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M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Ultracold 87Rb
atoms - bosons

Superfluid-insulator transition
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Quantum critical transport 

S. Sachdev, Quantum Phase Transitions, Cambridge (1999).

Quantum “nearly perfect fluid”
with shortest possible
equilibration time, τeq

τeq = C �
kBT

where C is a universal constant
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To leading order in a gradient expansion, charge transport in
an infinite set of strongly-interacting CFT3s can be described by
Einstein-Maxwell gravity/electrodynamics on AdS4-Schwarzschild

SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab

�
.

AdS4 theory of “nearly perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

We include all possible 4-derivative terms: after suitable field
redefinitions, the required theory has only one dimensionless
constant γ (L is the radius of AdS4):

SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab +
γL2

e2
CabcdF

abF cd

�
,

where Cabcd is the Weyl curvature tensor.
Stability and causality constraints restrict |γ| < 1/12.
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AdS4 theory of strongly interacting “perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of strongly interacting “perfect fluids”

• The γ > 0 result has similarities to
the quantum-Boltzmann result for
transport of particle-like excitations

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of strongly interacting “perfect fluids”

• The γ < 0 result can be interpreted
as the transport of vortex-like
excitations

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

• The γ = 0 case is the exact result for the large N limit
of SU(N) gauge theory with N = 8 supersymmetry (the
ABJM model). The ω-independence is a consequence of
self-duality under particle-vortex duality (S-duality).
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• Stability constraints on the effective
theory (|γ| < 1/12) allow only a lim-
ited ω-dependence in the conductivity
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Compressible quantum matter
Conventional phases
1. Holographic theory of the Fermi liquid (FL)

Exotic phases
1.  Continuum models with gauge theories: 
the fractionalized Fermi liquid (FL*)

2.  Holographic approach

3. Connections to models and experiments on 
the heavy fermion compounds and 
the cuprate superconductors
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• Consider an infinite, continuum,

translationally-invariant quantum system with a glob-

ally conserved U(1) chargeQ (the “electron density”)

in spatial dimension d > 1.

• Describe zero temperature phases where d�Q�/dµ �=
0, where µ (the “chemical potential”) which changes

the Hamiltonian, H, to H − µQ.

• Compressible systems must be gapless.

• Conformal systems are compressible in d = 1, but

not for d > 1.

Compressible quantum matter
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One compressible state is the solid (or 
“Wigner crystal” or “stripe”). 

This state breaks translational symmetry.

Compressible quantum matter
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Another familiar compressible state is 
the superfluid. 

This state breaks the global U(1) 
symmetry associated with Q

Condensate of 
fermion pairs

Compressible quantum matter
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Graphene

The only other 
familiar 

compressible 
phase is a 

Fermi Liquid 
with a 

Fermi surface

Thursday, September 29, 2011



The Landau Fermi liquid

• The only low energy excitations are long-lived quasiparticles
near the Fermi surface.

• Luttinger relation: The total “volume (area)” A enclosed
by the Fermi surface is equal to �Q�. This is a key constraint
which allows extrapolation from weak to strong coupling, and
also holds for “non-Fermi liquid” compressible phases to be
discussed later.

Area A = �Q�
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Begin with a CFT

Dirac fermions + gauge field + ......
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Holographic representation: AdS4

S =

�
d4x

√
−g

�
1

2κ2

�
R+

6

L2

��

A 2+1 
dimensional 

CFT
at T=0
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Will describe a Landau Fermi liquid 
obtained by applying a chemical potential to 
the “deconfined” CFT
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+
Electric flux

�Q�
�= 0

S =

�
d4x

√
−g

�
1

2κ2

�
R+

6

L2

�
− 1

4e2
FabF

ab

�

The Maxwell-Einstein theory of the applied 
chemical potential yields a AdS4-Reissner-Nordtröm 
black-brane
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+

+ +
Electric flux

In a confining phase, the horizon disappears, 
there is charge density delocalized in the bulk spacetime,

and a Fermi liquid phase is obtained on the boundary

Holographic theory of a Fermi liquid
S. Sachdev
arXiv:1107.5321

S =

�
d4x

√
−g

�
1

2κ2

�
R+

6

L2

�
− Z(φ)

4e2
FabF

ab + L[matter,φ]

�
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+ +
Electric flux

Gauss Law in the bulk
⇔ Luttinger theorem on the boundary

Holographic theory of a Fermi liquid
S. Sachdev
arXiv:1107.5321

In a confining phase, the horizon disappears, 
there is charge density delocalized in the bulk spacetime,

and a Fermi liquid phase is obtained on the boundary
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Holographic theory of a Fermi liquid
S. Sachdev
arXiv:1107.5321

Consider QED4, with full quantum fluctuations,

S =

�
d4x

√
g

�
1

4e2
FabF

ab + i
�
ψΓMDMψ +mψψ

��
.

in a metric which is AdS4 in the UV, and confining in the IR.
A simple model

ds2 =
1

z2
(dz2 − dt2 + dx2 + dy2) , z < zm

with zm determined by the confining scale.
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Massive Dirac fermions at zero chemical potential
Dispersion E�(k) =

�
k2 +M2

�
Masses M� ∼ 1/zm

Almost all previous holographic theories have considered the
situation where the spacing between the E�(k) vanishes, and

an infinite number of E�(k) are relevant.

1 2 3 4

!4

!2

0

2

4

Holographic theory of a Fermi liquid
S. Sachdev
arXiv:1107.5321

k

E�(k)
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Holographic theory of a Fermi liquid
S. Sachdev
arXiv:1107.5321

1 2 3 4

-4

-2
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2

4

The spectrum at non-zero chemical potential is determined by
self-consistently solving the Dirac equation and Gauss’s law:

�
�Γ · �D +m

�
Ψ� = E�Ψ� ; ∇zEz =

�

�

�
d2k

4π2
Ψ†

�(k, z)Ψ�(k, z)f(E�(k))

where E is the electric field, and f(E) is the Fermi function

Dispersion at µ = 0

Dispersion at µ > 0
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• The confining geometry implies that all gauge and graviton
modes are gapped.

