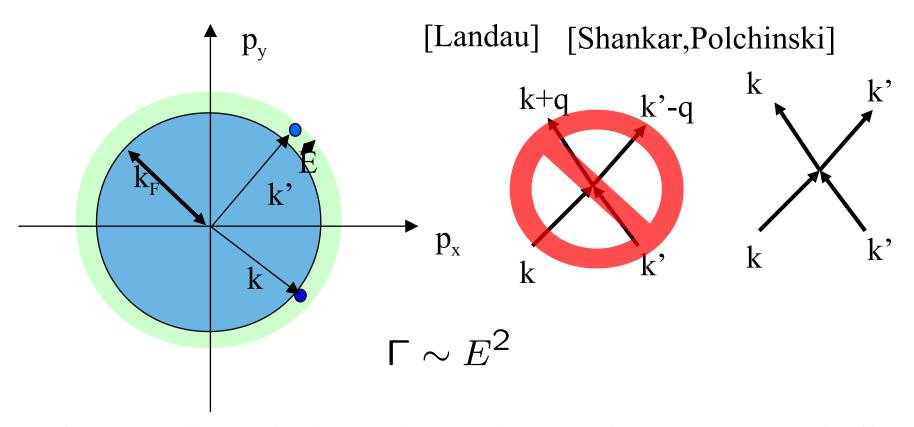
Fermions at Criticality; heavy fermion and critical spin liquid

Sung-Sik Lee McMaster

Why interesting?

- Fermi surface is the most generic state of fermionic matter
- Infinitely many gapless modes : very different from relativistic QFT
- Critical states serve as unifying platforms to understand many other 'ordered' phases
- New state of matter: non-Fermi liquid
- Many experiments yet to be understood


Outline

- Fermi Liquid Theory: the Standard Theory of Metal
- Non Fermi Liquid at critical point: Heavy Fermion
 - Single impurity model
 - Kondo lattice model
 - Heavy Fermi Liquid
 - Two Magnetic Phases
 - Phase Transitions from Fermi Liquid to Magnetic Phases
- Non Fermi Liquid Phase
 - Fermi Surface Coupled with Gauge Field
- Open Theoretical Problems

General References

- Heavy fermion :
 - P. Coleman, arXiv:cond-mat/0612006
 - Lohneysen et al., Rev. Mod. Phys. 79, 1015 (2007)
 - T. Senthil, cond-mat/0604250
- Spin liquid:
 - P. Lee, N. Nagaosa and Xiao-Gang Wen, Rev. Mod. Phys.
 78, 17 (2006)

Fermi Liquid

At low energies, only forward scatterings are important (generically)

- → Quasiparticles have long life time
- \rightarrow electron has a finite over-lap with quasiparticle Z > 0 adiabatically connected to non-interacting Fermi gas

Emergent symmetry in Fermi Liquid

[Haldane]

$$H = \sum_{k} \epsilon_k c_k^{\dagger} c_k + \sum_{k,k',q} V_q c_{k+q}^{\dagger} c_{k'-q}^{\dagger} c_{k'} c_k$$

Low energy theory:

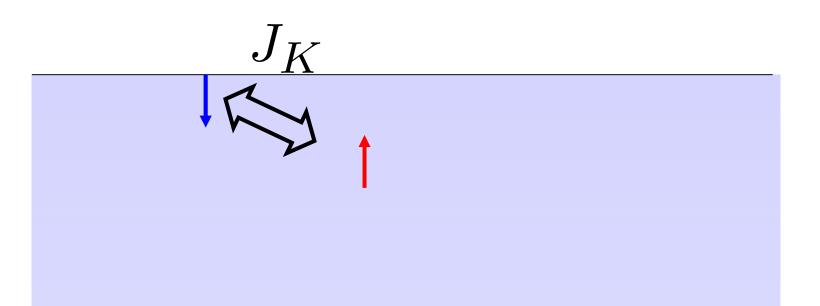
$$H_{eff} = \sum_{k} \epsilon_k c_k^{\dagger} c_k + \sum_{k,k'} f(k,k') (c_k^{\dagger} c_k) (c_{k'}^{\dagger} c_{k'})$$

Infinite number of emergent U(1) symmetries : $\; c_k
ightarrow e^{i heta_k} c_k \;$

