Holographic zero sound at finite temperature

Richard Davison and Andrei Starinets

Rudolf Peierls Centre for Theoretical Physics
Oxford University

arXiv: 1109.XXXX [hep-th]

Holographic Duality and Condensed Matter Physics Program
KITP
20 September 2011

In a system of interacting fermions at low (or zero) temperature there exists a collective excitation known as the zero sound (Landau, 1957; observed in liquid He-3 in 1960s)

Temperature dependence of the zero sound mode is described (at sufficiently low temperatures)
by Landau Fermi-liquid theory

A similar mode (holographic zero sound) was shown to exist in holographic models at zero temperature

We would like to understand its temperature dependence

Outline

Zero sound in Landau Fermi-liquid theory

Zero sound in He-3

Holographic zero sound in the D3/D7 system

Original Landau papers

L. D. Landau, "The theory of a Fermi liquid," Zh. Eksp. Teor. Fiz. 30, 1058 (1956) [Soviet Phys. JETP 3, 920 (1957)].

L. D. Landau, "Oscillations in a Fermi liquid," Zh. Eksp. Teor. Fiz. 32, 59 (1957) [Soviet Phys. - JETP 5, 101 (1959)].

Relativistic version

G.Baym and S.A.Chin, "Landau theory of relativistic Fermi liquids", Nucl Phys A262 (1976), 527

Microscopic (effective field theory) version

R.Shankar, "Renormalization group approach to interacting fermions", Rev Mod Phys, **66** (1994), 129

J.Polchinski, "Effective Field Theory and the Fermi Surface", hep-th/9210046

In LFL, the dominant low energy excitations are quasiparticles carrying the same quantum numbers as fundamental particles

Quasiparticle energy:

$$arepsilon_{ec{k}}$$

Width:
$$\sim (\varepsilon_{\vec{k}} - \mu)^2$$

Equilibrium distribution function:

$$n_{\vec{k}} = \left(\exp\left(\frac{\varepsilon_{\vec{k}} - \mu}{T}\right) + 1\right)^{-1}$$

At low temperature:

$$\varepsilon_{\vec{k}} \simeq \mu + v_F \left(|\vec{k}| - k_F \right)$$

$$N/V = k_F^3/3\pi^2\hbar^3$$

$$m^* = k_F/v_F$$

Specific heat:
$$c_V=m^*k_F/3\hbar^3\,T=\left(\frac{\pi}{3}\right)^{2/3}\left(m^*/\hbar^2\right)\left(N/V\right)^{1/3}T$$

$$\delta E = \sum_{\sigma} \int \varepsilon_{\vec{k},\sigma} \delta n_{\vec{k},\sigma} \frac{d^3 k}{(2\pi)^3}$$

$$\delta \varepsilon_{\vec{k},\sigma} = \sum_{\sigma'} \int f_{\vec{k}\sigma,\vec{k'}\sigma'} \delta n_{\vec{k'},\sigma'} \frac{d^3k'}{(2\pi)^3}$$

Landau interaction function $f_{\vec{k}\sigma,\vec{k'}\sigma'}$ can be expanded in Legendre polynomials yielding Landau parameters

$$F_l\,,G_l$$

In a weakly-interacting theory, $f_{\vec{k}\sigma,\vec{k'}\sigma'}$ can be computed perturbatively

For small deviations from equilibrium we have

$$n(\vec{k}, \vec{r}, t) = n_0(\vec{k}) + \delta n(\vec{k}, \vec{r}, t)$$

where the function δn obeys the Landau-Silin transport equation

$$\frac{\partial \delta n}{\partial t} + \frac{\partial \varepsilon_0}{\partial \vec{k}} \frac{\partial \delta n}{\partial \vec{r}} - \frac{\partial \delta \varepsilon}{\partial \vec{r}} \frac{\partial n_0}{\partial \vec{p}} = I[n]$$

whose third term involves the interaction function $f_{ec{k}\sigma,ec{k'}\sigma'}$

