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In a system of interacting fermions at low (or zero) temperature
there exists a collective excitation known as the zero sound 

(Landau, 1957; observed in liquid He-3 in 1960s)

Temperature dependence of the zero sound mode is described 
(at sufficiently low temperatures)

by Landau Fermi-liquid theory

A similar mode (holographic zero sound) was shown to exist 
in holographic models at zero temperature

We would like to understand its temperature dependence



Outline

Zero sound in Landau Fermi-liquid theory

Zero sound in He-3

Holographic zero sound in the D3/D7 system
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Zero sound in Landau Fermi-liquid theory

In LFL, the dominant low energy excitations  are quasiparticles
carrying the same quantum numbers as fundamental particles 

Quasiparticle energy: Width:

Equilibrium distribution function:

At low temperature:

Specific heat:



Zero sound in Landau Fermi-liquid theory

Landau interaction function                     can be expanded in Legendre polynomials yielding
Landau parameters

In a weakly-interacting theory,                     can be computed perturbatively



Zero sound in Landau Fermi-liquid theory

For small deviations from equilibrium we have

where the function            obeys the Landau-Silin transport equation 

whose third term involves the interaction function                                                       

Solutions in the zero-temperature limit (with vanishing r.h.s.) are known as 
zero sound  (Landau, 1957)



Zero sound in Landau Fermi-liquid theory

Zero sound dispersion relation

appears as a pole in the density-density correlation function 

and thus as the lowest quasinormal frequency in the spectrum of a dual gravity background                                                       

e.g. in the D3/D7 system (in the probe brane limit)  holographically describing



Zero sound at finite temperature

Zero sound mode is affected by quasiparticle interactions

Three regimes can be distinguished for the collective mode with frequency            :

Collisionless quantum regime:

Let           be the mean time between quasiparticle collisions

Collisionless thermal regime:

Hydrodynamic regime:

In LFL kinetic theory:



Zero sound at finite temperature

LFL applicability conditions



(the ”quantum” limit ω T , ω ν lies outside of the LFL applicability range (1)). The

attenuation of the hydrodynamic (first) sound is determined by viscosity and is proportional

to ω2/T 2 [13, 14, 16].

The dimensionless variables which are most convenient for identifying the three regimes

are ω/µ and q/µ . In these variables, the regions I, II and III corresponding to the hydrody-

namic, collisionless thermal and collisionless quantum regimes respectively, are separated by

the scales (T/µ )2 and T/µ . Alternatively, in the language of the ” traditional” hydrodynamic

variables ω/T and q/T , the relevant scales are T/µ , 1 and µ/T (see Table I and Fig. 1).

TABLE II. Sound attenuation coefficients in a Landau Fermi-liquid

Γω Γq Arg q

Hydrodynamic regime
µ
T

2 q2

µ
µ ω2

T 2
µ
T

2 ω
µ

Collisionless thermal regime T 2

µ
T 2

µ
T
µ

2
µ
ω

Collisionless quantum regime
q2

µ
ω2

µ
ω
µ

The sound attenuation constants in various regimes are shown in Table II and Fig. 2.

The temperature dependence of the sound attenuation coefficient Γq is shown in Fig. 3. We

shall use this information as a suggestive guide in our investigation of the holographic zero

sound at finite temperature.

In the massless D3/D7 system at low temperature, the chemical potential is proportional

to the cubic root of the volume density d of the U(1) “baryon” charge1 [11]

µ = α d1/3 1 +O
T

d1/3
, (3)

where α can be expressed using the Euler beta-function, α = B(1/3, 7/6)/2 ≈ 1.402. We

shall study the D3/D7 theory in the limit T d1/3, ω d1/3 formally corresponding to

the applicability regime (1) of Landau Fermi-liquid theory. The appropriate dimensionless

variables are

ω̄=
ω

d1/3
, q̄ =

q

d1/3
, d̃ =

d

(πT )3
. (4)

A priori, we do not expect to find an agreement with the LFL results outlined above since the

D3/D7 system appears to be microscopically rather different, with no obviously detectable

1 An explicit expression for the charge density operator involving fundamental fermions and complex scalars

of the N = 2 hypermultiplet is given in Appendix A of [33].
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I II III
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Ω Μ

arg q Μ

FIG. 2. A sketch of the dependence of the sound mode damping on frequency in the hydrodynamic

(I), collisionless thermal (II) and collisionless quantum (III) regimes of a Landau Fermi-liquid.