Single impurity in metal

Anderson model

$$H = \sum_{k,\sigma} \epsilon_{k\sigma} c_{k\sigma}^{\dagger} c_k + \sum_{\sigma} V(c_{0\sigma}^{\dagger} f_{\sigma} + h.c.) + E_f n_f + U n_{f\uparrow} n_{f\downarrow}$$


$$O \longrightarrow E_f + U$$

$$E_f$$

Single impurity in metal

Low energy effective model: Kondo impurity model

$$H = \sum_{k,\sigma} \epsilon_{k\sigma} c_{k\sigma}^{\dagger} c_k + J_K \vec{s}_0 \cdot \vec{S}$$

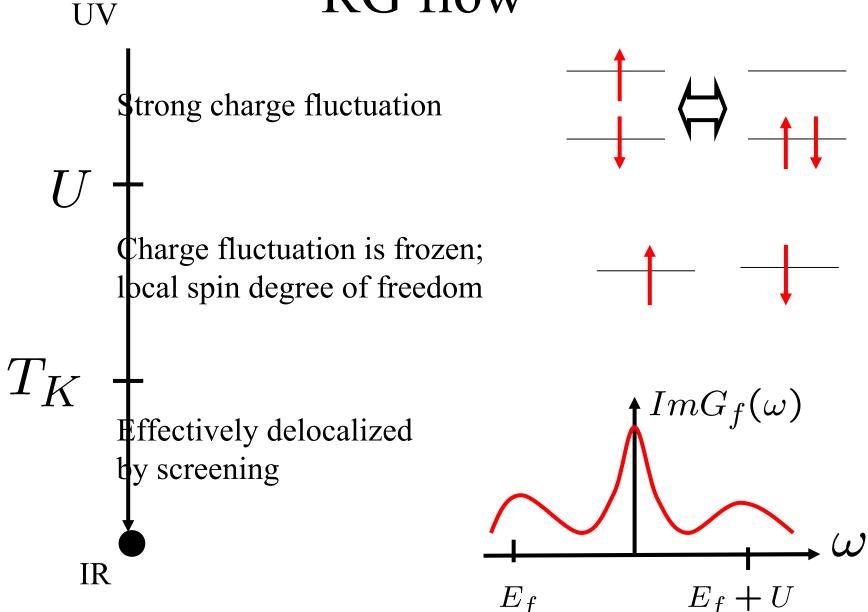
Single impurity in metal

Low energy effective model: Kondo model

$$H = \sum_{k,\sigma} \epsilon_{k\sigma} c_{k\sigma}^\dagger c_k + J_K \vec{s}_0 \cdot \vec{S}$$
 Kondo coupling logarithmically grows at IR :
$$\frac{\partial J_K}{\partial ln\Lambda} = -2J_K^2$$

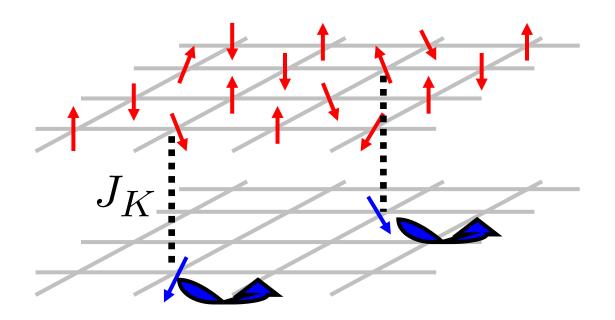
At low energy, the impurity spin is screened : Kondo singlet Cross-over temperature : $T_K \sim Dexp(-\frac{1}{2J_K\rho})$

Local Fermi liquid


Non-magnetic scattering center

Adiabatically connected to local Fermi liquid:

$$H = \sum_{k,\sigma} \epsilon_{k\sigma} c_{k\sigma}^{\dagger} c_k + \sum_{\sigma} V(c_{0\sigma}^{\dagger} f_{\sigma} + h.c.)$$