Solutions in the zero-temperature limit (with vanishing r.h.s.) are known as zero sound (Landau, 1957)

Zero sound dispersion relation

$$\omega = \pm v_s q - i\Gamma(q, \mu)$$

appears as a pole in the density-density correlation function

$$\langle J^0(-\omega,-q)J^0(\omega,q)\rangle$$

and thus as the lowest quasinormal frequency in the spectrum of a dual gravity background

$$\omega = \pm \frac{1}{\sqrt{3}}q - \frac{iq^2}{6\mu} + O(q^3)$$

e.g. in the D3/D7 system (in the probe brane limit) holographically describing

 $\mathcal{N} = 4 SU(N_c) \text{SYM} + N_f \mathcal{N} = 2 \text{ hypermultiplet fields in the limit } N_c \to \infty, g_{YM}^2 N_c \to \infty, N_f/N_c \to 0$

Zero sound mode is affected by quasiparticle interactions

Let au be the mean time between quasiparticle collisions

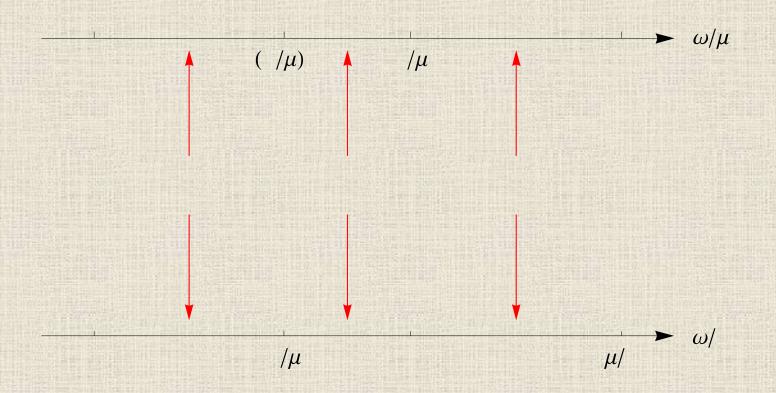
Three regimes can be distinguished for the collective mode with frequency ω

Collisionless quantum regime:
$$\omega au\gg 1\,,\quad\omega\gg T$$

Collisionless thermal regime:
$$\omega au\gg 1\,,\quad\omega\ll T$$

Hydrodynamic regime:
$$\omega au\ll 1\,,\quad\omega\ll T$$

In LFL kinetic theory:
$$1/ au \sim rac{\pi^2 T^2 + \omega^2}{\mu(1+e^{-\omega/T})}$$



LFL applicability conditions

$$T \ll \mu$$
, $\omega \ll \mu$

$$\omega(q) = v_s q - i\Gamma_{\omega}$$
 $q(\omega) = \omega/v_s + i\Gamma_q$ $\arg q(\omega) = \operatorname{Im} q/\operatorname{Re} q$

TABLE II. Sound attenuation coefficients in a Landau Fermi-liquid

	Γ_{ω}	Γ_q	$\operatorname{Arg} q$
Hydrodynamic regime	$\left(\frac{\theta}{T}\right)^2 \frac{q^2}{\theta}$	$rac{ heta}{T^2}$	$\left(\frac{\theta}{T}\right)^2 \frac{\omega}{\theta}$
Collisionless thermal regime	$rac{T^2}{ heta}$	$rac{T^2}{ heta}$	$\left(\frac{T}{\theta}\right)^2 \frac{\theta}{\omega}$
Collisionless quantum regime	$rac{q^2}{ heta}$	$rac{\omega^2}{ heta}$	$\frac{\omega}{\theta}$