First sound propagates in region I while the zero sound mode exists in regions II and III.

istic frequency ν ∼ 1/τ , where τ is the mean time between quasiparticle collisions. One

distinguishes three regimes: the hydrodynamic regime, characterized by ω ν, the col-

lisionless thermal (classical) regime, with ω ν, ω T , and the collisionless quantum

regime, ω ν, ω T . The zero temperature zero sound mode persists essentially un-

altered in the collisionless quantum regime, where thermal excitations are too weak and

infrequent to influence it. As the temperature is increased, however, thermal excitations

change the attenuation of the zero sound mode giving it nontrivial temperature dependence.

In the hydrodynamic regime, thermal excitations destroy the zero sound mode completely.

However, these excitations support the ordinary hydrodynamic sound mode with viscous

damping, and the thermal diffusion mode.

In the collisionless regime, the frequency ν can be computed from kinetic theory applied

to Fermi liquids [13, 14, 16]:

ν ∼
π2T 2 +ω2

εF (1 + e− ω/T )
, (2)

where εF ∼ µ . The decay rate of the zero sound mode in the collisionless regime is Γq ∼ ν

[16]. In the quantum collisionless regime one has then Γq ∼ ω2/µ and arg q(ω) ∼ ω/µ

whereas in the thermal collisionless regime Γq ∼ T 2/µ and arg q(ω) ∼ (T/µ )2µ/ω. Finally,

in the hydrodynamic regime, the conditions ω ν and ω T lead to ω/µ (T/µ )2
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D3/D7 zero sound at finite temperature

liquid, and describe in detail the behaviour of the collective modes as the temperature of

the system is varied. We summarize our results and discuss how they may generalize to

other holographic finite density systems in Section IV. Some details relevant for the case of

a massive hypermultiplet are relegated to appendices: Appendix A contains the action and

equations of motion for the fluctuations, and Appendix B provides a derivation of the zero

sound attenuation constant at zero temperature.

II. THE D3/D7 SYSTEM

The specific field theory whose elementary excitations at finite temperature and density

we wish to investigate is (3+1)-dimensional N = 4 SU(Nc) supersymmetric Yang-Mills

theory coupled to Nf N = 2 fundamental hypermultiplets with a global U(Nf ) flavour

symmetry. It arises as the low-energy theory on the worldvolume of a set ofNc D3-branes and

Nf D7-branes intersecting along (3+1)-dimensions. Taking Nc → ∞ with both λ = g2YMNc

and Nf/Nc fixed, and subsequently taking λ → ∞ and Nf/Nc → 0, we obtain a classical

gravitational dual to this field theory [10, 35]:

S = Sadjoint + Sfundamental,

= Sadjoint − NfTD7 d8ξ − det (gab + Fab),
(5)

where Sadjoint is the ten-dimensional supergravity action and TD7 is the tension of a D7-

brane. In this probe brane limit, the metric is fixed and it is Sfundamental which contains

the dynamical information. For a zero temperature field theory, the contribution of the

fundamental matter is the DBI action of Nf probe D7-branes extended along an AdS5 × S3

section of the (fixed) AdS5 × S5 background spacetime generated by the D3-branes. In

Eq. (5), gab denotes the induced worldvolume metric on the D7-brane and Fab is the field

strength of a worldvolume U(1) ⊂ U(Nf) gauge field.

When the field theory is at a non-zero temperature, the background spacetime is that of

an AdS-Schwarzschild black brane (with a horizon at r = rH) times a five-sphere:

ds210 =
r2

R2
− 1 −

r4H
r4

dt2 + dx2 + 1 −
r4H
r4

− 1
R2

r2
dr2 +R2ds2S5 . (6)

The D7-brane wraps an asymptotically AdS5 × S3 section of the metric, with the horizon

radius of the background related to the temperature of the field theory via T = rH/πR
2.
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In terms of the dimensionless radial coordinate u = r2H/r
2, the metric (6) can be written

as

ds210 =
(πTR)2

u
− fdt2 + dx2 +

R2

4u2f
du2 +R2 dθ2 + sin2 θds2S1 + cos2 θds2S3 , (7)

where f(u) = 1 − u2. In these coordinates, the horizon is located at u = 1 and the

boundary at u = 0. In equilibrium, the D7-brane embedding can be characterised by a

single embedding coordinate θ(u) (which determines which S3 section of the background S5

it wraps). The gauge field on the brane is dual to a global flavor current in the field theory

and thus turning on the time component of a U(1) ⊂ U(Nf ) gauge field At(u) on the brane

corresponds to introducing a finite density d of the U(1) “baryon” charge in the field theory.