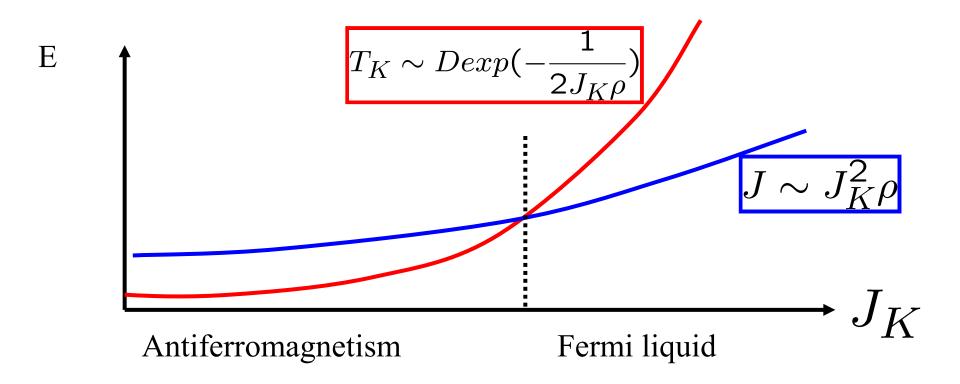

Local spin is absorbed into the conduction band and get delocalized.

RG flow

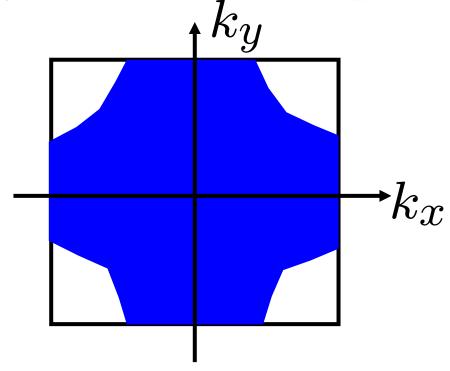
Kondo lattice model: the model for heavy fermion systems

$$H = \sum_{k,\sigma} \epsilon_{k\sigma} c_{k\sigma}^{\dagger} c_k + J_K \sum_r \vec{S}_r \cdot c_{r\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} c_{r\beta}$$

Kondo lattice model: the model for heavy fermion systems

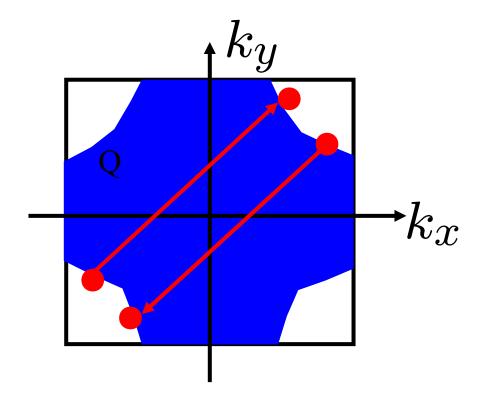

$$H = \sum_{k,\sigma} \epsilon_{k\sigma} c_{k\sigma}^{\dagger} c_k + J_K \sum_r \vec{S}_r \cdot c_{r\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} c_{r\beta}$$

- Two competing factors
 - Kondo screening $T_K \sim Dexp(-\frac{1}{2J_K\rho})$
 - RKKY interaction : spin-spin interaction medicated by conduction electrons


$$H_{RKKY} = \sum_{\langle r,r'\rangle} J(r-r')\vec{S}_r \cdot \vec{S}_{r'}$$

$$J \sim J_K^2 \rho$$

Doniach diagram


Heavy Fermi liquid phase

- Local moments are dissolved into a large FS
- Quasiparticle is mixture of conduction electron and felectrons: it becomes heavy, but obey FL description

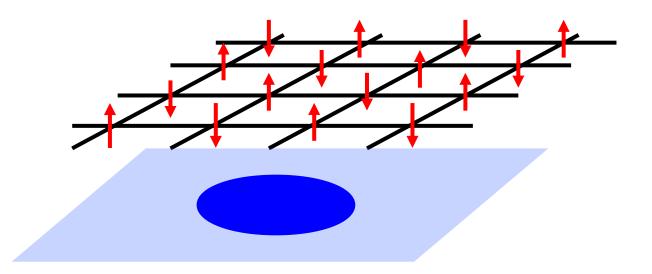
$$V_{FS} = n_c + n_f$$

Magnetic phase with a large FS (SDW)