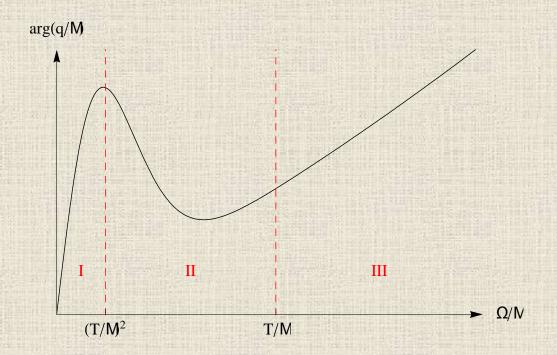
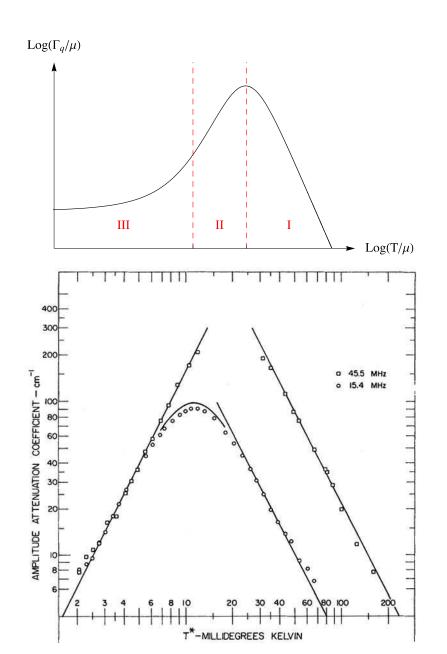


FIG. 2. A sketch of the dependence of the sound mode damping on frequency in the hydrodynamic (I), collisionless thermal (II) and collisionless quantum (III) regimes of a Landau Fermi-liquid. First sound propagates in region I while the zero sound mode exists in regions II and III.



$$S = S_{\text{adjoint}} + S_{\text{fundamental}}^{\circ}$$

$$= S_{\text{adjoint}} - N_f T_{D7} \int d^8 \xi \sqrt{-\det(g_{ab} + F_{ab})}$$

$$\mathcal{N} = 4 \ SU(N_c) \ \text{SYM} + N_f \ \mathcal{N} = 2 \ \text{fund. fermions and scalars}$$

$$\lambda = g_{YM}^2 N_c \to \infty$$
, $N_c \to \infty$, $N_f/N_c \to 0$

$$ds_{10}^2 = \frac{r^2}{R^2} \left[-\left(1 - \frac{r_H^4}{r^4}\right) dt^2 + d\vec{x}^2 \right] + \left(1 - \frac{r_H^4}{r^4}\right)^{-1} \frac{R^2}{r^2} dr^2 + R^2 ds_{S^5}^2$$

$$T = r_H \triangleleft \Pi R^2$$

$$S_{\text{fundamental}} = -\frac{Nr_H^4}{2} \int_0^1 du d^4x \frac{\cos^3 \theta}{u^3} \sqrt{1 + 4u^2 f \theta^2 - 4\frac{u^3}{r_H^2} A_t^2}$$

$$U(N_f) = U(1)_B \times SU(N_f)$$

Parameters:

T (temperature), μ ("baryonic" chemical potential), m (hypermultiplet mass)

$$\langle J^0(-\omega,-q)J^0(\omega,q)\rangle_{T,\mu}^{ret}$$

Zero temperature, finite density, zero hypermultiplet mass

$$\mathbf{\hat{w}} = \circ \sqrt[4]{\frac{1}{3}} - i \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{6}\right)\Gamma\left(\frac{1}{3}\right)} \mathbf{\hat{p}}^2 + O\left(\mathbf{\hat{p}}^3\right)$$

