Toward an AdS/cold atom correspondence

D. T. Son
Institute for Nuclear Theory, University of Washington

Plan

- History/motivation
- BCS/BEC crossover
- Unitarity regime
- Schrödinger symmetry: nonrelativistic conformal invariance
- Geometric realization of Schrödinger symmetry
- Green's functions in vacuum
- Conclusion

Collaborators: Y. Nishida, M. Rangamani, S. Ross, E. Thompson

Refs.: Y. Nishida, DTS, 0706.3746 (PRD)
Balasubramanian and McGreevy, 0804.4053 (PRL 2008)
DTS, 0804.3972 (PRD 2008)
Rangamani, Ross, DTS, Thompson, arXiv:0811.2049

Will not talk about

- Finite temperature and density
- "Lifshitz geometry"

BCS mechanism

Explains superconductivity of metals

Consider a gas of spin- $1 / 2$ fermions $\psi_{a}, a=\uparrow, \downarrow$
No interactions: Fermi sphere: states with $k<k_{\mathrm{F}}$ filled
Cooper phenomenon: any attractive interaction leads to condensation

$$
\left\langle\psi_{\uparrow} \psi_{\downarrow}\right\rangle \neq 0
$$

BCS/BEC crossover

Critical temperature:

$$
T_{c} \sim \epsilon_{\mathrm{F}} e^{-1 / g}, \quad g \ll 1
$$

Leggett (1980): If one increases the interaction strength g, how large can one make $T_{c} / \epsilon_{\mathrm{F}}$?

BCS/BEC crossover

Critical temperature:

$$
T_{c} \sim \epsilon_{\mathrm{F}} e^{-1 / g}, \quad g \ll 1
$$

Leggett (1980): If one increases the interaction strength g, how large can one make $T_{c} / \epsilon_{\mathrm{F}}$?

Strong attraction: leads to bound states, which form a dilute Bose gas
$T_{c}=$ temperature of Bose-Einstein condensation $\approx 0.22 \epsilon_{\mathrm{F}}$.

Unitarity regime

Consider in more detail the process of going from BCS to BEC Assume a square-well potential, with fixed but small range r_{0}.

- $V_{0}<1 / m r_{0}^{2}$: no bound state
- $V_{0}=1 / m r_{0}^{2}$: one bound state appears, at first with zero energy
- $V_{0}>1 / m r_{0}^{2}$: at least one bound state

Unitarity regime (II)

Unitarity regime: take $r_{0} \rightarrow 0$, keeping one bound state at zero energy.

In this limit: no intrinsic scale associated with the potential
In the language of scattering theory: infinite scattering length $a \rightarrow \infty$
s-wave scattering cross section saturates unitarity

Boundary condition interpretation

Unitarity: taking Hamiltonian to be free:

$$
H=\sum_{i} \frac{\mathbf{p}_{i}^{2}}{2 m}
$$

but imposing nontrivial boundary condition on the wavefunction:

When $\left|\mathbf{x}_{i}-\mathbf{y}_{j}\right| \rightarrow 0$:

$$
\Psi \rightarrow \frac{C}{\left|\mathbf{x}_{i}-\mathbf{y}_{j}\right|}+0 \times\left|\mathbf{x}_{i}-\mathbf{y}_{j}\right|^{0}+O\left(\left|\mathbf{x}_{i}-y_{j}\right|\right)
$$

Free gas corresponds to

$$
\Psi \rightarrow \frac{0}{\left|\mathbf{x}_{i}-\mathbf{y}_{j}\right|}+C+O\left(\left|\mathbf{x}_{i}-y_{j}\right|\right)
$$

Field theory interpretation

Consider the following model

$$
S=\int d t d^{d} x\left(i \psi^{\dagger} \partial_{t} \psi-\frac{1}{2 m}|\nabla \psi|^{2}-c_{0} \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow}\right)
$$

