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Consider the following phenomenological free energy 
and associated phase diagram obtained by varying T 
and A which control the parameters                   .

F =
∫

ddx
[
a1(∇xh)2 + a2(∇2

xh)2 + b1h
2 + b2h

4 + ....
]

a1, a2, b1, b2

d > 2
a2, b2 > 0

〈h〉 = 0

a1, b1 > 0

〈h〉 #= 0

a1,−b1 > 0

〈∇xh〉 $= 0

−a1, b1 > 0



•The line         is a line a continuous transitions.
•        is controlled by an     - theory fixed point.
•        is controlled by the “Lifshitz field theory:”           

〈h〉 = 0

〈h〉 #= 0

〈∇xh〉 $= 0

2

1

1− 2

1− L
L− 2

Invariant under,

t→ λ2t,x→ x;

[h] =
d− 2

2

L =
∫

dtddx
[
(∂th)2 − κ2(∇2

xh)2
]

h4



Now, there are a number of condensed matter 
systems that contain anisotropic critical points.

Instead of invariance under the usual scaling

they are invariant under the modified scaling

Such systems are said to exhibit dynamical critical 
phenomena with dynamical critical exponent,     .

Hohenberg and Halperin ‘77

t→ λt,x→ λx,

t→ λzt,x→ λx.

z



Bloch et al. 2007

Example                 fixed points:z != 1

Hertz ’76, Sachdev & Senthil 
’96, K. Yang 2004

•BEC-BCS crossover in cold atomic systems

•itinerant fermions in one dimension; ferro-transitions
  “              anomaly” in conductivity?

•liquid crystals: nematic, smectic-A,C transitions

•VBS transitions in coupled bilayer spin-systems

•generally at any tricritical point obtained by dialing 
two or more parameters, one of the parameters 
being the coefficient of the term quadratic in spatial 
derivatives.

Grinstein ’81, Chaikin & 
Lubensky’s book, (Wikipedia)

Honreich et al. ‘75

Vishwanath, Balents, & Senthil ‘03

.7(2e2/h)



In the example below, we will find that the Lifshitz 
theory arises as a certain approximation to a 
particular phase of strongly correlated electrons.  
Moving away from this approximation necessarily 
involves strongly coupled physics.

Now I’d like to provide an extended example 
where the Lifshitz theory arises.  
I focus on the Lifshitz theory for two reasons: 

1.It arises in descriptions of a variety of unrelated 
systems in various dimensions.
2.It provides useful intuition for interacting theories 
with the same symmetries.



An example of where the Lifshitz theory arises is 
provided by the quantum dimer model at the 
Rokhsar-Kivelson point.  
(This model is motivated by the study of the high 
temperature superconducting cuprates.)

It is energetically favorable for neighboring spins to 
point in the opposite direction.  

H = +
∑

〈i,j〉

|Jij |σi · σj.

To see this, begin with the quantum         
Heisenberg antiferromagnet in 2+1 dimensions (on 
a square lattice)

SU(2)



Restricting to nearest-neighbor interactions, the 
ground state possesses so-called Neel order.

By adding in, for example, next-nearest neighbor 
antiferromagnetic interactions, we can “frustrate” 
the Neel order, and thereby achieve other phases.

A dimer phase occurs when each spin forms a 
spin singlet with a single neighboring spin.    

=−
1√
2

( )

〈Mz〉 ∼ cos(πx1 + πx2)

(working at zero temperature)



(Spectroscopic studies of the normal state of 
the high temperature superconductors lead 
some to believe that there is separation of 
charge and spin degrees of freedom.

Parenthetical high       comment. Tc

Dimer models provide simple toy models 
where the charge gap has been taken to infinity 
(and, therefore, effectively decoupled), while 
retaining the spin degrees of freedom. 

In such a model, one then tries to find ground 
states of model Hamiltonians where the spin 
degrees of freedom (spinons) are deconfined.)

Orgad et al.



The Rokhsar-Kivelson (RK) Hamiltonian 
describes the dynamics of such a dimer phase,  

.