In this case, it corresponds to a net density of fundamental fermions and scalars.

The equations of motion for the background fields are obtained from the DBI action

Sfundamental = −
Nr4H
2

1

0

dud4x
cos3 θ

u3
1 + 4u2fθ2 − 4

u3

r2H
A 2
t , (8)

where N = NfTD7VS3 is a normalization constant determined by the gauge-gravity duality

dictionary [33] and primes denote derivatives with respect to u. One of the equations of

motion derived from the action (8) reduces to

At(u) = −
rH d̃

2

1 + 4u2f(u)θ (u)2

cos6 θ(u) + d̃2u3
, (9)

where d̃ ≡ dR6/r3H = d/ (πT )
3
is a dimensionless parameter of the field theory related to

the net number density of ”quarks” nq in the field theory2 via

d̃ =
25/2nq

√
λNfNcT 3

. (10)

For a given density d̃, there is a corresponding dimensionless chemical potential given by

µ̃ =
d̃

2

1

0

du
1 + 4f(u)u2θ (u)2

cos6 θ(u) + d̃2u3
, (11)

which is related to the field theory chemical potential by µ̃ = µ/πT = 2
λ

µFT
T
. In the

massless case, the integral in Eq. (11) can be computed exactly [11]: it reduces to (3) in

2 See footnote 1. Note that our normalization of d is different from the one used in [33]: in [33], d ∼ nq

whereas in our case d ∼ nq/
√
λNcNf .
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In the zero mass limit, the equations for these two modes decouple and the gauge-invariant

combination (21) obeys the equation of motion

d

du

f(u) Z̄

g(u) (ω̄2 − q̄2fg)
+

d̃
2
3 Z̄

4u g(u)f(u)
= 0, (22)

where g(u) = (1 + d̃2u3)− 1. In this limit, the longitudinal part of the on-shell action is

S
(2)

long. = Nr2H
dωdq

(2π)
2

f Z̄(u,− ω̄,− q̄)Z̄ (u, ω̄, q̄)
√
g (ω̄2 − q̄2fg)

uB

uH

. (23)

In this massless case, we obtain the longitudinal retarded Green’s functions from the

gravitational fields via the usual procedure [44]

GR
JzJz (ω̄, q̄) = − lim

→0
2Nr2H

ω̄2

ω̄2 − q̄2
Z̄ ( , ω̄, q̄)

Z̄( , ω̄, q̄)
, (24)

where the − ω̄2 factor comes from the definition (21), and Z̄(u, ω̄, q̄) is the solution obeying

ingoing boundary conditions at the horizon: Z̄(u, ω̄, q̄) ∼ (1 − u)
γ
as u → 1, where γ =

− iω̄d̃1/3/4. Poles of the retarded Green’s function are determined by the values of ω̄(q̄) for

which the solution obeying the ingoing condition at the horizon vanishes at the boundary

[43, 44]. The density-density correlation function follows trivially from the conservation

of current GR
JtJt (ω̄, q̄) = q̄2GR

JzJz/ω̄
2 and has the same poles as the longitudinal Green’s

function (24). The spectral functions of these operators are then obtained by taking the

imaginary part:

χzz (ω̄, q̄) = − 2 Im GR
JzJz (ω̄, q̄) , χ tt (ω̄, q̄) = − 2 Im GR

JtJt (ω̄, q̄) , (25)

with χ tt = q̄2 χzz/ω̄
2. At zero temperature and density, the form of the longitudinal spectral

function is known analytically [45]:

χzz (ω, q) =
NfNc

4π
ω2 − q2 Θ ω2 − q2 sgnω, (26)

where Θ is the Heaviside step function.

In the m̄ = 0 case, the coupled equations of motion for bulk fluctuations imply that the

dual field theory operators mix and the method to determine the retarded Green’s functions

is more involved (see Appendix A for the details).

At zero mass, high densities ω, q d
1
3 and strictly zero temperature, the dominant pole

of the correlators GR
JtJt and G

R
JzJz has the dispersion relation [11, 46]

ω̄= ±
q̄
√
3
− i

Γ 1
2

Γ 1
6
Γ 1

3

q̄2 +O q̄3 . (27)
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This corresponds to a collective excitation of the system - the holographic zero sound mode.