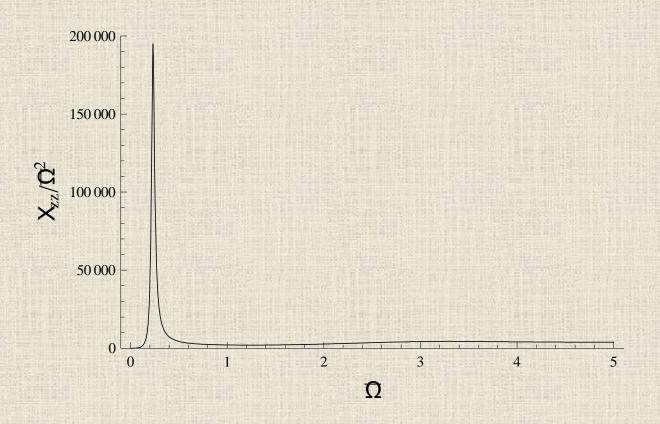
Zero temperature, finite density, finite hypermultiplet mass

$$\mathbf{\hat{w}} = \circ \sqrt{\frac{1}{3}} \left(\frac{1 - \mathbf{m}^2}{1 - \mathbf{m}^2 \triangleleft 3} \right)^{1 \triangleleft 2} \mathbf{\hat{q}} - i \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{1}{6}\right)} \frac{(1 - \mathbf{m}^2)^{4 \triangleleft 3}}{(1 - \mathbf{m}^2 \triangleleft 3)^2} \mathbf{\hat{q}}^2 + O\left(\mathbf{\hat{q}}^3\right)$$

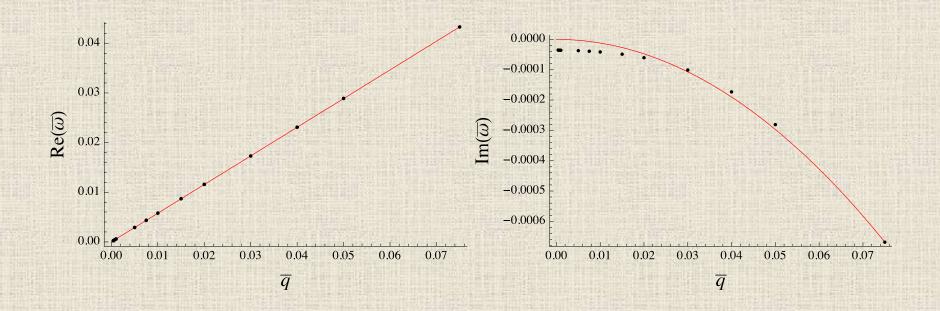
High temperature, finite density, zero hypermultiplet mass

$$\mathbf{60} = -iD\mathbf{6}^2 + O(\mathbf{6}^3)$$

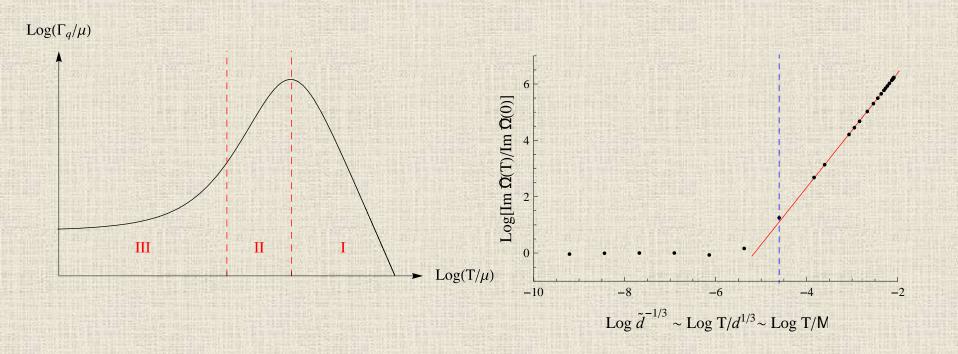
$$D(\tilde{d}) = \frac{\tilde{d}^{\frac{1}{3}}}{2} \sqrt{1 + \tilde{d}^2} \, _2F_1 \left[\frac{3}{2} \cdot \frac{1}{3}; \frac{4}{3}; -\tilde{d}^2 \right]$$