• We can apply standard many body theory results, treating this
multi-band system in 2 dimensions, like a 2DEG at a semicon-
ductor surface.

• Integrating Gauss’s Law, we obtain

Ez(boundary)− Ez(IR) = A

But Ez(boundary) = �Q�, but the rules of AdS/CFT. So we
obtain the usual Luttinger theorem of a Landau Fermi liquid,

A = �Q�

provided Ez(IR) = 0.

Holographic theory of a Fermi liquid
S. Sachdev
arXiv:1107.5321

Thursday, September 29, 2011



• The confining geometry implies that all gauge and graviton
modes are gapped.

• We can apply standard many body theory results, treating this
multi-band system in 2 dimensions, like a 2DEG at a semicon-
ductor surface.

• Integrating Gauss’s Law, we obtain

Ez(boundary)− Ez(IR) = A

But Ez(boundary) = �Q�, but the rules of AdS/CFT. So we
obtain the usual Luttinger theorem of a Landau Fermi liquid,

A = �Q�

provided Ez(IR) = 0.

Holographic theory of a Fermi liquid
S. Sachdev
arXiv:1107.5321

Thursday, September 29, 2011



Holographic theory of a Fermi liquid
S. Sachdev
arXiv:1107.5321

• The confining geometry implies that all gauge and graviton
modes are gapped.

• We can apply standard many body theory results, treating this
multi-band system in 2 dimensions, like a 2DEG at a semicon-
ductor surface.

• Integrating Gauss’s Law, we obtain

Ez(boundary)− Ez(IR) = A

But Ez(boundary) = �Q�, but the rules of AdS/CFT. So we
obtain the usual Luttinger theorem of a Landau Fermi liquid,

A = �Q�

provided Ez(IR) = 0.

Thursday, September 29, 2011



Holographic theory of a Fermi liquid
S. Sachdev
arXiv:1107.5321

Technical notes:

• No source term is included at the boundary for the fermions

• The boundary fermion Green’s function is computed by tak-
ing a suitable limit of the bulk Green’s function (Klebanov,
Witten):

G(r, r�) = lim
z,z�→0

(zz�)αGB(r, z; r
�, z�)
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+
+

+

+

+ +
Electric flux

In a confining FL phase, the metric terminates, 
the bulk charge equals the boundary charge, and

the electric flux vanishes in the IR.

Holographic theory of a Fermi liquid
S. Sachdev
arXiv:1107.5321

Gauss Law in the bulk
⇔ Luttinger theorem on the boundary
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Compressible quantum matter
Conventional phases
1. Holographic theory of the Fermi liquid (FL)

Exotic phases
1.  Continuum models with gauge theories: 
the fractionalized Fermi liquid (FL*)

2.  Holographic approach

3. Connections to models and experiments on 
the heavy fermion compounds and 
the cuprate superconductors

Thursday, September 29, 2011



Compressible quantum matter
Conventional phases
1. Holographic theory of the Fermi liquid (FL)

Exotic phases
1.  Continuum models with gauge theories: 
the fractionalized Fermi liquid (FL*)

2.  Holographic approach

3. Connections to models and experiments on 
the heavy fermion compounds and 
the cuprate superconductors

Thursday, September 29, 2011



The Fermi surface

This is the locus of zero energy singularities in momentum space in the

two-point correlator of fermions carrying charge Q.

G−1
fermion(k = kF ,ω = 0) = 0.

Excitations with k < kF are ‘hole’-like (negative energy), and those with

k > kF are ‘particle’-like (positive energy), or vice-versa.

Boson Green’s functions can’t generically have such singularities because

the negative energy bosons would Bose condense.

Luttinger relation: Applies as long as the global U(1) symmetry as-

sociated with Q is unbroken. The total “volume (area)” A enclosed by the

Fermi surface is equal to �Q�. Here �Q� includes the charge carried by the

bosons. This is a key constraint which allows extrapolation from weak to

strong coupling.
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L = f†
�
∂τ − ∇2

2m
− µ

�
f

+ b†
�
∂τ − ∇2

2mb
− µb

�
b+ s|b|2 − g b†f†fb+ . . .

Consider mixture of fermions f and bosons b.
There is a U(1)×Ub(1) symmetry
and 2 conserved charges:
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The 2 symmetries imply 2

Luttinger constraints. How-

ever, bosons at non-zero den-

sity invariably Bose condense

at T = 0, and so Ub(1) is

broken. So there is only the

single constraint on the f Fermi

surface. This describes mix-

tures of
3
He and

4
He.

Q = f†f
Qb = b†b

Consider mixture of fermions f and bosons b.
There is a U(1)×Ub(1) symmetry
and 2 conserved charges:

L = f†
�
∂τ − ∇2

2m
− µ

�
f

+ b†
�
∂τ − ∇2

2mb
− µb

�
b+ s|b|2 − g b†f†fb+ . . .
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Consider mixture of fermions f and bosons b.
There is a U(1)×Ub(1) symmetry
and 2 conserved charges:

A = �Q�
Q = f†f
Qb = b†b

Superfluid: �b� �= 0
Ub(1) broken; U(1) unbroken

L = f†
�
∂τ − ∇2

2m
− µ

�
f

+ b†
�
∂τ − ∇2

2mb
− µb

�
b+ s|b|2 − g b†f†fb+ . . .
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S. Powell, S. Sachdev, and H. P. Büchler, Physical Review B 72, 024534 (2005)

f
c

b
Q = f†f
Qb = b†b

Increase the coupling g until the boson, b, and fermion, f ,
can bind into a ‘molecule’, the fermion c.
Decouple the interaction between b and f by a fermion c
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�
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L = f†
�
∂τ − ∇2

2m
− µ

�
f

+ b†
�
∂τ − ∇2

2mb
− µb

�
b+ s|b|2 + 1

g
c†c− c†fb− cb†f† + . . .

f
c

b
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Ac Af

The b bosons
have bound
with f fermions
to form c
“molecules”