Dimensional analysis:

$$
[t]=-2, \quad[x]=-1, \quad[\psi]=\frac{d}{2}, \quad\left[c_{0}\right]=2-d
$$

Contact interaction is irrelevant at $d>2$

Field theory interpretation

Consider the following model

$$
S=\int d t d^{d} x\left(i \psi^{\dagger} \partial_{t} \psi-\frac{1}{2 m}|\nabla \psi|^{2}-c_{0} \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow}\right)
$$

Dimensional analysis:

$$
[t]=-2, \quad[x]=-1, \quad[\psi]=\frac{d}{2}, \quad\left[c_{0}\right]=2-d
$$

Contact interaction is irrelevant at $d>2$
RG equation in $d=2+\epsilon$:

$$
\frac{\partial c_{0}}{\partial s}=-\epsilon c_{0}-\frac{c_{0}^{2}}{2 \pi}
$$

Two fixed points:

- $c_{0}=0$: trivial, noninteracting
- $c_{0}=-2 \pi \epsilon$: unitarity regime

Field theory in $d=4-\epsilon$ dimensions

Sachdev, Nikolic; Nishida, DTS; Nussinov and Nussinov

$$
\begin{aligned}
S=\int d t d^{d} x\left(i \psi^{\dagger} \partial_{t} \psi-\frac{1}{2 m}|\nabla \psi|^{2}-g \phi \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger}\right. & -g \phi^{*} \psi_{\downarrow} \psi_{\uparrow} \\
& \left.+i \phi^{*} \partial_{t} \phi-\frac{1}{4 m}|\nabla \phi|^{2}+C \phi^{*} \phi\right)
\end{aligned}
$$

C fined tuned to criticality
Dimensions: $[g]=\frac{1}{2}(4-d)=\frac{1}{2} \epsilon$
RG equation for g :

$$
\frac{\partial g}{\partial \ln \mu}=-\frac{\epsilon}{2} g+\frac{g^{3}}{16 \pi^{2}}
$$

Fixed point at $g^{2}=8 \pi^{2} \epsilon$

Examples of systems near unitarity

- Neutrons: $a=-20 \mathrm{fm},|a| \gg 1 \mathrm{fm}$
- Trapped atom gases, with scattering length a controlled by magnetic field

Experiments

A cloud of gas is released from the trap:

Vortices indicating superfluidity

Ground state energy

George Bertsch asked the question:

What is the ground state energy of a gas of spin-1/2 particles with infinite scattering length, zero range interaction?

Ground state energy

George Bertsch asked the question:

What is the ground state energy of a gas of spin-1/2 particles with infinite scattering length, zero range interaction?

Dimensional analysis: no intrinsic length/energy scale, only density n. So:

$$
\epsilon \equiv \frac{E}{V}=\# \frac{n^{5 / 3}}{m}
$$

The same parametric dependence as the energy of a free gas

$$
\epsilon(n)=\xi \epsilon_{\text {free }}(n)
$$

Ground state energy

George Bertsch asked the question:
What is the ground state energy of a gas of spin-1/2 particles with infinite scattering length, zero range interaction?

Dimensional analysis: no intrinsic length/energy scale, only density n. So:

$$
\epsilon \equiv \frac{E}{V}=\# \frac{n^{5 / 3}}{m}
$$

The same parametric dependence as the energy of a free gas

$$
\epsilon(n)=\xi \epsilon_{\mathrm{free}}(n)
$$

George Bertsch announced that he would give a money prize for the best estimate of ξ

Ground state energy

George Bertsch asked the question:
What is the ground state energy of a gas of spin-1/2 particles with infinite scattering length, zero range interaction?

Dimensional analysis: no intrinsic length/energy scale, only density n. So:

$$
\epsilon \equiv \frac{E}{V}=\# \frac{n^{5 / 3}}{m}
$$

The same parametric dependence as the energy of a free gas

$$
\epsilon(n)=\xi \epsilon_{\text {free }}(n)
$$

George Bertsch announced that he would give a money prize for the best estimate of ξ

Since then, ξ is called the Bertsch parameter.