Holographic zero sound peak in the collisionless quantum regime



Zero sound dispersion relation in the collisionless quantum regime



Collisionless quantum – collisionless thermal crossover

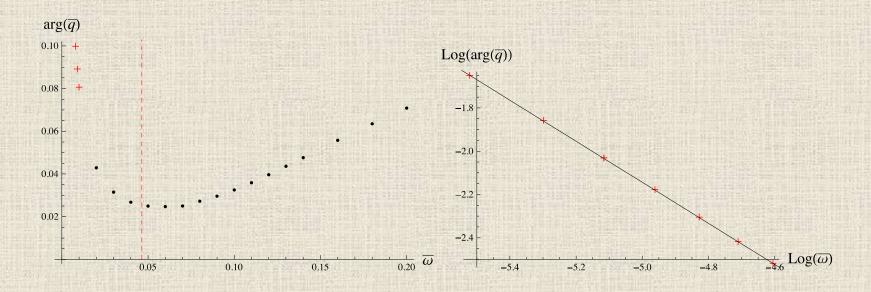
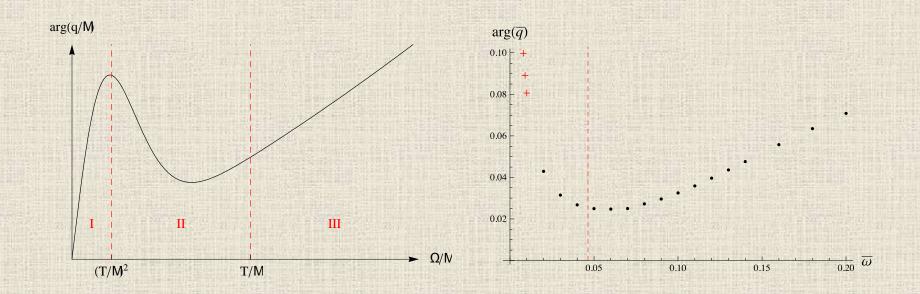
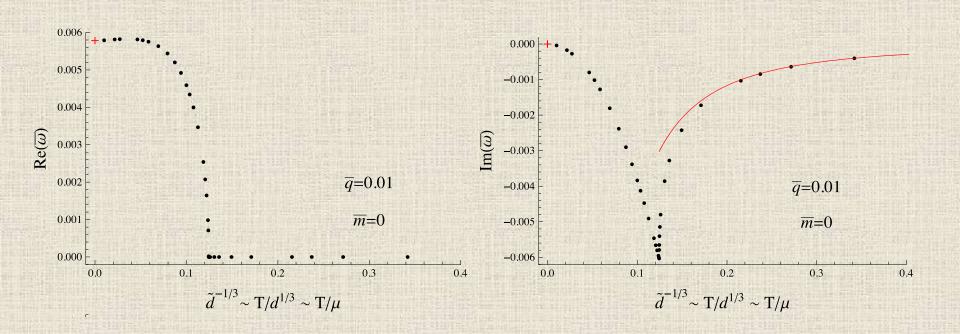


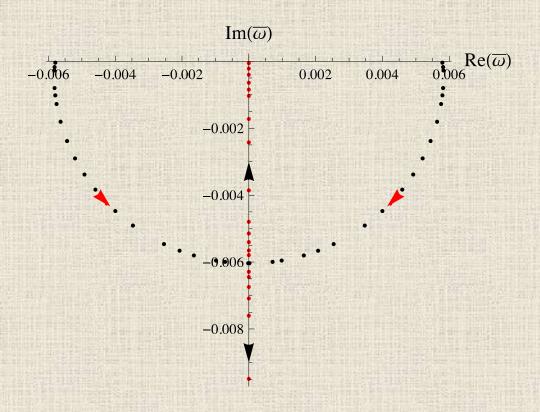
FIG. 9. The frequency dependence of the D3/D7 acoustic mode when $\bar{m}=0$, $\tilde{d}=10^4$ in the collisionless regime. The dots and crosses are our numerical results, the dashed line denotes $\bar{\omega}=\pi T/d^{1/3}\sim T/\mu$, and the solid line shows the best-fit straight line with gradient $\alpha\approx -0.95$. The points on the left of the left hand plot correspond to the rightmost points on the right hand plot