In a phase with Ub(1) unbroken, there is a Luttinger rela-

tion for each conserved U(1) charge. However, the boson,

b cannot have a Fermi surface in its Green’s function, and

so there is no area associated with it, although the boson

density is included in the Luttinger relation

S. Powell, S. Sachdev, and H. P. Büchler, Physical Review B 72, 024534 (2005)

Ac +Af =
�
f†f

�
= �Q�

Ac =
�
b†b

�
= �Qb�

P. Coleman, I. Paul, and J. Rech, Physical Review B 72, 094430 (2005)
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s

Phase diagram of boson-fermion mixture

Normal: �b� = 0
U(1)×Ub(1) unbroken

Ac = �Qb�

S. Powell, S. Sachdev, and H. P. Büchler, Physical Review B 72, 024534 (2005)

A = �Q�

Superfluid: �b� �= 0
Ub(1) broken; U(1) unbroken

Af =

�Q−Qb�

P. Coleman, I. Paul, and J. Rech, Physical Review B 72, 094430 (2005)
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• Now gauge Q−Qb by a dynamic gauge field Aa.
This leaves fermion c gauge-invariant

L = f†
�
∂τ − ∇2

2m
− µ

�
f

+ b†
�
∂τ − ∇2

2mb
− µb

�
b+ s|b|2 − g b†f†fb+ . . .
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(Need a background neutralizing charge)

• Now gauge Q−Qb by a dynamic gauge field Aa.
This leaves fermion c gauge-invariant

L = f†
�
∂τ − iAτ − (∇− iA)2

2m
− µ

�
f

+ b†
�
∂τ + iAτ − (∇+ iA)2

2mb
− µb

�
b+ s|b|2 − g b†f†fb+ . . .
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s

Phase diagram of U(1) gauge theory

Ac = �Qb�A = �Q�

T. Senthil, M. Vojta, and S. Sachdev, Physical Review B 69, 035111 (2004)

Higgs/confining phase:
Fermi liquid (FL)

Deconfined phase:
Fractionalized

Fermi liquid (FL*)

Af =

�Q−Qb�

P. Coleman, I. Paul, and J. Rech, Physical Review B 72, 094430 (2005)
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Ac = �Qb�A = �Q�

T. Senthil, M. Vojta, and S. Sachdev, Physical Review B 69, 035111 (2004)

Higgs/confining phase:
Fermi liquid (FL)

Deconfined phase:
Fractionalized

Fermi liquid (FL*)

Af =

�Q−Qb�

• FL phase: Fermi surface of gauge-
neutral fermions encloses total global
charge Q

• FL* phase: Fermi surface of gauge
neutral fermions encloses only part
of the global charge Q

P. Coleman, I. Paul, and J. Rech, Physical Review B 72, 094430 (2005)

Phase diagram of U(1) gauge theory
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Deconfined phase:
Fractionalized

Fermi liquid (FL*)

Af =
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Similar to theories obtained by adding a
chemical potential to CFTs (with non-Abelian
gauge fields) with known gravity duals

Phase diagram of U(1) gauge theory

L. Huijse and S. Sachdev, arXiv:1104.5022
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Compressible quantum matter

Conjecture: All compressible states which preserve
translational and global U(1) symmetries must have
Fermi surfaces, but they are not necessarily
Fermi liquids.

• Such states obey the Luttinger relation

�

�

q�A� = �Q�,

where the �’th Fermi surface has fermionic quasiparticles with
global U(1) charge q� and encloses area A�.

• Non-Fermi liquids have quasiparticles coupled to deconfined gauge
fields (or gapless bosonic modes at quantum critical points).
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+

+ +
Electric flux

In a confining FL phase, the metric terminates, 
the bulk charge equals the boundary charge, and

the electric flux vanishes in the IR.

Holographic theory of a Fermi liquid
S. Sachdev
arXiv:1107.5321
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+

+

+

+ +
+ Electric flux

In a deconfined FL* phase, the metric extends to infinity 
(representing critical IR modes),

and part of the electric flux “leaks out”.

Holographic theory of a Fermi liquid
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only in the local critical regime.25
Finally, based on the thermodynamic and transport data

down to !0.4 K and up to 140 kOe, we can construct ten-
tative T-H phase diagrams for the two orientations of the
applied magnetic field "Fig. 10#. Both phase diagrams are
very similar. Initially increasing magnetic field drives first
the lower and then the higher magnetic transitions to zero.
With further increase in field signatures of the NFL behavior
appear in the temperature-dependent resistivity ($%&T) and
heat capacity (Cmagn /T&!ln T) and at our highest applied
field values FL-like low-temperature resistivity ($%&T2)
"i.e., the coherence line25,26 on the T!H phase diagram# is
observed. Although the current lack of data below !0.4 K
impairs our ability to fully delineate the critical field that

FIG. 9. The anisotropic field dependence of "a# the electronic
specific-heat coefficient '; "b# the resistivity coefficient A, and "c#
the Kadowaki-Woods ratio A/'2. In "a# and "b# shifted data for H!c
are shown as * "see text#. The shift for "a# is !52 kOe and for
figure "b# it is !35 kOe.

FIG. 10. Tentative T-H phase diagram for "a# H!ab; "b# H!c .
Long-range magnetic order "LRMO#, NFL, and FL regions are
marked on the phase diagram. Symbols: filled circles—from Cp"H
measurements, open circles—from %(T)"H , open triangles—from
%(H)"T , and asterisks—temperatures below which $%&T2 in
%(T)"H data "coherence temperature Tcoh). Dashed line—low tem-
perature limit of our measurements, vertical line marks H"0.
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Magnetic field induced non-Fermi-liquid behavior in YbAgGe single crystals

S. L. Bud’ko,1 E. Morosan,1,2 and P. C. Canfield1,2
1Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA

2Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
!Received 25 August 2003; published 23 January 2004"

Detailed anisotropic resistivity and heat-capacity measurements down to #0.4 K and up to 140 kOe are
reported for a single crystalline YbAgGe. Based on these data YbAgGe, a member of the hexagonal RAgGe
serie, can be classified as new, stoichiometric heavy-fermion compound with two magnetic ordering tempera-
tures below 1 K and field-induced non-Fermi-liquid behavior above 45–70 kOe and 80–110 kOe for H!ab and
H!c , respectively.