Its speed is equal to that of hydrodynamic sound, and it has an imaginary part ∝ q2. In

the hydrodynamic limit ω, q T the dominant pole is a purely imaginary pole with the

Fickian diffusion dispersion relation

ω̄= − iD q̄2 +O(q̄3) , (28)

where the diffusion constant is given by [27, 34]

D(d̃) =
d̃
1
3

2
1 + d̃2 2F1

3

2
,
1

3
;
4

3
;− d̃2 . (29)

Between these two extreme temperature limits, the poles of the Green’s functions are not

known analytically.

These results were generalized to the case of a massive hypermultiplet in [20, 34]. The

zero sound mode (27) persists when the hypermultiplet has a finite mass m, although the

dispersion relation is altered to

ω̄= ±
1
√
3

1 − m2

1 − m2/3

1/2

q̄ − i
Γ 1

2

Γ 1
3
Γ 1

6

(1 − m2)4/3

(1 − m2/3)2
q̄2 +O q̄3 , (30)

where m= m̃/
√
2µ̃ = Mq/µ . The real part of the dispersion relation (30) was obtained in

[20] and the attenuation is derived in Appendix B. In the hydrodynamic limit, there is again

a diffusion pole (28) whose diffusion constant can be derived via an Einstein relation [34]

D(d̃) =
d̃
1
3

2
d̃2 + cos6 θ(1)

1

0

du
G(u)

3
2

cos3 θ(u)H(u)
1 + d̃

4f(u)u2θ (u)

G(u) cosθ(u)

∂

∂d̃
[cosθ(u)θ (u)]

+
sinθ(u)

cos2 θ(u)
3 +

4f(u)u2θ (u)2

G(u)

∂

∂d̃
sinθ(u) ,

(31)

where G(u) and H(u) are defined in Appendix A.

At finite hypermultiplet mass, the D3/D7 system has non-trivial bound states analogous

to mesons [35]. These bound states are visible as peaks of the spectral function. When

d = 0, such modes exist only for large enough values of m̃ ∝ Mq/T [38, 45, 47–49]. When

d = 0, it seems that necessary conditions for their existence are large values of m̃ and small

enough values of q/T and d
1
3/T [31, 32, 50–52]. This is outside of the regime of our current

interest. A full numerical analysis of the quasinormal modes of the theory when T = 0 is

given in [53].
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FIG. 4. The holographic zero sound peak in the collisionless quantum regime. The longitudinal

spectral function is shown at m̄ = 0, d̃ = 106, q̄ = 0.4.

to a constant at small q̄, this is only true up until the crossover to the hydrodynamic regime

occurs, after which we obtain a diffusive mode. This crossover will be discussed in detail

later in this section. At large momentum, the system is entering the low temperature, low

density regime d̃− 1/3 1 ω̄, q̄ (i.e. ω, q d
1
3 T ), where the zero sound mode becomes

very short-lived as the corresponding pole recedes deep into the complex plane. As shown

in Fig. 6, the zero sound peak in the spectral function gradually disappears in this regime,

and the spectral function approaches the d = 0, T = 0 result (26).

At finite hypermultiplet mass, the results are qualitatively similar.5 The longitudinal

spectral functions show a lone peak6 (similar to the one shown in Fig. 4) for values of ω̄

in the range (32). As shown in Fig. 7, the real part of the dispersion relation is essentially

identical to the zero-temperature result (30), and the imaginary part deviates from the

zero-temperature dependence given in (30) only at the boundaries of the interval (32).

It is interesting to note that the zero sound mode exists for all (numerically accessible)

values of m̄, including those for which m̃ ∝ Mq/T 1. Thus the high density and low

temperature interval in which the T = 0 zero sound mode persists is the same as in the