Analogy with AdS/CFT

$$
\epsilon(n)=\xi \epsilon_{\text {free }}(n)
$$

Current estimate: $\xi \approx 0.4$
Similar to pressure in $\mathcal{N}=4$ SYM theory

$$
\left.P(T)\right|_{\lambda \rightarrow \infty}=\left.\frac{3}{4} P(T)\right|_{\lambda \rightarrow 0}
$$

Is there an useful AdS/CFT-type duality for unitarity Fermi gas?
As in $\mathcal{N}=4$ SYM, perhaps we should start with the vacuum (zero temperture and density)

- More symmetry
- Temperature and chemical potential can (hopefully) be accomodated later

Vacuum

Relativistic vacuum

Vacuum

Relativistic vacuum

Nonrelativistic vacuum

Vacuum

Relativistic vacuum

Nonrelativistic vacuum

Nonrelativistic vacuum is much simpler (no particle-hole pair creation)
Still: nontrivial conformal dimensions and correlation functions.

AdS/CFT correspondence

$\mathcal{N}=4$ super-Yang-Mills theory \Leftrightarrow type IIB string theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$.
First evidence: matching of symmetries $\mathrm{SO}(4,2) \times \mathrm{SO}(6)$.

- $\mathrm{SO}(4,2)$: conformal symetry of 4-dim theories $\left(\mathrm{CFT}_{4}\right)$, isometry of AdS_{5}
- $\mathrm{SO}(6): \sim \mathrm{SU}(4)$ is the R-symmetry of $N=4 \mathrm{SYM}$, isometry of S^{5}.

Conformal algebra: $P^{\mu}, M^{\mu \nu}, K^{\mu}, D$

$$
\begin{gathered}
{\left[D, P^{\mu}\right]=-i P^{\mu}, \quad\left[D, K^{\mu}\right]=i K^{\mu}} \\
{\left[P^{\mu}, K^{\nu}\right]=-2 i\left(g^{\mu \nu} D+M^{\mu \nu}\right)}
\end{gathered}
$$

Schrödinger algebra

Nonrelativistic field theory is invariant under:

- Phase rotation $M: \psi \rightarrow \psi e^{i \alpha}$
- Time and space translations, H and P^{i}
- Rotations $M^{i j}$
- Galilean boosts K^{i}
- Dilatation $D: \mathbf{x} \rightarrow \lambda \mathbf{x}, t \rightarrow \lambda^{2} t$
- Conformal transformation C :

$$
\begin{gathered}
\mathbf{x} \rightarrow \frac{\mathbf{x}}{1-\lambda t}, \quad t \rightarrow \frac{t}{1-\lambda t} \\
{\left[D, P^{i}\right]=-i P^{i}, \quad\left[D, K^{i}\right]=i K^{i}, \quad\left[P^{i}, K^{j}\right]=-\delta^{i j} M} \\
{[D, H]=-2 i H, \quad[D, C]=2 i C, \quad[H, C]=i D}
\end{gathered}
$$

D, H, C form a $\mathrm{SO}(2,1)$
Chemical potential $\mu \psi^{\dagger} \psi$ breaks the symmetry.

Generators

$$
\begin{gathered}
M=\int d \mathbf{x} n(\mathbf{x}), \quad P_{i}=\int d \mathbf{x} j_{i}(\mathbf{x}) \\
K_{i}=\int d \mathbf{x} x_{i} n(\mathbf{x}), \quad C=\frac{1}{2} \int d \mathbf{x} x^{2} n(x), \quad D=-\int d \mathbf{x} x_{i} j_{i}(\mathbf{x})
\end{gathered}
$$

$H \rightarrow H+\omega^{2} C$: putting the system in an external potential $V(\mathbf{x})=\frac{1}{2} \omega^{2} x^{2}$.
Operator \mathcal{O} has dimension Δ if $[D, \mathcal{O}(0)]=-i \Delta \mathcal{O}(0)$
[$\left.D, K_{i}\right]=i K_{i}: K_{i}$ lowers dimension by 1
$[D, C]=2 i C: C$ lowers dimension by 2
Define primary operators: $\left[K_{i}, \mathcal{O}(0)\right]=[C, \mathcal{O}(0)]=0$