DOI: 10.1103/PhysRevB.69.014415 PACS number!s": 75.30.Mb, 75.30.Kz

I. INTRODUCTION

YbAgGe is the penultimate member of the hexagonal
RAgGe series1 and was recently identified1–4 as a new Yb-
based heavy-fermion compound. Magnetization measure-
ments on YbAgGe down to 1.8 K !Ref. 1" show moderate
anisotropy !at low temperatures $ab /$c%3) and a loss of
local moment character below #20 K !Fig. 1" !also see Fig.
33 and related discussion in Ref. 1". The in-plane M (H) at
T!2 K shows a trend toward saturation whereas H!c field-
dependent magnetization continues to be virtually linear be-
low 140 kOe !Fig. 1 inset". Initial thermodynamic and trans-
port measurements down to 0.4 K !Refs. 1–3" reveal two
magnetic transitions, a higher one at %1 K, and a lower one,
with very sharp features in &(T) and Cp(T), at %0.65 K
!Fig. 2". Given that the magnetic entropy inferred from Fig. 2
is only #5% of R ln 2 at 1 K and only reaches R ln 2 by
#25 K it seems likely that these transitions are associated
with a small moment ordering. Based on these measurements
the compound was anticipated to be close to the quantum
critical point. The linear component of Cp(T), ' , is
#150 mJ/mol K2 between 12 K and 20 K. Cp(T)/T rises up
to #1200 mJ/mol K2 for T#1 K but given the presence of
the magnetic transitions below 1 K, it is difficult to unam-
biguously evaluate the electronic specific heat. Grossly
speaking, 150 mJ/mol K2"'"1 J/mol K2 leading to an es-
timate 10 K "TK"100 K for the Kondo temperature, TK .
Since the number of the Yb-based heavy-fermion com-

pounds is relatively small,5–7 any new member of the family
attracts attention.6,8 As an up-to-date example, YbRh2Si2, a
heavy-fermion antiferromagnet,9 became a subject of inten-
sive, rewarding exploration.10–12 The case of YbAgGe ap-
pears to have the potential of being somewhat similar to
YbRh2Si2: the relatively high value of ' and the proximity
of the magnetic ordering temperature to T!0 suggest that
YbAgGe is close to a quantum critical point !QCP" and
makes it a good candidate for a study of the delicate balance
and competition between magnetically ordered and strongly
correlated ground states under the influence of a number of
parameters such as pressure, chemical substitution, and/or
magnetic field.
In this work we report on the magnetic-field-induced evo-

lution of the ground state of YbAgGe as seen in anisotropic

resistivity and specific-heat measurements up to 140 kOe.
We show that on increase of the applied magnetic field, the
progression from small moment magnetic order to QCP with
the evidence of non-Fermi-liquid !NFL" behavior and, in
higher fields, to low-temperature FL state is observed.

II. EXPERIMENTAL

YbAgGe crystallizes in hexagonal ZrNiAl-type
structure.13,14 YbAgGe single crystals in the form of clean
hexagonal cross-section rods of several millimeters length
and 0.3–0.8 mm2 cross section were grown from high-
temperature ternary solutions rich in Ag and Ge. Their struc-
ture and the absence of impurity phases were confirmed by
powder X-ray diffraction !see Ref. 1 for details of the
samples’ growth". Temperature- and field-dependent resistiv-
ity &(H ,T) and heat capacity Cp(H ,T) were measured down
to 0.4 K in an applied magnetic field up to 140 kOe in a
Quantum Design PPMS-14 instrument with He-3 option. For
resistivity a standard ac four-probe resistance technique ( f
!16 Hz, I!1–0.3 mA) was used. Pt leads were attached to
the sample with Epotek H20E silver epoxy so that the cur-

FIG. 1. Anisotropic temperature-dependent dc susceptibility and
!inset" field-dependent magnetization of YbAgGe.

PHYSICAL REVIEW B 69, 014415 !2004"
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finite B range (factor of 45 in T, factor of 2.3 in B consid-
ering the expected crossover to a quadratic dependence at
even lower T in the AFM state at B< Bc1 ¼ 0:3 T, see
Fig. 3) has not previously been observed in any HF com-
pound [9–11]. In analogy with YbRh2Si2 [16], the resis-
tivity !ðBÞ isotherms have been examined. Clear crossover
behavior is seen for B ? c and B k c which is character-
ized by inflection points [16] denoted as Binfl in Figs. 1(b)
and 1(c), respectively. It is clear from these figures that Binfl

increases with increasing T. Like Co- and Ir-substituted
YbRh2Si2 [9], the crossover behavior for the Ge-
substituted compound investigated here is found to be al-
most identical with the one of pure YbRh2Si2 [Fig. 1(b)].

This is further supported by another measure of the
crossover scale T$, the position Tmax of maxima in iso-B
"ðTÞ curves [16], cf. Fig. 2. Like !ðBÞ, also the "ðTÞ data
show that, while TN is strongly suppressed upon substitut-
ing YbRh2Si2 with Ge, T$ does not move (Fig. 2, inset).

Figure 3 summarizes all characteristic features of
YbRh2ðSi0:95Ge0:05Þ2 in a T-B phase diagram. As indicated
by the shaded area, a finite range of NFL behavior at zero T
appears between the critical fields Bc1 and Bc2 for the
suppression of TN and T$.

In pure YbRh2Si2, the in-T linear resistivity extends to
the lowest accessible T (20 mK) at a single critical B, yet in
YbRh2ðSi0:95Ge0:05Þ2 this canonical behavior is violated,
and instead, in-T linear resistivity extends to the lowest T
over a substantial B range. In isolation, this behavior might
be dismissed as an anomaly. However, similar behavior has
recently been observed also in other Yb-based HF com-
pounds [9–11].

Conservatively, we might attribute these observations to
disorder. In the Hertz-Millis theory, the in-T linear resis-
tivity of HF systems is itself attributed to disorder [18,19].
Furthermore, disorder is expected to smear a well-defined
QCP into a region [20].