- RKKY interaction mediates scatterings between quasiparticles, leading to a SDW instability
- Major part of FS remains intact

Phase transition from HFL to SDW

- Only the magnetic order undergoes a substantial change across the transition
- Integrate out fermions to obtain LGW effective action for the order parameter [Hertz,


$$s[\phi] = \int d\omega d^d k \left[\delta + k^2 + \frac{|\omega|}{\gamma(k)} \right] |\phi(k, \omega)|^2 + \dots$$

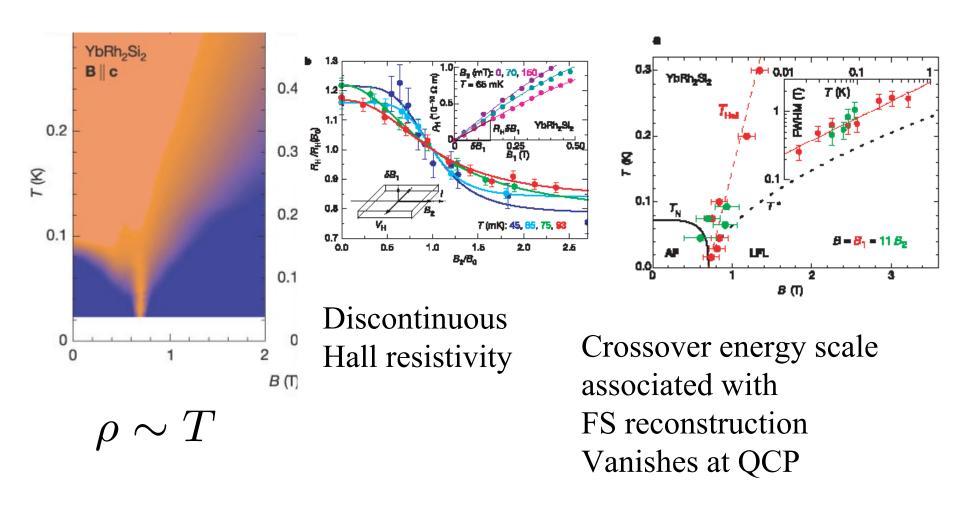
For AF,
$$\gamma(k)=\gamma_0 \rightarrow z=2$$

$$d_{eff}=d+z>d_c=4, \text{ for } d=3$$

Phase transition from HFL to SDW

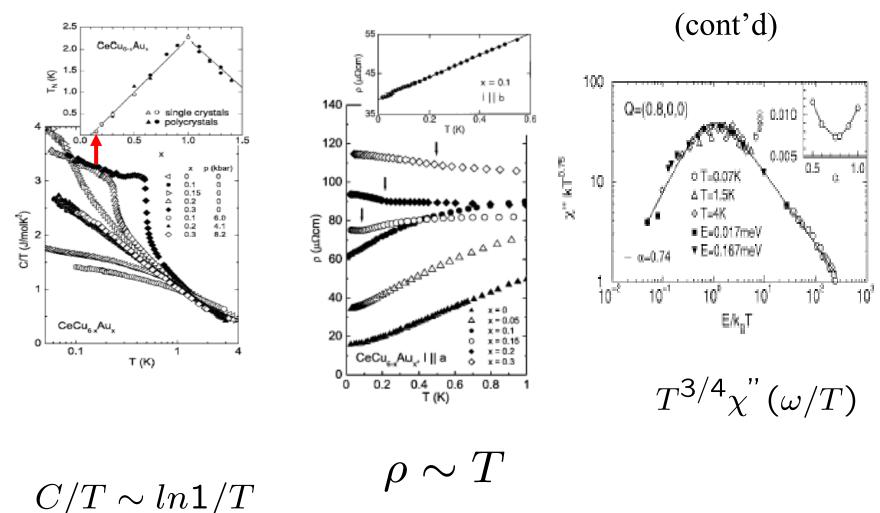
- For d=3, the critical theory is Gaussian (mean-field-like transition)
- (Dangerously) irrelevant operator becomes important for some physical response \rightarrow break down of ω/T scaling for spin susceptibility
- FS reconstruction is not drastic → continuous Hall conductivity, quantum oscillation across the phase transition

Local moment magnet (LMM)