Operator-state correspondence

Nishida, DTS
Primary operator with dimension Δ

eigenstate in harmonic potential with
energy $\Delta \times \hbar \omega$

$$
\psi_{\uparrow} \psi_{\downarrow}
$$

Operator-state correspondence

Nishida, DTS
Primary operator with dimension Δ

eigenstate in harmonic potential with energy $\Delta \times \hbar \omega$

$$
\psi_{\uparrow} \psi_{\downarrow}
$$

Proof: let $\omega=1, H_{\text {osc }}=H+C ; \quad$ Define $\left|\Psi_{\mathcal{O}}\right\rangle=e^{-H} \mathcal{O}^{\dagger}(0)|0\rangle$
From Schrödinger algebra one finds $e^{H} H_{\mathrm{osc}} e^{-H}=C+i D$
from $\left[C, \mathcal{O}^{\dagger}(0)\right]=0,\left[D, \mathcal{O}^{\dagger}(0)\right]=-i \Delta_{\mathcal{O}}$, and $C|0\rangle=D|0\rangle=0$:

$$
H_{\mathrm{osc}}\left|\Psi_{\mathcal{O}}\right\rangle=\Delta_{\mathcal{O}}\left|\Psi_{\mathcal{O}}\right\rangle
$$

Example

Two particles in harmonic potential: ground state with unitarity boundary condition can be found exactly

$$
\Psi(\mathbf{x}, \mathbf{y})=\frac{e^{-\left(x^{2}+y^{2}\right) / 2}}{|\mathbf{x}-\mathbf{y}|}, \quad E_{0}=2 \hbar \omega
$$

\longrightarrow Dimension of operator $O_{2}=\psi_{\uparrow} \psi_{\downarrow}$ is 2 (naively 3)

Example

Two particles in harmonic potential: ground state with unitarity boundary condition can be found exactly

$$
\Psi(\mathbf{x}, \mathbf{y})=\frac{e^{-\left(x^{2}+y^{2}\right) / 2}}{|\mathbf{x}-\mathbf{y}|}, \quad E_{0}=2 \hbar \omega
$$

\longrightarrow Dimension of operator $O_{2}=\psi_{\uparrow} \psi_{\downarrow}$ is 2 (naively 3)
Can be see explicitely: two-particle wavefunctions behave as

$$
\Psi(\mathbf{x}, \mathbf{y}) \sim \frac{1}{|\mathbf{x}-\mathbf{y}|}, \quad x \rightarrow y
$$

the operator O_{2} has to be regularized as

$$
O_{2}(\mathbf{x})=\lim _{\mathbf{x} \rightarrow \mathbf{y}}|\mathbf{x}-\mathbf{y}| \psi_{\uparrow}(\mathbf{x}) \psi_{\downarrow}(\mathbf{y})
$$

so that $\langle 0| O_{2}|\Psi(\mathbf{x}, \mathbf{y})\rangle$ is finite.
Lowest 3-body operators: $\Delta_{l=1}=4.27272 \ldots, \Delta_{l=0}=4.66622 \ldots$

Embedding the Schrödinger algebra

- $\operatorname{Sch}(d)$: is the symmetry of the Schrödinger equation

$$
i \frac{\partial \psi}{\partial t}+\frac{\nabla^{2}}{2 m} \psi=0
$$

- CFT_{d+2} : is the symmetry of the Klein-Gordon equation

$$
\partial_{\mu}^{2} \phi=0, \quad \mu=0,1, \cdots, d+1
$$

In light-cone coordinates $x^{ \pm}=x^{0} \pm x^{d+1}$ the Klein-Gordon equation becomes

$$
-2 \frac{\partial}{\partial x^{+}} \frac{\partial}{\partial x^{-}} \phi+\partial_{i} \partial_{i} \phi=0, \quad i=1, \cdots, d
$$

