) no

VO_2, cuprates,...

a.) yes

b.) no

a.) yes

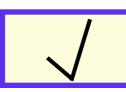


b.) no

Does scaling in VO_2 obey: $\Lambda_{\rm IR} = \Lambda_{\rm UV} e^{-\pi/\sqrt{U_c-U}}$

$$\Lambda_{\rm IR} = \Lambda_{\rm UV} e^{-\pi/\sqrt{U_c - U}}$$

a.) yes



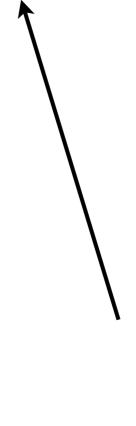
b.) no

Does scaling in VO_2 obey: $\Lambda_{\rm IR} = \Lambda_{\rm UV} e^{-\pi/\sqrt{U_c-U}}$

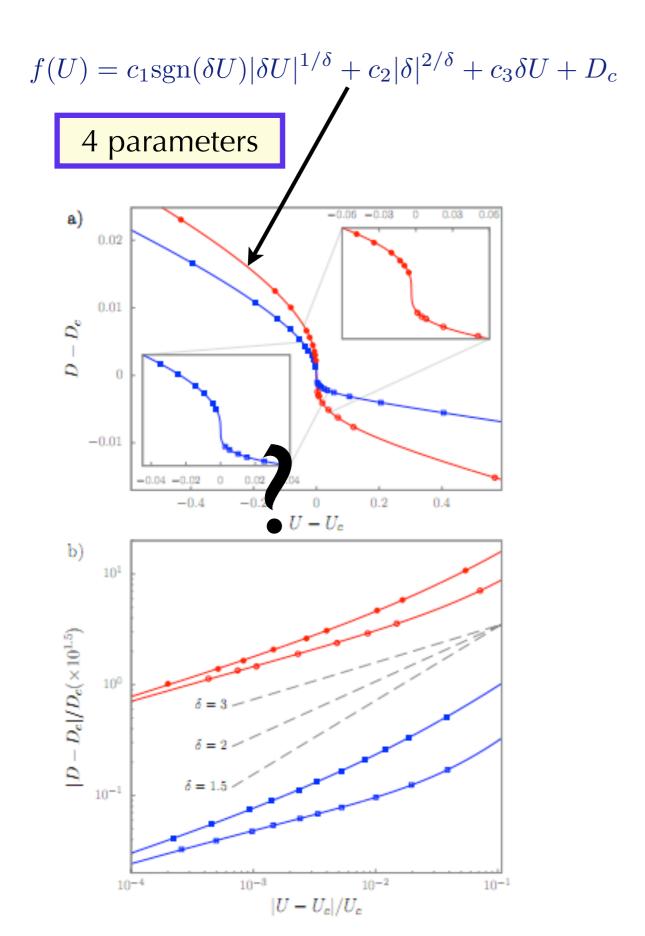
$$\Lambda_{\rm IR} = \Lambda_{\rm UV} e^{-\pi/\sqrt{U_c - U_c}}$$