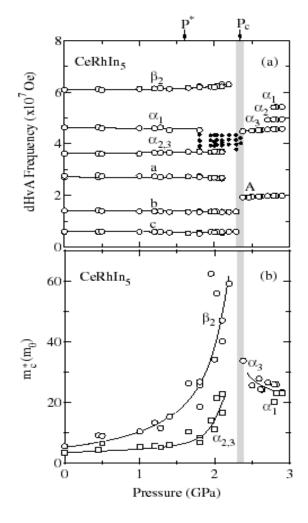
- Local moments are decoupled from conduction electrons, and form a magnetic order
- Conduction electrons form a small FS

Phase transition from HFL to LMM (if there is a direct continuous transition)


- The Kondo screening should be lost concomitantly as magnetic fluctuations become critical
- Multiple diverging scales at QCP
- FS reconstruction is drastic \rightarrow discontinous Hall conductivity, quantum oscillation across the phase transition (this is allowed in continuous transition if $Z \rightarrow 0$)
- NFL state at QCP
- No satisfactory theory available yet!

Experimental evidences for direct 2nd order transitions from HFL to LMM

[Custers et al.(2003); Paschen et al. (2004)]

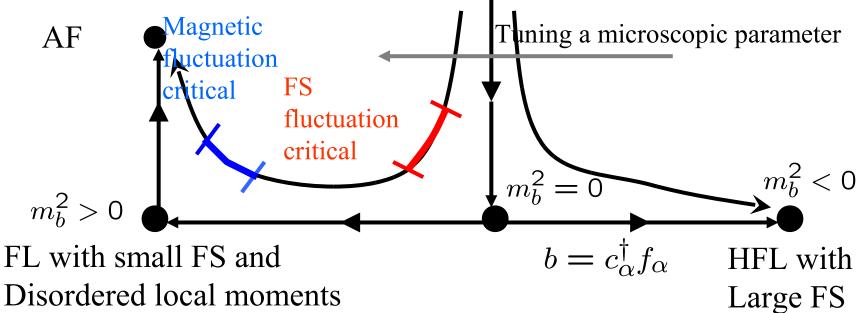

Experimental evidences for direct 2nd order transitions from HFL to LMM

[Lohneysen et al (96); Lohneysen and Mock et al(98); Schroder et al(98)]

Experimental evidences for direct 2nd order transitions from HFL to LMM

(cont'd)

Discontinuous quantum oscillation : FS reconstruction

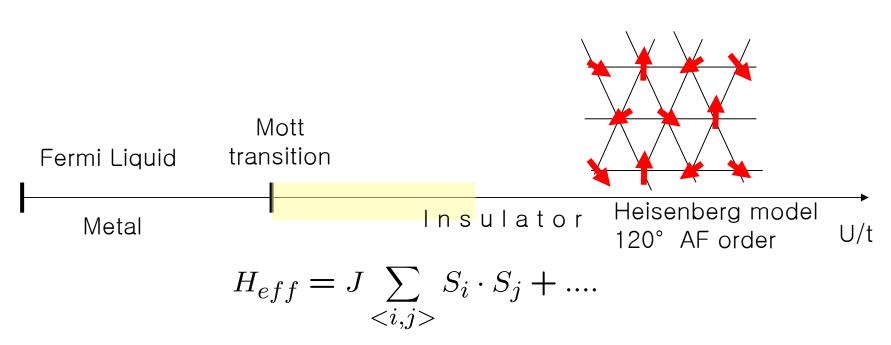

Diverging effective mass: vanishing Z at QCP

[Shishido et al. (2005)]

Two diverging time (length) scales

[Si, Robello, Ingersent, Smith(2001); Senthil, Sachdev, Vojta (2003)]

• Regard magnetic instability as a secondary & lower energy phenomenon that follows from the destruction of the Kondo screening which is the primary & high energy phenomenon (or the other way around)