However, various aspects speak against this conservative
view point. First, it is unlikely that the smearing of a QCP
will be ‘‘asymmetric’’. The position of the T$ line in
YbRh2ðSi1%xGexÞ2 and hence of the entrance into the
LFL phase is not affected by going from x ¼ 0 to x ¼
0:05 (see Refs. [15,16] for the phase diagram of
YbRh2Si2); the NFL region in YbRh2ðSi0:95Ge0:05Þ2 thus
spreads only to the left of T$. Second, the NFL power law
dependencies are identical for YbRh2ðSi0:95Ge0:05Þ2 and
YbRh2Si2 [12]. Thus, either both systems are disorder
dominated or none. And finally, values for the normalized
linear rise of resistivity !!=!0 are, with &4 for
YbRh2ðSi0:95Ge0:05Þ2 [21],&5 for early YbRh2Si2 samples
[22], and & 20 for the new generation of ultrapure
YbRh2Si2 (where ! ¼ !0 þ AT# with # ¼ 1( 0:2 holds
up to 20 K) [23], all beyond the maximum value of unity
expected within the Hertz-Millis type scenario for disor-
dered systems [18]. !!=!0 values more compatible with
this scenario are observed for CeCu5:9Au0:1 (!!=!0 &
0:5) [24] and YbAgGe (!!=!0 & 1) [10], values much
larger than unity for CeCoIn5 (!!=!0 & 100 for I ? c)
[25]. Of course, the significance of !!=!0 in estimating
the role of disorder is questionable in systems such as
YbRh2Si2 and YbRh2ðSi0:95Ge0:05Þ2 where the Hertz-
Millis theory fails [12,15,16].

FIG. 3 (color online). Phase diagram of YbRh2ðSi0:95Ge0:05Þ2
for B k c. Symbols represent Binfl (r) and the upper boundary of
LFL behavior (.). The dashed TLFL line is the polynomial fit
shown in the inset of Fig. 1(a). Data points from measurements
with B ? c are included by multiplying B with the factor 11: )
symbolizes Binfl, * displays Tmax from "acðTÞ. The solid T$ line
is taken from the inset of Fig. 2. Hexagons represent T$ [16] (or
THall [15]) of YbRh2Si2. j marks TN observed by specific heat.
The dotted TN line indicates the typical evolution of TN for
YbRh2Si2, TNðBÞ ¼ TNð0Þð1% B=BcÞ0:36 [9], using the respec-
tive parameters for YbRh2ðSi0:95Ge0:05Þ2 (TNð0Þ ¼ 18 mK, Bc ¼
11+ B?c

c & 0:3 T) [12]. The hatched area 0:3 T , B , 0:66 T
marks the zero T NFL phase characterized by !!- T. The inset
compares the evolution of the resistivity exponent ", derived
from the dependence ð!% !0Þ - T" (see also Ref. [12]), for
YbRh2Si2 (top) and YbRh2ðSi0:95Ge0:05Þ2 (bottom) in the same B
and T range.
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Figure 4 | Signatures of Fermi-liquid and non-Fermi-liquid behaviour in

the resistivity of Yb(Rh0.94Ir0.06)2Si2. Temperature dependence of the

resistivity ρ(T) at selected magnetic fields. The lines indicate Fermi-liquid

behaviour, that is, fits to ρ(T)= ρ0+AT
n
with the exponent n= 2 and ρ0

being the residual resistivity, for temperatures below TFL (marked by blue

arrows). Bottom inset: The field dependence of the coefficient

A= (ρ −ρ0)/T
n
in the Fermi-liquid regime. The red line corresponds to

A(H)∝ (H−H
A
c
)
−1

yielding a critical field of µ0H
A
c

= 30(5)mT. Top

inset: Colour-coded representation of the resistivity exponent calculated as

n= dlog(ρ −ρ0)/dlogT. The energy scales TN, T
�
and TFL are reproduced

from Fig. 1, top panel. The red square on the abscissa depicts H
A
c
, the critical

field of the divergence of the A coefficient (see bottom inset). The error

bars represent standard errors.

ref. 22 resembles our experimental observations. Also for YbAgGe,
a finite field range was reported where the resistivity exhibits
similar non-Fermi-liquid behaviour to the lowest temperatures23.
However, the specific heat of YbAgGe shows a saturation ofC(T )/T
in this field range, discarding a spin-liquid ground state24. In
contrast, preliminarymeasurements on 6% Ir down to 0.06 K reveal
a strong divergence of C(T )/T with decreasing temperature in the
field range below 50mT (not shown), supporting our claimof a spin
liquid. In addition, the susceptibility continues to increase towards
the lowest temperatures (see Fig. 2a). The experimental evidence
of such a new, non-magnetic ground state is fascinating and will
certainlymotivate future experimental and theoretical studies.

Figure 5 shows the evolution of the two different QCPs as a
function of Ir/Co substitution. The following main results can
be deduced from this figure. (1) The antiferromagnetic state is
stabilized through the application of positive chemical pressure,
as expected. (2) The position of the suggested breakdown of
the Kondo effect depends only weakly on chemical pressure—
although the Kondo effect itself is known to be strongly pressure
dependent. (3) As a consequence, for positive pressure, the
antiferromagnetic QCP at HN is located in the regime with intact
Kondo screening (HN >H

�) where the SDW theory is expected to
be applicable in accordance with our observations. (4) For negative
chemical pressure, on the other hand, HN is separated from H

�

towards lower fields with an intermediate spin-liquid-type ground
state emerging. Obviously, here, antiferromagnetic order and the
Fermi-liquid ground state are not connected by a single QCP,
but are separated by a spin liquid, that is, a non-Fermi-liquid
range as previously observed for MnSi (ref. 25) and, perhaps, in
β-YbAlB4 (refs 26, 27).