if yes: holography has solved the Mott problem

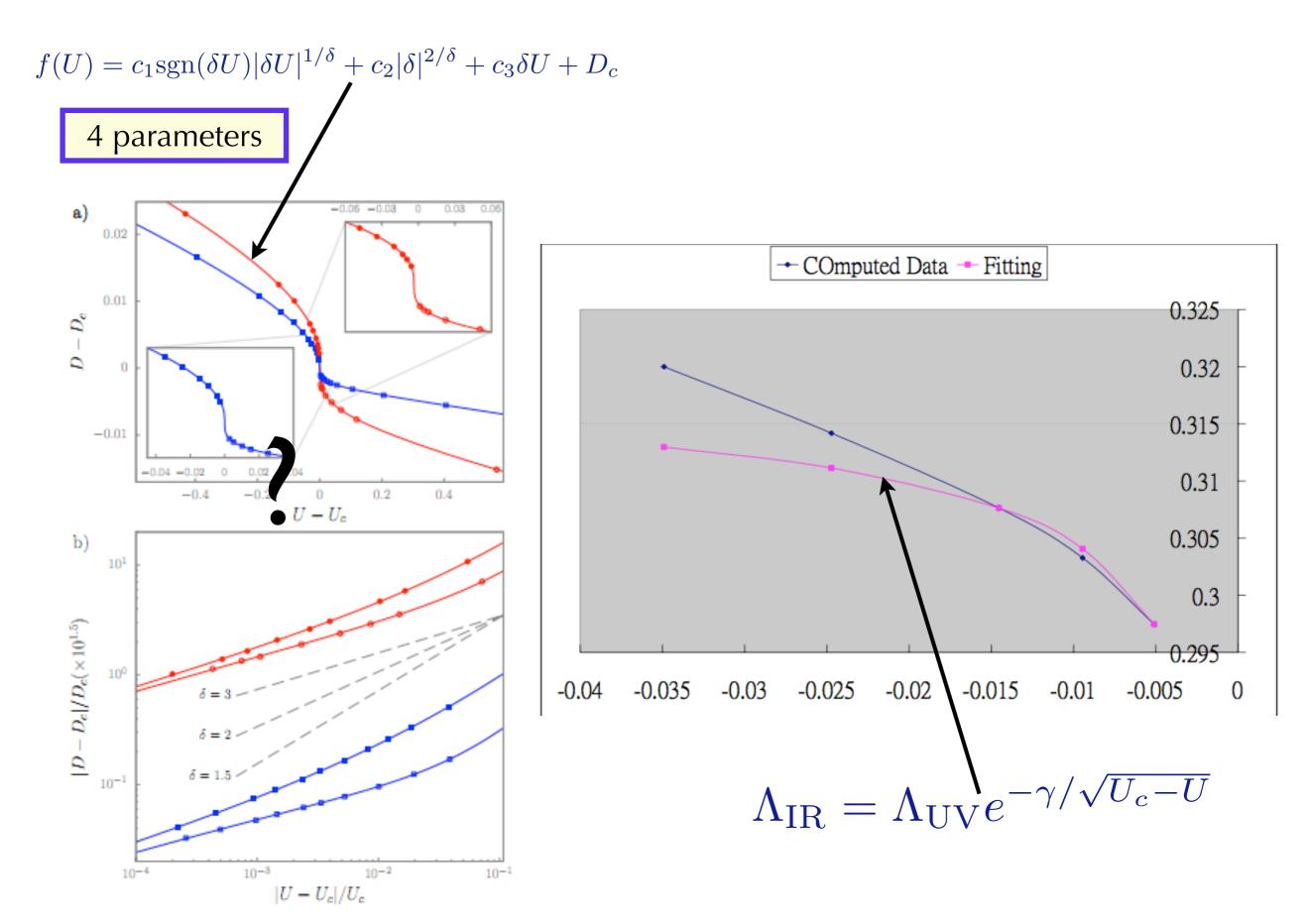




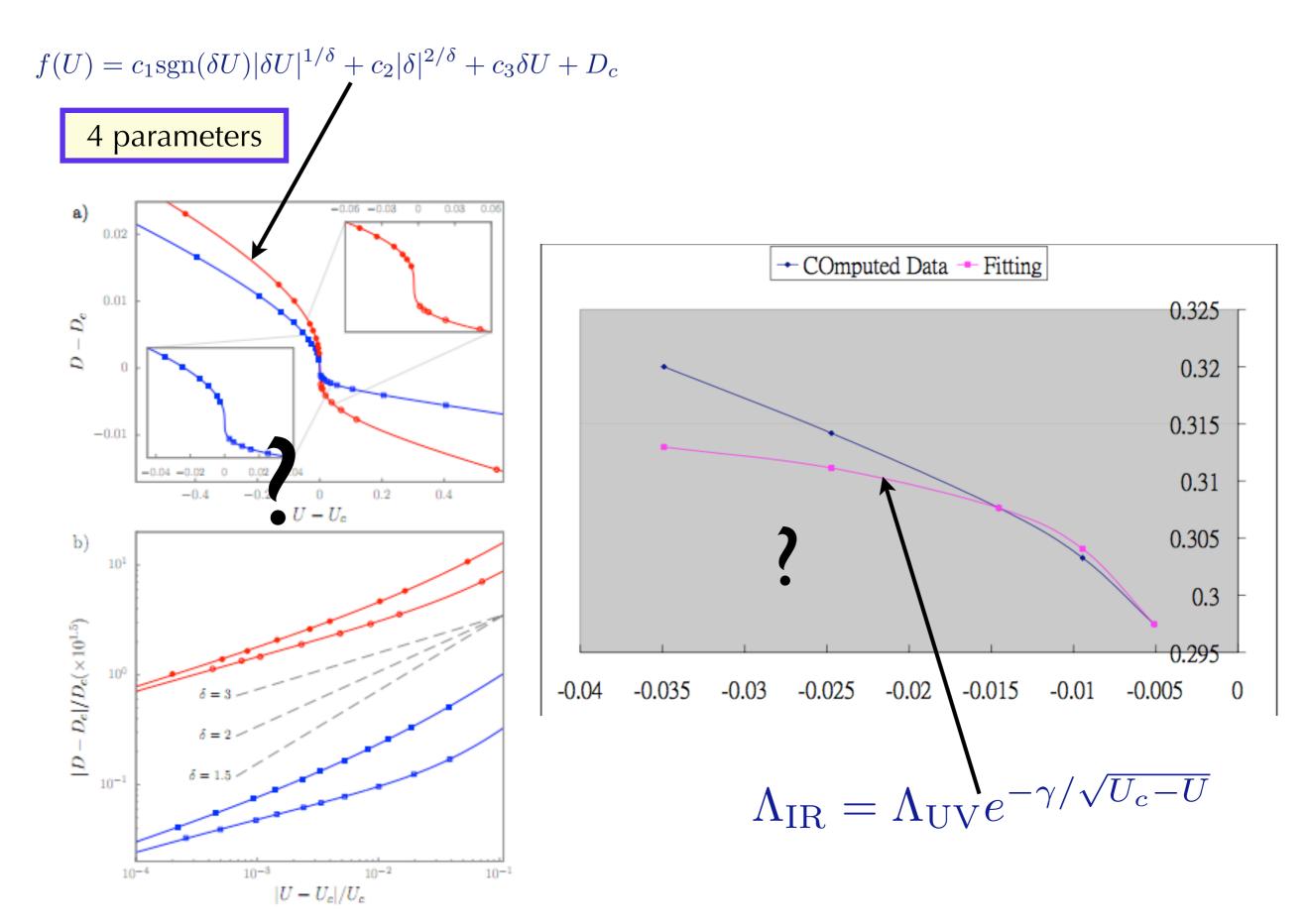
Semon, Tremblay, arxiv:1110.6195



Semon, Tremblay, arxiv:1110.6195



Semon, Tremblay, arxiv:1110.6195



Semon, Tremblay, arxiv:1110.6195