5 Technically, the massive case is significantly more complicated as it involves solving a pair of coupled dif-

ferential equations numerically, with coefficients that depend upon the numerically-computed embedding

function. Due to numerical instability, we were not able to obtain accurate results for d̃ > 105 and masses

ouside the interval 0.002 m̄ 1.68 (at d̃ = 105). We believe this limitation demonstrates the lack of

our numerical skills rather than an effect of any physical significance.
6 Peaks corresponding to “meson” bound states may exist for higher values of ω̄. We have not investigated

this issue.
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FIG. 7. The holographic zero sound dispersion relation for m̄ = 0.76, d̃ = 105. Dots show numerical

results at low T and the solid lines show the analytic result (30) at T = 0.
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FIG. 8. The imaginary part of the holographic zero sound dispersion relation at low temperatures

showing the transition between the collisionless quantum (left) and collisionless thermal (right)

regimes. The points are the numerical data, the dashed line denotes q̄ = d̃− 1/3 ∼ T/µ and the

solid line is the best-fit straight line for the T/µ q̄ = 0.01 points showing the ∼ T 2 scaling of

the attenuation in the collisionless thermal regime. The region corresponding to the hydrodynamic

regime at even higher temperature T/µ
√
q̄ = 0.1 is not shown in the figure.
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FIG. 2. A sketch of the dependence of the sound mode damping on frequency in the hydrodynamic

(I), collisionless thermal (II) and collisionless quantum (III) regimes of a Landau Fermi-liquid.

First sound propagates in region I while the zero sound mode exists in regions II and III.

istic frequency ν ∼ 1/τ , where τ is the mean time between quasiparticle collisions. One

distinguishes three regimes: the hydrodynamic regime, characterized by ω ν, the col-

lisionless thermal (classical) regime, with ω ν, ω T , and the collisionless quantum

regime, ω ν, ω T . The zero temperature zero sound mode persists essentially un-

altered in the collisionless quantum regime, where thermal excitations are too weak and

infrequent to influence it. As the temperature is increased, however, thermal excitations

change the attenuation of the zero sound mode giving it nontrivial temperature dependence.

In the hydrodynamic regime, thermal excitations destroy the zero sound mode completely.

However, these excitations support the ordinary hydrodynamic sound mode with viscous

damping, and the thermal diffusion mode.

In the collisionless regime, the frequency ν can be computed from kinetic theory applied

to Fermi liquids [13, 14, 16]:

ν ∼
π2T 2 +ω2

εF (1 + e− ω/T )
, (2)

where εF ∼ µ . The decay rate of the zero sound mode in the collisionless regime is Γq ∼ ν

[16]. In the quantum collisionless regime one has then Γq ∼ ω2/µ and arg q(ω) ∼ ω/µ

whereas in the thermal collisionless regime Γq ∼ T 2/µ and arg q(ω) ∼ (T/µ )2µ/ω. Finally,

in the hydrodynamic regime, the conditions ω ν and ω T lead to ω/µ (T/µ )2

5
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FIG. 13. The temperature dependence of the collisionless-hydrodynamic crossover value of fre-

quency and momentum for m̄ = 0. The points are our numerical results and the solid lines are the

best-fit straight lines which both have gradient -2.0.

in the familiar language of the Landau theory by introducing an effective τ = 1/|ωcross|and

lmfp = 1/qcross, and computing their temperature dependence. Assuming a simple power-

dependence of the form

lmfp ∼ τ ∝ d− 1/3 T

d1/3

α

, (35)

we expect a plot of log(q̄cross) or log(|̄ωcross|) versus log(d̃
1/3
cross) to yield a straight line of

gradient α. These plots are shown in Fig. 13 for the massless case. The numerical results

are clearly consistent with a simple power law dependence. The slope of the best-fit straight

line is -2.0 in each case, which leads to the result

lmfp ∼ τ ∼ d1/3 T − 2 ∼ µ T − 2, (36)

as in a Landau Fermi-liquid [16] - recall table I. For non-zero masses m̄ = 0.76, 1.68, the

best-fit slopes are unchanged and so we do not show the results for brevity.

IV. SUMMARY AND DISCUSSION

In this paper, we have investigated the properties of the holographic zero sound mode

and the fundamental matter diffusion mode in the D3/D7 system at finite temperature and

high density. Similarly to the case of an ordinary Landau Fermi-liquid, three regimes cor-

responding to different powers of the parameter T/µ 1 can be identified, with the modes
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Unusual features of D3/D7 thermodynamics

Density-density correlator apparently shows no singularity at                    



Conclusions

D3/D7 zero sound at finite temperature behaves exactly as LFL zero sound

D3/D7 thermodynamics (in the probe brane limit) appears to be incompatible with  LFL

It would be interesting to: 

a) Understand this discrepancy

b) Consider other holographic and field-theoretic systems

c) Understand this from the (holographic) RG perspective