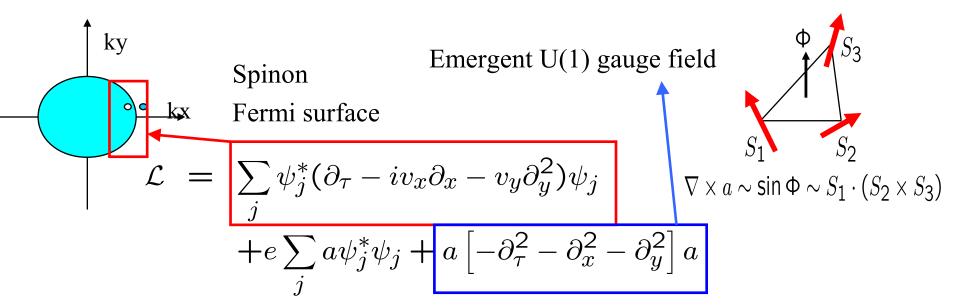


There is no concrete field theory that realizes this idea yet.

Non-Fermi liquid phase

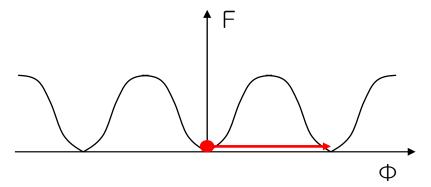
Hubbard Model

$$H = -t \sum_{\langle i,j \rangle} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} - \mu \sum_{i} n_{i}$$



Charge fluctuations / geometrical frustration may disrupt spins from ordering even at T=0 near the metal-insulator transition.

Spinon FS coupled with U(1) gauge field in 2+1D


$$\vec{S}_r = f_{r\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} f_{r\beta}$$
 Spinon : EM charge 0, spin 1/2

Gauge redundancy: $f_{r\alpha} \rightarrow f_{r\alpha} e^{i\theta_r}$

This theory arises in many strongly correlated electron systems: spin liquid in frustrated spin systems, half filled fractional quantum hall state high Tc superconductor

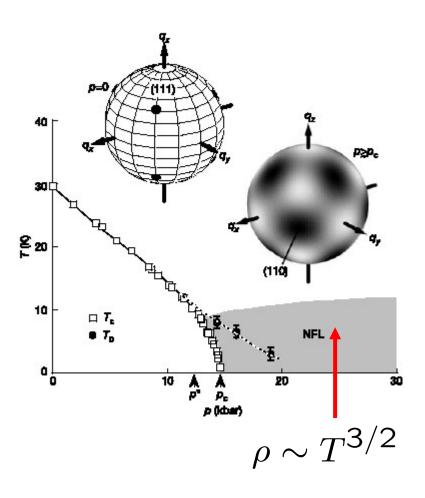
Spinon FS coupled with U(1) gauge field in 2+1D

- Gauge group is compact: instanton (monopole) allowed
- Instanton is irrelevant for any nonzero [NL (2008)] (cf. in relativistic theory, one needs a large N to suppress instanton) [Hermele et al. (2004)]
 - → deconfined (Coulomb) phase is stable against confinement

Two space dimension is very special:

- Large enough to have an extended Fermi surface
- Small enough to support strong quantum fluctuations
- → non-trivial QFT underlying NFL behavior

Spinon FS coupled with U(1) gauge field in 2+1D


No dimensionless parameter except for the fermion flavor N=2 Generalize to a large N

→ What is the nature of the theory?

[Polchinski(93); Althsuler, Ioffe, Millis(94); Kim, Furusaki, Wen, Lee(94); Nayak, Wilczek(94); Motrunich, Fisher (07); SL(09)]

- Low energy fermions are strongly coupled even in the large N limit
- Stable NFL phase (one-loop beta function exact)
- Genus expansion
- Weakly coupled description is absent even in the large N limit (string theory?)

A Non-Fermi liquid phase

- Ferromagnetic FL (with long wavelength spiral) at low pressures
- NFL behavior over a wide range of pressure at high pressures
- If the NFL state is due to a critical boson, how can a boson remain gapless with the robust critical exponent?
- Protected by emergent symmetry (gauge boson)?
- No satisfactory theory yet.

Some Open Problems in theories of strongly interacting fermions

- Important low energy phenomenology not understood
 - Direct continuous transition between HFL to LMM
 - NFL phase without fine tuning
- Low energy description for 2d NFL (e.g. FS coupled with U(1) gauge field)
 - Universal field theories?
 - Classification?
- Systematic RG is not available
 - Non-local scale transformation (momentum-shell RG)