Restricting ϕ to $\phi=e^{-i m x^{-}} \psi\left(x^{+}, \mathbf{x}\right)$: Klein-Gordon eq. \Rightarrow Schrödinger eq.:

$$
2 i m \frac{\partial}{\partial x^{+}} \psi+\nabla^{2} \psi=0, \quad \nabla^{2}=\sum_{i=1}^{d} \partial_{i}^{2}
$$

This means $\operatorname{Sch}(d) \subset \mathrm{CFT}_{d+2}$

Embedding (2)

Sch (d) is the subgroup of CFT_{d+2} containing group elements which does not change the ansatz

$$
\phi=e^{i m x^{-}} \psi\left(x^{+}, x^{i}\right)
$$

Algebra: $\operatorname{sch}(d)$ is the subalgebra of the conformal algebra, containing elements that commute with P^{+}

$$
\left[P^{+}, O\right]=0
$$

One can identify the Schrödinger generators:

$$
\begin{gathered}
M=P^{+}, \quad H=P^{-}, \quad K^{i}=M^{i-} \\
D_{\text {nonrel }}=D_{\mathrm{rel}}+M^{+-}, \quad C=\frac{1}{2} K^{+}
\end{gathered}
$$

Nonrelativistic dilatation

$$
\begin{array}{lllll}
& D_{\text {rel }} & & M^{+-} & \\
& & & & \\
x^{+} & \rightarrow & \lambda x^{+} & \rightarrow & \lambda^{2} x^{+} \\
x^{-} & \rightarrow & \lambda x^{-} & \rightarrow & x^{-} \\
x^{i} & \rightarrow & \lambda x^{i} & \rightarrow & \lambda x^{i}
\end{array}
$$

Geometric realization of Schrödinger algebra

Start from AdS $_{d+3}$ space:

$$
d s^{2}=\frac{-2 d x^{+} d x^{-}+d x^{i} d x^{i}+d z^{2}}{z^{2}}
$$

Invariant under the whole conformal group, in particular with respect to relativistic scaling

$$
x^{\mu} \rightarrow \lambda x^{\mu}, \quad z \rightarrow \lambda z
$$

and boost along the x^{d+1} direction:

$$
x^{+} \rightarrow \tilde{\lambda} x^{+}, \quad x^{-} \rightarrow \tilde{\lambda}^{-1} x^{-}
$$

Break the symmetry down to $\operatorname{Sch}(d)$:

$$
d s^{2}=\frac{-2 d x^{+} d x^{-}+d x^{i} d x^{i}+d z^{2}}{z^{2}}-\frac{2\left(d x^{+}\right)^{2}}{z^{4}}
$$

The additional term is invariant only under a combination of relativistic dilation and boost:

$$
x^{+} \rightarrow \lambda^{2} x^{+}, \quad x^{-} \rightarrow x^{-}, \quad x^{i} \rightarrow \lambda x^{i}, \quad z \rightarrow \lambda z
$$

Model

$$
d s^{2}=\frac{-2 d x^{+} d x^{-}+d x^{i} d x^{i}+d z^{2}}{z^{2}}-\frac{2\left(d x^{+}\right)^{2}}{z^{4}}
$$

Is there a model where this is a solution to the Einstein equation?

The additional term gives rise to a change in $R_{++} \sim z^{-4}$: we need matter that provides $T_{++} \sim z^{-4}$.