The kinetic ( ) and potential ( ) terms act either by 
flipping or as the identity on “flippable plaquettes”, 
respectively.  Otherwise they give eigenvalue zero. 

t v

As a function of        the phase diagram (roughly) 
looks like:

v/t

columnar staggeredRK point
v/t

1

H =
∑

−t(| 〉〈 | + h.c.) + v(| 〉〈 | + | 〉〈 |)

Note: In writing down this Hamiltonian, we are vastly reducing the 
dimension of the Hilbert space: restricting only to dimer configurations.



The phase existing in the gray area,           , depends 
upon the lattice: its dimensionality, and whether or 
not it’s bipartite.

For example:
•d=2 bipartite: plaquette ... 
•d=2 non-bipartite (triangular):        RVB liquid ...Z2

RVB = resonating valence bond

general references: Fradkin’s book ’91, reviews by Sachdev, Moessner and Raman ‘08

(There are a number of more subtle phases around 
the RK point that I don’t mention.)

Moessner and Sondhi



0
12

−1
1
0 −1

−2

1↔ −1
−3↔ 3

1
−3

01.choose a zero plaquette with height     .
2.moving around an even vertex counter-clockwise, 
beginning at the zero plaquette (to the lower right 
of the vertex, for definiteness)
(a)increase the height by    if no dimer is crossed
(b)decrease the height by      if a dimer is crossed
3.moving around an odd vertex, change   
and              in 2. above.

h(x)

The continuum description of this model is the 
Lifshitz field theory.  Here’s the mapping:
Given any dimer configuration, we can associate a 
number,       , or height to each plaquette:



Henley ’97 discovered the long wavelength limit of 
this dimer/height model is described by the 
following (deformed) Lifshitz field theory. 

•non-relativistic
•parity and time-reversal invariance
•spatial           invariance
At the RK point, 
•                         scale invariance with dynamical 
critical exponent          .         
•                   “Kahler” invariance.

SO(2)
v = t

The Lifshitz field theory has the following properties:

h→ h + f(z) + f̄(z̄)
z = 2

τ → λzτ,x→ λx

L =
∫

dτd2x
[
(∂τh)2 − (1− v

t
)(∇xh)2 − (∇2

xh)2
]



This Lifshitz theory captures a few gross properties 
of the RK model, e.g.:

1. critical for v = t

0−1
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columnar staggeredRK point
v/t

∇x h

2.columnar phase:         ,      v < t 〈∇xh〉 = 0

v > t3.staggered phase:         ,      〈∇xh〉 $= 0



Further, the RK point is an example of so-called 
deconfined criticality where new degrees of 
freedom emerge or deconfine at the critical point.

Here, the deconfined degrees of freedom are 
spinons.∫

∂A
∇h =

∫

A
σ h(r) =

∫

r′
σ(r′) log(r − r′)

E =
∫

(∇2h)2 ∼
∫

r

∫

r′
σ(r)σ(r′)δ(r − r′)

Plugging this solution into energy functional, we find 
the vortices are free.  (Compare this to the 
logarithmic interaction obtained with linear 
dispersion,          .)(∇h)2

 where        represents the vortex density.σ



Now the RK theory is supposed to be a toy model 
describing a certain phase of strongly correlated 
electrons.  

And the derivation by Henley of the Lifshitz field 
theory is mean field theoretical in nature. 

It is, therefore, natural to ask if there exist other 
weakly coupled descriptions of (strongly interacting) 
P and T preserving             theories. 

Further, there exists a strongly interacting        
generalization of the Lifshitz field theory studied by 
Freedman, Nayak, and Shtengel.     

SU(2)

z != 1



In the remainder of the talk, I will introduce a 
candidate weakly curved gravitational description of 
strongly coupled anisotropic fixed points.

Note: I do NOT mean that I am describing a dual 
to the Lifshitz field theory itself!  Only strongly 
coupled versions with the same symmetries.

Because I will mostly focus on the case,            , I 
will sometimes refer to these fixed points as 
Lifshitz-like.  By this, I mean a            , parity and 
time-reversal invariant field theory dual to our bulk 
gravitational system.  In fact, our gravitational 
system will actually be valid for any          .

z = 2

z ≥ 1

z = 2



1.Guess a metric
2.Provide some support for the guess
a.2-pt function
b.RG flow

In the rest of (the bulk of) the talk I’ll do the 
following.

