

Service d'Astrophysique Laboratoire AIM

STARS WITH SMALL DIPOLE VISIBILITIES AND THE TASMANIAN DEVILS

R.A. García, WG#1 and WG#8 KASC Teams

Fruitful collaborations during KITP with:

J. C-D, G. Houdek, F. Ligniers, S. Mathur, B. Pablo, M. Pinsoneault, V. Silva-Aguirre, M. Takata...

PROBLEMS TO ADDRESS

- Stars with rapid rotation:
 - 20-30% of break up velocity in the RGB and after!
- Stars with a smaller visibility in the I=1 ridge
 - Related problem or completely different physical origin ?

METHODOLOGY

- We study the signature in the light-curve of stellar spots crossing the visible disk of stars
 - Gives the surface rotation corresponding to the active longitudes
 - Allows to also determine the surface differential rotation

[e.g. CoRoT targets: Mosser et al. 2009, Mathur et al. 2010...]

Solar Activity Maximum

METHODOLOGY

- We study the signature in the light-curve of stellar spots crossing the visible disk of stars
 - Gives the surface rotation corresponding to the active longitudes
 - Allows to also determine the surface differential rotation

[e.g. CoRoT targets: Mosser et al. 2009, Mathur et al. 2010...]

EXAMPLE OF KEPLER LIGHT CURVES (S-LS)

STABILITY OF KEPLER LIGHT CURVES

Long frequency trends are similar for different stars in the same module (RG LC)

STABILITY OF KEPLER LIGHT CURVES

- We use the RG LC data to determine the common, long period, signal in each module
 - ~60 stars per sequence of modules.

SURFACE ROTATION IN RED-GIANT

SURFACE ROTATION IN RED-GIANT

rfu

SURFACE ROTATION IN RED-GIANT

- ➤ The surface is rotating at 20-30% break up velocity
- If the interior spins at these velocities
 - There should be structural changes in the position of the frequencies $(d_{02} >>)$

[F. Lignieres, based on Reese 2008]

- Stars showing fast surface rotation
- Comparison star with no clear surface rotation (RGB)
- Stars with
 - M/M_⊙~1.4-1.5
 - \blacksquare R/R_{\odot} ~6.1

- Stars with slow surface rotation show a complicate I=1 structure
 - Many mixed modes
- Fast surface rotators
 - L=0, 2 in the same positions
 - L=1 ridge with very small visibility

- Stars with slow surface rotation show a complicate I=1 structure
 - Many mixed modes
- Fast surface rotators
 - L=0, 2 in the same positions
 - L=1 ridge with very small visibility

KIC 3443483

➤ Apart from the reduced visibility of the I=1 modes

- Frequencies of modes as expected => Slow internal rotation
- $V \sin^2 \theta \pm 0.5 \text{ km/s} = 7^\circ \theta$
- Fast surface rotation and slow internal rotation => Merger with small object that dissolves in the atmosphere

PROBLEM WITH L=1 MODES

[Mosser et al. 2011 in press]

- Lower limit at about ~50 μHz
- \triangleright 3 S-L observed up to $v_{max} \sim 488 \mu Hz$
- Possible explanation:
 - very efficient coupling p-g mode => very high mode mass, low surface amplitudes

PROBLEM WITH L=1 MODES

[Mosser et al. 2011 in press]

- Lower limit at about ~50 μHz
- \triangleright 3 S-L observed up to $v_{max} \sim 488 \mu Hz$
- Possible explanation:
 - very efficient coupling p-g mode => very

Solution

HIGHEST NU_MAX STAR (WG#1)

- > At high frequency (n>17)
 - L=1 modes appear with a high (Normal?) visibility at higher frequencies?

CONCLUSIONS

- Two effects seems to be unconnected
- Missing I=1
 - Related to better coupling, bigger mode inertia?
 - Relation $V_{1}^{2} \alpha (v_{max})$
 - Star with $v_{max} = 480 \mu Hz$ shows some normal V_{1}^{2} at higher frequency
- High surface rotation
 - Merger of a smaller objects. Can it be constraint?
 - What do we need:
 - Spectroscopic measurements (on-going)
 - NARVALobservations scheduled (1 star)
 - What test can we do?