Can be provided by A_{μ} with $A_{+} \sim 1 / z^{2}$: has to be a massive gauge field.

$$
S=\int d^{d+3} x \sqrt{-g}\left(\frac{1}{2} R-\Lambda-\frac{1}{4} F_{\mu \nu}^{2}-\frac{m^{2}}{2} A_{\mu}^{2}\right)
$$

Can be realized in string theory $(d=2)$
Herzog, Rangamani, Ross;
Maldacena, Martelli, Tachikawa;
Adam, Balasubramanian, McGreevy (2008)
Black-hole solutions also constructed: allow studying hydrodynamics

Two-point function

Following standard prescription

$$
S=-\int d^{d+3} x \sqrt{-g}\left(g^{\mu \nu} \partial_{\mu} \phi^{*} \partial_{\mu} \phi+m_{0}^{2} \phi^{*} \phi\right)
$$

Consider $\phi \sim e^{i M x^{-}}$

$$
\begin{gathered}
S=\int d^{d+2} x d z \frac{1}{z^{d+3}}\left(2 i M z^{2} \phi^{*} \partial_{t} \phi-z^{2} \partial_{i} \phi^{*} \partial_{i} \phi-m^{2} \phi^{*} \phi\right), \quad m^{2}=m_{0}^{2}+2 M^{2} \\
\langle O(\tau, \mathbf{x}) O(0,0)\rangle \sim \frac{\theta(\tau)}{\tau^{\Delta}} \exp \left(-\frac{M x^{2}}{2 \tau}\right)
\end{gathered}
$$

where

$$
\Delta=\frac{d+2}{2}+\nu, \quad \nu=\sqrt{m^{2}+\frac{(d+2)^{2}}{4}}
$$

Form dictated by Schrödinger symmetry.

Three-point function

$\left\langle O_{1}\left(t_{1}, x_{1}\right) O_{2}\left(t_{2}, x_{2}\right) O_{3}^{\dagger}(0,0)\right\rangle=\frac{\theta\left(t_{1}\right) \theta\left(t_{2}\right)}{t_{1}^{\Delta_{13,2}} t_{2}^{\Delta_{23,1}}\left(t_{1}-t_{2}\right)^{\Delta_{12,3}}} \exp \left[-\frac{M_{1} x_{1}^{2}}{2 t_{1}}-\frac{M_{2} x_{2}^{2}}{2 t_{2}}\right] \Psi(y)$
$\Delta_{i j, k}=\Delta_{i}+\Delta_{j}-\Delta_{k}$, where y is a Schrödinger invariant

$$
y=\frac{x_{1} t_{2}-x_{2} t_{1}}{\left(t_{1}-t_{2}\right) t_{1} t_{2}}
$$

Three-point function

$$
\left\langle O_{1}\left(t_{1}, x_{1}\right) O_{2}\left(t_{2}, x_{2}\right) O_{3}^{\dagger}(0,0)\right\rangle=\frac{\theta\left(t_{1}\right) \theta\left(t_{2}\right)}{t_{1}^{\Delta_{13,2}} t_{2}^{\Delta_{23,1}}\left(t_{1}-t_{2}\right)^{\Delta_{12,3}}} \exp \left[-\frac{M_{1} x_{1}^{2}}{2 t_{1}}-\frac{M_{2} x_{2}^{2}}{2 t_{2}}\right] \Psi(y)
$$

$\Delta_{i j, k}=\Delta_{i}+\Delta_{j}-\Delta_{k}$, where y is a Schrödinger invariant

$$
y=\frac{x_{1} t_{2}-x_{2} t_{1}}{\left(t_{1}-t_{2}\right) t_{1} t_{2}}
$$

Unitarity particles: $\Delta_{1}=\Delta_{2}=d / 2, \Delta_{3}=2$

$$
\Psi(y) \sim y^{1-d / 2} \gamma\left(\frac{d}{2}-1, y\right) \longleftarrow \text { incomplete beta function }
$$

Three-point function

$$
\left\langle O_{1}\left(t_{1}, x_{1}\right) O_{2}\left(t_{2}, x_{2}\right) O_{3}^{\dagger}(0,0)\right\rangle=\frac{\theta\left(t_{1}\right) \theta\left(t_{2}\right)}{t_{1}^{\Delta_{13,2}} t_{2}^{\Delta_{23,1}}\left(t_{1}-t_{2}\right)^{\Delta_{12,3}}} \exp \left[-\frac{M_{1} x_{1}^{2}}{2 t_{1}}-\frac{M_{2} x_{2}^{2}}{2 t_{2}}\right] \Psi(y)
$$