Note: I will focus on 3+1D bulk theories dual to 
2+1D “boundary” theories. (see M. Taylor’s ’08 paper on the 

generalization to other dimensions)



Therefore, we guess the metric

In the usual                     correspondence the                  
             conformal group of the field theory is 
geometrized by the         space,
SO(3, 2)

AdS4/CFT3

AdS4

It is invariant, e.g., under the anisotropic scaling,

Geometry.

t→ λzt,x→ λx, u→ λu.

ds2
AdS4

=
L2(−dt2 + dx2 + dy2 + du2)

u2 .

ds2
LiF = L2(− dt2

u2z
+

dx2 + dy2 + du2

u2
).



The classical gravity description is good when:
1.                    (weakly coupled string theory)  and
2.                    (low curvature), where        
(roughly) corresponds to the number of degrees of 
freedom in the holographically dual field theory.

gs ! 1
N ! 1 N2

Also, the (dual)‘t Hooft coupling,             .  The above 
limit is taken while keeping       large and fixed.

λ = gsN
λ

The        coordinate can be usefully thought to 
geometrize the RG scale of the holographic dual.

u

In the well-studied         example:                       .L4 = 4πgsNα′2AdS5



•Any internal symmetries of the field theory are 
matched by the compact part of the  metric.

I will not discuss any compact part.  Instead, I’ll 
focus on a truncation to 3+1dimensions.

•From now on, the overall length scale in the 
geometry,     , will be set to unity.

•All curvature invariants are finite.  

•There are, however, diverging tidal forces as one 
approaches the horizon             .u→∞

L

Note the following. ds2
LiF = L2(− dt2

u2z
+

dx2 + dy2 + du2

u2
).

(see Horowitz and Ross ’97 
for a discussion about BHs 

with such properties)



Consider the action:

The Lifshitz metric is a solution to the field 
equations derived from this action.  The field 
equations also determine the fluxes, C.C. and the 
parameter     :c

Sourcing the Geometry.

S =
∫

d4x
√

g(R− 2Λ)− 1
2

∫
(F(2) ∧ ∗F(2) − F(3) ∧ ∗F(3))− c

∫
B(2) ∧ F(2).

Λ = −z2 + z + 4
2

,

c2 = 2z,

F(2) = A
du ∧ dt

uz+1
, with A2 = 2z(z − 1),

F(3) = B
du ∧ dx ∧ dy

u3
, with B2 = 4(z − 1).



Alternatively, we can source the Lifshitz metric with 
a massive gauge field of mass,              , by dualizing 
the 3-form flux and letting the scalar field Higgs the 
vector.  The 2-form flux and C.C. remain the same.

m2 = 2z

I discuss the solution on the previous page in the 
remainder because of an holographic 
renormalization group flow that exists using the 2- 
and 3-form fluxes in an essential way.

From now on, I specialize to the case          .z = 2



Let’s test our guess: couple a real scalar to the 
background metric.  It obeys the equation,

where                           satisfy∆±, ∆+ ≥ ∆−

Near the boundary,          ,      takes the formu = 0 φ

      is not allowed to take arbitrary values.  A 
generalized Breitenlohner-Freedman bound 
requires                 .  In the remainder we set                 

m2

m2 > −4
m2 = 0.

2-point Correlator.

∂2
uφ− 3

u
∂uφ + u2∂2

τφ + (∂2
x + ∂2

y)φ− m2

u2
φ = 0.

∆(∆− 4) = m2.

φ ∼ c1u
∆+φ+(τ, x, y) + c2u

∆−φ−(τ, x, y),



Setting              we see that       should be seen as 
the fluctuation dual to a marginal operator                   
      since marginal operators have dimension            
where     is the number of spatial dimensions.             

m2 = 0 φ

z + d
d

Oφ

Recall:
∫

dtddx O(x)→ λz+d−[O(x)]

∫
dtddx O(x)

under the anisotropic scale transformation.



Naively use the usual AdS/CFT prescription for 
calculating two-point correlation functions (at zero 
temperature):

φ.