0.06 0.04
y x

0.02 0 0.060.040.02

‘SL’

0

0.1

0.2

µ 0
H

 (
T)

Yb(Rh1¬y
Ir

y
)2Si2 Yb(Rh1¬x

Co
x
)2Si2

T 0

FL

AF

H∗

HN

Figure 5 | Experimental phase diagram in the zero temperature limit. The

zero-temperature phase diagram depicts the extrapolated critical fields of

the various energy scales. The red line represents the critical field of T
�
(H)

and the green line the antiferromagnetic (AF) critical field HN. The blue and

green regions mark the Fermi-liquid (FL) and magnetically ordered ground
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To conclude, the application of chemical pressure provides a
wider view on the global phase diagram of YbRh2Si2 by lifting
the coincidence of the multiple energy scales in the stoichiometric
compound. The results and their interpretation presented here pose
a formidable challenge for those theories describing the breakdown
of the Kondo effect near an antiferromagnetic QCP in Kondo
lattice systems. It remains to be explored under which conditions
antiferromagnetic ordering and the Fermi-surface reconstruction
may eventually become separated as observed for YbRh2Si2 with
Ir substitution. Equally important, it needs to be understood
why in pure YbRh2Si2, the antiferromagnetic QCP coincides with
the Kondo breakdown.

Methods
Single crystals were grown from In flux, analogous to the stoichiometric samples
described earlier12. The In flux was subsequently removed in hydrochloric acid.
The presented results prove the absence of residual In. X-ray diffraction confirms
the single crystallinity. All low-temperature measurements were carried out with
the magnetic field aligned perpendicular to the crystallographic c axis, H ⊥ c .
The a.c.-susceptibility measurements were carried out at low frequencies with
a modulation field amplitude of 4 µT down to 0.02 K. As no imaginary signal
was detected, the real part χ � is a direct measure of the field derivative of the
magnetization. The temperature-dependent susceptibility χ �(T ) was measured in
selected static magnetic fields. The isothermal susceptibility χ �(H ) was measured
as a function of a field applied in addition to the modulation field. The electrical
resistivity ρ was monitored by a standard four-point lock-in technique at low
frequencies down to 0.02 K. An extremely small out-of-phase signal of less
than 1% proves the high quality of the spot-welded contacts. With the help
of low-temperature transformers, a very high sensitivity of better than 0.1 nV
was realized. In all samples, the resistivity was measured perpendicular to the
crystallographic c axis, and the magnetic field was applied parallel to the current.
The magnetic field dependence of the magnetization M (H ) was isothermally
measured in a high-resolution Faraday magnetometer down to 0.05 K (ref. 28).
Background contributions from the sample platform and the torque exerted on
the sample have been subtracted. The magnetization was analysed in the form
M̃ =M +χ �

H by fitting

�
H

0
A2 −(A2 −A1)/(1+ (H �/H0)p) dH � (1)

to the data from which the crossover field H0 was obtained14. M̃ is preferred
for the analysis as it enables a more precise fitting compared with M itself,
although the conclusions drawn from M (H ) are identical (see ref. 14 and its
supporting online material).
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Detaching the antiferromagnetic quantum critical
point from the Fermi-surface reconstruction
in YbRh2Si2
S. Friedemann1*, T. Westerkamp1, M. Brando1, N. Oeschler1, S. Wirth1, P. Gegenwart1,2, C. Krellner1,
C. Geibel1 and F. Steglich1*

A continuous phase transition driven to zero temperature by

a non-thermal parameter, such as pressure, terminates in a

quantum critical point (QCP). At present, two main theoretical

approaches are available for antiferromagnetic QCPs in heavy-

fermion systems. The conventional one is the quantum

generalization of finite-temperature phase transitions, which

reproduces the physical properties in many cases
1–5
. More

recent unconventional models incorporate a breakdown of the

Kondo effect, giving rise to a Fermi-surface reconstruction
6–8

—

YbRh2Si2 is a prototype of this category
5,9–11

. In YbRh2Si2,

the antiferromagnetic transition temperature merges with the

Kondo breakdown at the QCP. Here, we study the evolution of

the quantum criticality in YbRh2Si2 under chemical pressure.

Surprisingly, for positive pressure we find the signature

of the Kondo breakdown within the magnetically ordered

phase, whereas negative pressure induces their separation,

leaving an intermediate spin-liquid-type ground state over an

extended range. This behaviour suggests a new quantumphase

arising from the interplay of the Kondo breakdown and the

antiferromagnetic QCP.

In heavy-fermion systems, the Kondo effect leads to the
formation of composite quasiparticles of the f and conduction-
electron states with largely renormalized masses forming a Landau
Fermi-liquid ground state in the paramagnetic regime well below
the Kondo temperature TK. These quasiparticles are assumed to
stay intact at the quantum critical point (QCP) in the conventional
models in which magnetic order arises through a spin-density-
wave (SDW) instability. However, the observation of magnetic
correlations in CeCu5.9Au0.1 being of local character11 prompted a
series of theoretical descriptions that discard this basic assumption.
Rather, they focus on the breakdown of the Kondo effect, which
causes the f states to become localized and decoupled from the
conduction-band states at the QCP where one expects the Fermi
surface to be reconstructed7. Consequently, a new energy scale
T

� is predicted reflecting the finite-temperature T crossover of
the Fermi-surface volume. This picture has been scrutinized in
tetragonal YbRh2Si2 (TK ≈ 25K; ref. 12), a stoichiometric and
very clean heavy-fermion metal that seems to be ideally suited
for this kind of study9,12: antiferromagnetic order sets in at a very
low temperature TN = 0.07K and can easily be suppressed by a
small magnetic field of µ0HN = 60mT (H ⊥ c , with c being the
magnetically hard axis). Hall-effect experiments13 have detected
a rapid change of the Hall coefficient along a line T

�(H ) that
converges with HN, the width of the Hall crossover extrapolating
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I. Physik. Institut, Georg-August-Universität Göttingen, D-37077

Göttingen, Germany. *e-mail: Sven.Friedemann@cpfs.mpg.de; Steglich@cpfs.mpg.de.

to zero for T → 0. This change was considered evidence for
an abrupt change of the Fermi-surface volume indicating a
correspondence between T

�(H ) and the Kondo-breakdown energy
scale. Subsequent thermodynamic and transport investigations
confirmed T

�(H ) to be a new energy scale14. The a.c. susceptibility
χ �(T ) turned out to exhibit a pronounced maximum at T �, which
can be particularly well distinguished from the sharp signature at
TN. The magnetoresistance exhibits a step-like crossover similar to
the Hall coefficient. In fact, recent calculations for a Kondo lattice
predict such a feature for both transport properties15. Furthermore,
the magnetization shows a smeared kink at T �(H ) between two
almost linear regimes with different slopes14. The anomaly atT �(H )
in all isothermal measurements can be described either by the same
crossover function proposed for theHall effect or its integral version
resembling a smeared kink. The maximum in χ �(T ) is a natural
consequence of the magnetization kink being smeared and shifted
to higher fields as the temperature is raised.