$\Delta_{i j, k}=\Delta_{i}+\Delta_{j}-\Delta_{k}$, where y is a Schrödinger invariant

$$
y=\frac{x_{1} t_{2}-x_{2} t_{1}}{\left(t_{1}-t_{2}\right) t_{1} t_{2}}
$$

Unitarity particles: $\Delta_{1}=\Delta_{2}=d / 2, \Delta_{3}=2$

$$
\Psi(y) \sim y^{1-d / 2} \gamma\left(\frac{d}{2}-1, y\right) \longleftarrow \text { incomplete beta function }
$$

Holography: computing Witten diagram Fuertes, Moroz

$$
\psi(y) \sim \int d v d v^{\prime} e^{-i M_{1} v-i M_{2} v^{\prime}}\left(v-v^{\prime}+i y\right)^{-\Delta_{12,3} / 2}\left(v^{\prime}\right)^{-\Delta_{23,1}} v^{-\Delta_{13,2}}
$$

Three-point function

$$
\left\langle O_{1}\left(t_{1}, x_{1}\right) O_{2}\left(t_{2}, x_{2}\right) O_{3}^{\dagger}(0,0)\right\rangle=\frac{\theta\left(t_{1}\right) \theta\left(t_{2}\right)}{t_{1}^{\Delta_{13,2}} t_{2}^{\Delta_{23,1}}\left(t_{1}-t_{2}\right)^{\Delta_{12,3}}} \exp \left[-\frac{M_{1} x_{1}^{2}}{2 t_{1}}-\frac{M_{2} x_{2}^{2}}{2 t_{2}}\right] \Psi(y)
$$

$\Delta_{i j, k}=\Delta_{i}+\Delta_{j}-\Delta_{k}$, where y is a Schrödinger invariant

$$
y=\frac{x_{1} t_{2}-x_{2} t_{1}}{\left(t_{1}-t_{2}\right) t_{1} t_{2}}
$$

Unitarity particles: $\Delta_{1}=\Delta_{2}=d / 2, \Delta_{3}=2$

$$
\Psi(y) \sim y^{1-d / 2} \gamma\left(\frac{d}{2}-1, y\right) \longleftarrow \text { incomplete beta function }
$$

Holography: computing Witten diagram Fuertes, Moroz

$$
\psi(y) \sim \int d v d v^{\prime} e^{-i M_{1} v-i M_{2} v^{\prime}}\left(v-v^{\prime}+i y\right)^{-\Delta_{12,3} / 2}\left(v^{\prime}\right)^{-\Delta_{23,1}} v^{-\Delta_{13,2}}
$$

specializing for $M_{1}=M_{2}=1, \Delta_{1}=\Delta_{2}=d / 2, \Delta_{3}=2$:

Three-point function

$$
\left\langle O_{1}\left(t_{1}, x_{1}\right) O_{2}\left(t_{2}, x_{2}\right) O_{3}^{\dagger}(0,0)\right\rangle=\frac{\theta\left(t_{1}\right) \theta\left(t_{2}\right)}{t_{1}^{\Delta_{13,2}} t_{2}^{\Delta_{23,1}}\left(t_{1}-t_{2}\right)^{\Delta_{12,3}}} \exp \left[-\frac{M_{1} x_{1}^{2}}{2 t_{1}}-\frac{M_{2} x_{2}^{2}}{2 t_{2}}\right] \Psi(y)
$$

$\Delta_{i j, k}=\Delta_{i}+\Delta_{j}-\Delta_{k}$, where y is a Schrödinger invariant

$$
y=\frac{x_{1} t_{2}-x_{2} t_{1}}{\left(t_{1}-t_{2}\right) t_{1} t_{2}}
$$

Unitarity particles: $\Delta_{1}=\Delta_{2}=d / 2, \Delta_{3}=2$

$$
\Psi(y) \sim y^{1-d / 2} \gamma\left(\frac{d}{2}-1, y\right) \longleftarrow \text { incomplete beta function }
$$