(The full power of holographic renormalization is 
necessary to get consistent normalizations of all 
the n-point functions.  However, the “naive” 
procedure described above will be good enough for 
us.)

1.solve the scalar E.O.M with boundary conditions
a.                        and        b.                           
2.plug this solution back into the action
3.differentiate this generating functional twice w.r.t. 

φ(0) = 1 lim
u→∞

φ(u) = 0



The result is:

Note:

〈Oφ(−k, ω)Oφ(k, ω)〉 = − 1
2k

2|ω|− 1
8 (4ω2 − k4) log(|ω|)

− 1
8 (4ω2 − k4)ψ( 3

2 + k2

4|ω| ).

•the correlator corresponds to a dimension four 
operator and for fixed time decays as           .
•only the third term gives rise (upon Fourier 
transformation) to correlations between points 
with both spatial and temporal separation
•the first two terms contribute terms localized in 
space with long-range correlations in time.  Such 
terms may be related to the ultra-local behavior 
discussed by Ghaemi, Vishwanath, and Senthil.

1/|x|8



An RG Flow.

This is analogous to the flow generated by            
in the Lifshitz field theory:

We found an holographic renormalization group 
flow between the Lifshitz-like spacetime and         .AdS4

(∇xh)2

Perturbed by this operator, the Lifshitz field theory 
would flow towards the free Gaussian fixed point 
(and presumably hit the Wilson-Fisher one).

L =
∫

dtd2x[(∂th)2 − (∇2
xh)2].



The flow is achieved by making the ansatz (after 
switching to r=1/u coordinates):

ds2 = −r4f(r)2dt2 + r2(dx2 + dy2) + g(r)2dr2/r2

F(2) = 2h(r)f(r)g(r)rdr ∧ dt, Λ = −5,

F(3) = 2j(r)g(r)rdr ∧ dx ∧ dy.



Plugging this ansatz into the EOMs, we are left with 
four independent equations.  The first determines     
in terms of                      .  The three remaining 
equations form a closed set.  We concentrate on 
these three equations in the remainder.

f(r)
g(r), h(r), j(r)

1.

2.

3.

4.

2rf ′/f = (5− h2 + j2)g2 − 5

rg′ = 1
2g3(h2 + j2 − 5) + 3

2

rh′ = 2gj − 2h

rj′ = 2gh + 1
2j + 1

2jg2(h2 − j2 − 5)



Before we (numerically) solve these equations, let’s 
investigate the stability of the Lifshitz fixed point by 
performing a linearized fluctuation analysis (within 
the above ansatz).

The resulting linear equations take the general form:

It was found that the Lifshitz fixed point has two 
relevant directions and one marginal direction.

dv
d log(r)

= Mv, vT =
(

g(r) h(r) j(r)
)
.

The eigenvalues of the matrix       determine the 
relevancy of the operators dual to the fluctuations 
represented by                      .          

M

g(r), h(r), j(r)



Now imagine perturbing the Lifshitz fixed point by 
the relevant operators found in the previous slide.  

Using the intuition we mentioned from the free 
field theory example, we can consider a flow to an            
          spacetime.AdS4

Indeed, by numerically solving the nonlinear ODEs, 
we can find such an holographic RG flow.



The Lifshitz-like spacetime corresponds to 

while           corresponds toAdS4

Below I display the RG flow of                          .g(r), h(r), j(r)

      flows correctly to           as well (but I don’t 
show this).
f(r) 1/r

f(r) = g(r) = h(r) = j(r) = 1,

AdSAdS AdS

Lif
Lif Lif

g(r) h(r) j(r)

r r r

f(r) ∼ 1/r; g(r) = nonzero constants;
h(r) = j(r) = 0.



Summary (so far):

•P, T invariant critical points with          occur in 
many condensed matter systems.
•We provided candidate weakly coupled duals of 
strongly interacting theories with such symmetries.
•Specializing to the           case, we tested (did 
consistency checks on) our guess by computing a 
two-point correlation function and finding a RG 
flow to           space.

z != 1

z = 2

AdS4



First, one could put the theory at finite 
temperature.  
Second, one could study other field theoretic 
models with         .  
Third, it’s interesting to ask how 
“(meta-)observables” like the entanglement entropy 
change when one considers field theories with 
anisotropic scale invariance.
Fourth, it’s important to find microscopic 
realizations of the bulk gravity solutions.