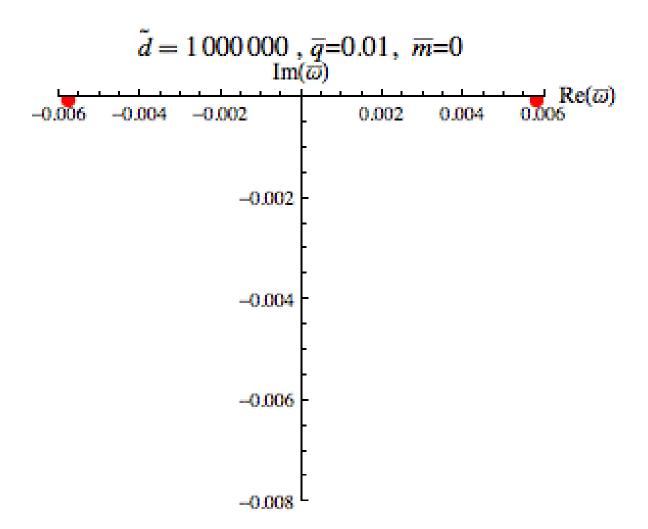
Collisionless quantum – collisionless thermal crossover



Collisionless thermal – hydrodynamic crossover



Poles of the density-density correlator: The collisionless thermal – hydrodynamic crossover



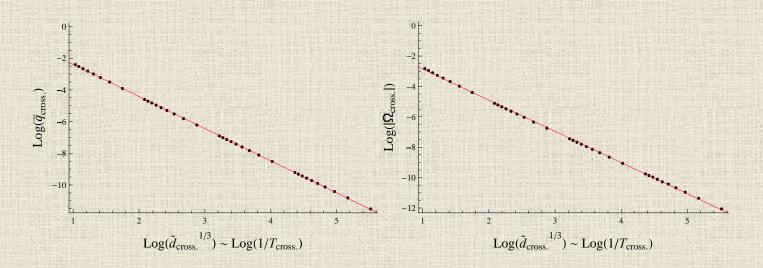


FIG. 13. The temperature dependence of the collisionless-hydrodynamic crossover value of frequency and momentum for m = 0. The points are our numerical results and the solid lines are the best-fit straight lines which both have gradient -2.0.

$$l_{\rm mfp} \sim \mathsf{T} \propto d^{-1 \triangleleft 3} \left(\frac{T}{d^{1 \triangleleft 3}}\right)^{\mathsf{a}} \qquad l_{\rm mfp} \sim \mathsf{T} \sim d^{1 \triangleleft 3} \, T^{-2} \sim \theta \; T^{-2}$$

Unusual features of D3/D7 thermodynamics

$$c_v \sim N_c^2 T^3 + \dots + \lambda N_f N_c T^6 / \mu^3 + \dots, \quad T \ll \mu$$

$$s \to s_0 \sim \mu^3 \neq 0 \quad \text{for} \quad T \to 0$$

Density-density correlator apparently shows no singularity at $\ q=2q_F$

Conclusions

D3/D7 zero sound at finite temperature behaves exactly as LFL zero sound

D3/D7 thermodynamics (in the probe brane limit) appears to be incompatible with LFL

It would be interesting to:

- a) Understand this discrepancy
- b) Consider other holographic and field-theoretic systems
- c) Understand this from the (holographic) RG perspective

THANK YOU!