Holography: computing Witten diagram Fuertes, Moroz

$$
\psi(y) \sim \int d v d v^{\prime} e^{-i M_{1} v-i M_{2} v^{\prime}}\left(v-v^{\prime}+i y\right)^{-\Delta_{12,3} / 2}\left(v^{\prime}\right)^{-\Delta_{23,1}} v^{-\Delta_{13,2}}
$$

specializing for $M_{1}=M_{2}=1, \Delta_{1}=\Delta_{2}=d / 2, \Delta_{3}=2$:

$$
\Psi(y) \sim y^{1-d / 2} \gamma\left(\frac{d}{2}-1, y\right)
$$

Qualitative understanding that we gain

- $m^{2}<-(d+2)^{2} / 4$: complex dimension

Efimov effect \leftrightarrow violation of Breitenlohner-Freedman bound

Qualitative understanding that we gain

- $m^{2}<-(d+2)^{2} / 4$: complex dimension

Efimov effect \leftrightarrow violation of Breitenlohner-Freedman bound

- $-(d+2)^{2} / 4<m^{2}<-(d+2)^{2} / 4+1$:

One bulk theory corresponds to two boundary theories with $\Delta_{ \pm}=\frac{d+2}{2} \pm \nu$, $\nu<1$

Qualitative understanding that we gain

- $m^{2}<-(d+2)^{2} / 4$: complex dimension

Efimov effect \leftrightarrow violation of Breitenlohner-Freedman bound

- $-(d+2)^{2} / 4<m^{2}<-(d+2)^{2} / 4+1$:

One bulk theory corresponds to two boundary theories with $\Delta_{ \pm}=\frac{d+2}{2} \pm \nu$, $\nu<1$

- Example: free fermions and fermions at unitarity are such a pair

$$
\Delta=\frac{5}{2} \pm \frac{1}{2}= \begin{cases}3 & (\text { free }) \\ 2 & \text { (unitarity) }\end{cases}
$$

Qualitative understanding that we gain

- $m^{2}<-(d+2)^{2} / 4$: complex dimension

$$
\text { Efimov effect } \leftrightarrow \text { violation of Breitenlohner-Freedman bound }
$$

- $-(d+2)^{2} / 4<m^{2}<-(d+2)^{2} / 4+1$:

One bulk theory corresponds to two boundary theories with $\Delta_{ \pm}=\frac{d+2}{2} \pm \nu$, $\nu<1$

- Example: free fermions and fermions at unitarity are such a pair

$$
\Delta=\frac{5}{2} \pm \frac{1}{2}= \begin{cases}3 & (\text { free }) \\ 2 & \text { (unitarity) }\end{cases}
$$

- Unitarity fermions with different masses for 2 flavors $M / m \neq 1$
- One three-body operator $\Psi \partial_{i} \Psi \psi$: dimension between $7 / 2$ and $5 / 2$ when M / m varies from 8.6 to 13.6
- There exists another scale-invariant theory with two and three-body resonances in this range of mass ratio Nishida, DTS, Shina Tan

Unitarity fermions*

Things we don't understand

- Holographic renormalization
- Role of large N ? ($\mathrm{Sp}(2 N)$ model?)
- Hierarchical organization in NR field theories
e to understand n-body sector we don't need to know solution to $n+1$, $n+2$ etc. body problem
- In gravity: throwing away fields with mass $>n$ should be a consistent truncation!
- Not a feature of current string constructions of Schrödinger background

Conclusion

- Unitarity fermions have Schrödinger symmetry, a nonrelativistic conformal symmetry
- Universal properties, studied in experiments
- There is a metric with Schrödinger symmetry
- Starting point for dual phenomenology of unitarity fermions?
- Deeper connection between few- and many-body physics?