There are a number of directions for 
future work.

I would like to briefly describe work in these 
directions.

z != 1



1.Finite Temperature Solutions.
Ghaemi, Vishwanath, and Senthil studied the Lifshitz 
field theory at finite temperature, T.  They found 
that two-point correlators of the local operators of 
the theory              displayed a certain type of 
ultra-local behavior at equal times.

e2πih(x)

in the thermodynamic limit.  Long-ranged 
correlations are restored by moving away from the 
scaling limit by including the leading irrelevant 
operators.  It would be interesting to find such 
behavior on the gravity side.  Finite T tranport 
properties would also be interesting to study.

〈e2πih(0,x)e−2πih(0,0)〉 ∼ δ(x)



Recently, Danielsson and Thorlacius, Mann, and Peet 
et al. made progress towards understanding gravity 
duals of field theories with              scaling.z = 2

Among many things, DT numerically found a black 
hole with Lifshitz-like asymptotics and took its 
temperature.  Mann generalized the work of DT to 
black holes with horizon topologies of higher 
genera.  Peet et al. studied solutions with           .

It would be nice to find an analytic solution (for flat 
horizon topologies).  And it would also be 
interesting to see if any ultra-locality existed in any 
correlators.

z != 1



2. An             Generalization of the Abelian Lifshitz 
Field Theory.

SU(N)

Freedman, Nayak, and Shtengel (FNS) studied the 
following                      generalization:SU(2)z = 2

H =
1
g2

∫
dτd2x[Ei∂τAi + A0DiEi −

1
2
(DiEj)2 +

1
2
B2 + ...]

By dualizing the scalar field into a vector in 2+1 D, 
the abelian Lifshitz theory takes the form,

where the ellipses represent quartic       and                 
terms.  This action is invariant under,

E4

x→ λx, τ → λ2τ, Ei → λ−1Ei, Ai → λ−1Ai, A0 → λ−2A0.

H =
∫

dτd2x[(∂iEj)2 + B2].

EiEjFij

see also Horava ’08, and Das & 
Murthy ’09 for related work



There are a number of reasons to be interested in 
this model.

A.  Study the properties of a SU(N) generalization.

B.Is this model critical as is?  If not, we could 
consider looking for the analogue of Banks-Zaks 
fixed points by adding in appropriate matter fields  



D.Further, study of this theory could be useful in 
understanding the holographic duals to the 
gravitational systems described in this talk.

C. Notice that a Chern-Simons term,                        , 
is also marginal in this theory.  This means that     
the Chern-Simons term and magnetic term       can 
compete.  This is to be contrasted with what usually 
happens in pure 3D gauge theories.

A ∧ dA + 2/3A3

B2



There is a more general reason to be interested in 
the FNS + CS theory.  

Topologically ordered systems are described by a 
topological field theory in the deep IR.  

The leading irrelevant operators describe the 
departure away from the scaling limit.  

The ‘regular’ CS theory is a good example of the 
above situation; the gauge field kinetic term is the 
leading irrelevant operator.

Because the gauge kinetic term is marginal in a 3d 
theory with modified scaling, it is interesting to ask 
how the above picture changes.  



Let me summarize our current understanding of 
this theory.  To one-loop, using background field 
gauge, we find the following beta functions  

H =
∫

dτd2xTr[
1
g2
1

(Ei∂τAi + A0DiEi)−
1

2g2
2

(DiEj)2 +
1

2g2
3

B2]

∂tg3 ∼
g2
1g2

3

g2
∂tg2 ∼ ±g2

1g3∂tg1 ∼ −
g3
1g3

g2

where                    .  

So the first coupling is IR free, imposing the Gauss’ 
law constraint during the flow to the IR, while the 
third coupling is UV free.  The flow of the second 
coupling is work in progress. 