The Fermi-surface reconstruction may also occur away from the
antiferromagnetic QCP as observed in CeIn3 and CeRh1−xCoxIn5
(refs 16, 17). It is therefore very important to understand
the interplay between the phenomena assigned to the Kondo
breakdown and the magnetic order. We address this issue by
investigating YbRh2Si2 under positive and negative chemical
pressure, which was realized by partial isoelectronic substitution
of smaller Co or larger Ir for Rh, respectively (the analogy of
chemical and external pressure is discussed in Supplementary
Information A). In Yb systems, pressure yields a stabilization
of magnetism, in particular an increase of TN (ref. 18). On
the other hand, negative pressure, corresponding to a lattice
expansion, reduces TN.

The T–H phase diagrams of Yb(Rh0.94Ir0.06)2Si2 and
Yb(Rh0.93Co0.07)2Si2 (labelled 6% Ir and 7% Co in the following)
are compared with that of YbRh2Si2 in Fig. 1. This set emphasizes
the evolution of the various energy scales. First, the magnetic
one follows the expected pressure dependence: for 6% Ir, TN is
depressed below 0.02 K, whereas in the case of 7% Co, TN is
enhanced to 0.41 K. Second, the energy scale T �(H ) virtually does
not change its position in the T–H phase diagram. Consequently,
T

�(H ) is separated from TN(H ) in 6% Ir, whereas they intersect in
7% Co. Finally, at fields above the respective critical fields H � (for
6% Ir) andHN (for 7% Co) at which T

�(H ) and TN(H ) vanish, the
Fermi-liquid phase forms below TFL(H ).

These findings were mainly deduced from the temperature-
dependent a.c. susceptibility χ �(T ) shown in Fig. 2. For 6% Ir,
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are larger than the presumed doping levels, 0.11, 0.085, and
<0:05, respectively, it is clear that the pocket size scales
qualitatively with the doping level as predicted theoreti-
cally [6,10]. Interestingly, two fluid models of the pseudo-
gap state do predict the observed discrepancy between the
pocket size and carrier concentration or doping level [22].
The finding of a finite nodal FS rather than a ‘‘nodal’’ point
at low T for the Tc ¼ 0 K sample is at variance with
recently reported findings under the same conditions
[23]. The measured Fermi pockets are, however, in
good agreement with those predicted by the YRZ
ansatz. In Fig. 2(b) we show the spectral function calcu-

lated at EF as a function of doping, where Að ~k; 0Þ ¼
$ð1=!Þ ImGYRZð ~k; 0Þ and where GYRZð ~k; 0Þ is Green’s
function taken from Ref. [6]. The experimental observa-
tions are remarkably well reproduced by this model with
the doping level as the only adjustable parameter.

Turning to the question of whether the pocket areas are
temperature dependent, we show in Fig. 3(a) the observed
Fermi arc for the Tc ¼ 45 K sample measured at three
different temperatures: 60, 90, and 140 K, all in the normal
state but well below T%. The measured FS crossings in
the figure are determined by the same method used in
Figs. 1 and 2 rather than from the spectral weight at the
Fermi level. In Fig. 3(b) we show the measured arc length
as a function of temperature. It is clear that any changewith
temperature is minimal and certainly not consistent with an
increase by more than a factor of 2 between the data taken
at 140 and 60 K as would be expected by a T=T% scaling of
the arc length [21]. The discrepancy arises because pre-
vious experiments have not fully determined whether or
not a band actually crosses the Fermi level.

The picture of the low energy excitations of the normal
state emerging from the present study is of a nodal FS
characterized by a Fermi ‘‘pocket’’ that, at temperatures
above Tc, shows a minimal temperature dependence and an
area proportional only to the doping level. We now turn our
attention to the antinodal pseudogap itself.

Several theories of the pseudogap phase propose the
formation of preformed singlet pairs above Tc in the anti-
nodal region of the Brillouin zone [24]. The YRZ spin
liquid based on the RVB picture is one such model as it
recognizes the formation of resonating pairs of spin sin-
glets along the copper-oxygen bonds of the square lattice
as the lowest energy configuration. Figures 4(a)–4(d) show
a series of spectral plots along the straight sector of the
LDA FS in the antinodal region at a temperature of 140 K
for the Tc ¼ 65 K sample at the locations indicated in
Fig. 4(e). Figure 4(f) shows intensity cuts through these
plots along the horizontal lines indicated in Figs. 4(a)–4(d).
It is evident that a symmetric gap exists at all points along
this line. The particle-hole symmetry in binding energy
observed here is in marked contrast to the particle-hole
symmetry breaking predicted in the presence of density
wave order and is a necessary condition for the formation
of Cooper pairs. Thus the present observations add support
to the hypothesis that the normal state is characterized by
pair states forming along the copper-oxygen bonds and is
consistent with earlier studies.
The combination of Figs. 2 and 4 points to a more

complete picture of the low energy excitations in the nor-
mal state of the underdoped cuprates. For Tc < T < T%, a
Fermi pocket exists in the nodal region with an area pro-
portional to the doping level. One does not need to invoke
discontinuous Fermi arcs to describe the FS of underdoped
Bi2212, and Luttinger’s sum rule, properly understood, is
seen to still approximately stand. However, as is evident in
the inset of Fig. 2(a), the area of the hole pockets would
appear to be larger than assumed doping level at the higher
doping levels. This may reflect the presence of electron
pockets at the higher doping level or it may reflect the
presence of a bilayer splitting, even though the latter is
not observed in the present study. We note that the splitting
will be smaller in the underdoped region and in the nodal
region. Although not verified in the present study, one
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FIG. 2 (color online). (a) The pseudopockets determined for
three different doping levels. The black data correspond to the
Tc ¼ 65 K sample, the blue data correspond to the Tc ¼ 45 K
sample, and the red data correspond to the nonsuperconducting
Tc ¼ 0 K sample. The area of the pockets xARPES scales with the
nominal of doping level xn, as shown in the inset. (b) The Fermi
pockets derived from YRZ ansatz with different doping level.