∂t :=
∂

∂ log(")



3.Entanglement Entropy

Entanglement entropy has been used in quantum 
information studies.  This quantity measures the 
non-local correlations of the ground state 
wavefunction.  (Besides black holes) it has been 
applied to quantum critical systems and systems in 
a topological phase.  The entanglement entropy can 
be thought of as a quantum number partially 
characterizing the phase of the system.

Ryu and Takayanagi (RT) have given a prescription 
for calculating the entanglement entropy for 
theories with a classical gravitational dual.



In quantum field theory, the entanglement entropy 
is calculated in the following way.
•Take the system to be in the pure state       .  
•Form the density matrix            .  
•Partition the system into two subsystems         .
•Form the reduced density matrix 
by performing a partial trace over the degrees of 
freedom in region    
•The entanglement entropy is now identified by  
the von Neumann entropy                        
associated to the mixed state described by the 
reduced density matrix      .

|Ψ〉

B.

A, B
ρA = TrB |Ψ〉〈Ψ|

ρA

TrA

[
ρA log(ρA)

]

|Ψ〉〈Ψ|

(Luckily, we don’t need to know/remember any of the 
above to actually use the RT holographic method.)



We wish to calculate the entanglement between 
two regions A,B on a constant time surface in the 
boundary.  The prescription of RT is that the 
entanglement entropy is simply the area divided by      
        of the minimal surface extending into the bulk 
which ends on the boundary between A and B. 

BB

A

Area =
∫ √

Det(gγA)

4GN



The scaling of the entanglement entropy is best 
understood in 1+1 D CFTs:

Sentanglement =
c

3
log(

!

a
),

Using the prescription given by RT for the dual to a 
2+1 D spacetime with dispersion             , the 
coefficient of the log is modified in a simple way 
consistent with the anisotropy,

where      is the size of region A,    is an UV cutoff, 
and                        is the central charge.  This 
result is consistent with the gravity calculations.

! a
AB B

!

ω ∼ kz

c (= 3L/2GN )

Sanisotropic entanglement =
Lz

2GN
log(

!

a
).



There has been some recent progress in finding 
anisotropic spacetimes from string theoretic UV 
completions. Azeyanagi, Li, and Takayanagi 

(ALT) ‘09

ALT found the following solution from IIB SUGRA:

R̃2 =
11
12

R2 X5

This geometry is sourced by a:
1.Cosmological Constant 
and the two fields, 
2.Axion                         
3.Dilaton.                       

- Einstein 5-manifold

ds2 = R̃2(r3(−dt2 + dx2 + dy2) + r2dw2 +
dr2

r2
) + R2ds2

X5

4. UV Embedding.



The idea is that this solution is dual to a fixed point 
with               invariance in 3+1 dimensions.z = 3/2
However, the dilaton and axion break the scaling 
symmetry.

A microscopic D3-D7 system motivates the above 
solution.

The objection is more serious for the axion           .  
This explicitly violates the scaling symmetry.

χ ∼ w

The dilaton             shifts by an arbitrary constant 
in any scale transformation.  Approaching the 
boundary            any shift becomes unimportant.  
In the regime of small r, where string theoretic 
corrections can be neglected, it is the arbitrarily 
large N which protects this scaling symmetry. 

eφ ∼ r2/3

r →∞



Nevertheless, ALT’s construction is instructive and 
it would be interesting to learn how the scale non-
invariance of the dilaton and axion fields manifests 
itself in correlators or other observables of the 
dual field theory.

For example, one could imagine the following 
relation in the boundary theory between the trace 
of the stress tensor and operators dual to 
fluctuations of the dilaton and axion fields:

Tµ
µ =

∑

a

βaOa.



Other future directions.
•We studied a scalar probe of the Lifshitz spacetime.  
One can imagine studying other types of fluctuations.  
Look for possible phase transitions.

•“Holographically understand” the fluctuations about the 
Lifshitz-like spacetime.  Such fluctuations can be mapped 
to operators in the holographic dual.

•Study transport properties by “phenomenologically” 
incorporating a bulk gauge field into the spacetime, and 
computing correlators.

•Provide a string theoretic embedding of an/the 
anisotropic spacetime.  