(π,0)(0,0)

(0,π)
140K
 90K
 60K

(π,π)

θarc

kx

ky

40

30

20

10

0

θ ar
c (

°)

200150100500
Temperature (K)

(a) (b)

FIG. 3 (color online). (a) The Fermi surface crossings deter-
mined for the Tc ¼ 45 K sample at three different temperatures.
The triangles indicate measurements at a sample temperature of
140 K, the circles measurements at 90 K, and the diamonds
measurements at 60 K. (b) The measured arc lengths in (a)
plotted as a function of temperature. We note that rather than
cycling the temperatures on the same sample, the data in (a) are
measured on different samples cut from the same crystal.
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The Fermi surface topologies of underdoped samples of the high-Tc superconductor Bi2Sr2CaCu2O8þ!

have been measured with angle resolved photoemission. By examining thermally excited states above the

Fermi level, we show that the observed Fermi surfaces in the pseudogap phase are actually components of

fully enclosed hole pockets. The spectral weight of these pockets is vanishingly small at the magnetic zone

boundary, creating the illusion of Fermi ‘‘arcs.’’ The area of the pockets as measured in this study is

consistent with the doping level, and hence carrier density, of the samples measured. Furthermore, the

shape and area of the pockets is well reproduced by phenomenological models of the pseudogap phase

as a spin liquid.
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Understanding the pseudogap regime in the high-Tc

superconducting cuprates is thought to be key to under-
standing the high-Tc phenomenon in general [1]. An im-
portant component of that understanding will be the
determination of the nature of the low lying normal state
electronic excitations that evolve into the superconducting
state. It is therefore critically important to know the exact
nature of the Fermi surface (FS). Photoemission studies of
the pseudogap regime reveal gaps in the spectral function in
directions corresponding to the copper-oxygen bonds and a
FS that seemingly consists of disconnected arcs falling on
the FS defined within the framework of a weakly interact-
ing Fermi liquid [2]. A number of different theories have
attempted to explain these phenomena in terms of compet-
ing orders whereby the full FS undergoes a reconstruction
reflecting the competition [3,4]. An alternative approach
recognizes that the superconducting cuprates evolve with
doping from a Mott insulating state with no low energy
charge excitations to a new state exhibiting properties
characteristic of both insulators and strongly correlated
metals.

Several theories have been proposed to describe the
cuprates from the latter perspective [5–7]. One such ap-
proach is represented by the so-called Yang-Rice-Zhang
(YRZ) ansatz [6], which, based on the doped resonant
valence bond (RVB) spin liquid concept [8], has been
shown to successfully explain a range of experimental
observations in the underdoped regime [9–12]. The model
is characterized by two phenomena, a pseudogap that
differs in origin from the superconducting gap and hole
pockets that satisfy the Luttinger sum rule for a FS defined
by both the poles and zeros of Green’s function at the
chemical potential [13]. The pockets manifest themselves
along part of the FS as an ‘‘arc’’ possessing finite spectral
weight corresponding to the poles of Green’s function as in
a conventional metal. The remaining ‘‘ghost’’ component

of the FS is defined by the zeros of Green’s function and
therefore possesses no spectral weight to be directly ob-
served. Importantly, the zeros of Green’s function at the
chemical potential coincide with the magnetic zone bound-
ary associated with the underlying antiferromagnetic
(AFM) order of the Mott insulating state and therefore
restrict the pockets to lying on only one side of this line.
The model further predicts that the arc and ghost portions
of the FS are smoothly connected into pockets. Several
theoretical studies indicate that within this framework the
pockets have an area that scales with the doping [6,10].
Recent photoemission studies have indeed provided some
indication that the pseudogap regime is characterized by
hole pockets centered in the nodal direction [14,15].
Furthermore, the possibility that FS in the underdoped
materials consists of a pocket structure is at the heart of
the interpretation of recent studies that identified quantum
oscillations in these materials [16]. In the present study, we
demonstrate for the first time that the FS of the underdoped
cuprates in the normal state is characterized by hole pock-
ets with an area proportional to the doping level.
The photoemission studies reported in this Letter were

carried out on underdoped cuprate samples, both Ca doped
and oxygen deficient. The Ca-rich crystal was grown from
a rod with Bi2:1Sr1:4Ca1:5Cu2O8þ! composition using an
arc-image furnace with a flowing 20% O2-Ar gas mixture.
The maximum Tc was 80 K. The sample was then annealed
at 700 #C giving a 45 K Tc with a transition width of 2 K.
The oxygen-deficient Bi2Sr2CaCu2O8þ! (Bi2212) crystals
were produced by annealing optimally doped Bi2212 crys-
tals, at 450 #C to 650 #C for 3–15 days. The spectra shown
in this Letter were all recorded on beam line U13UB at the
NSLS using a Scienta SES2002 electron spectrometer.
Each spectrum was recorded in the pulse-counting mode
with an energy and angular resolution of 15 meVand 0.1#,
respectively.
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 New insights and solvable models for diffusion and 
transport of strongly interacting systems near quantum critical 
points

 The description is far removed from, and complementary 
to, that of the quantum Boltzmann equation which builds on 
the quasiparticle/vortex picture.
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 Presented a holographic model of a Fermi liquid

 Fractionalized Fermi liquid (FL*),  appears in deconfined 
gauge theories, holographic models, and lattice theories of the 
heavy-fermion compounds and cuprates superconductors.

 Numerous plausible sightings of the FL* phase in recent 
experiments 
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