

On the seismic age and heavy-element abundance of the Sun

Günter Houdek

In collaboration with Douglas Gough

KITP - UCSB - November 2011

Points to consider in an age calibration procedure

- match seismic signatures of theoretical frequencies to observed frequencies.
- signatures are chosen to reflect principally the properties of energy-generating core.
- but such core signatures are also susceptible to e.g. zero-age chemical abundances and are contaminated by contributions produced by the surface layers.
- we need additional diagnostic to measure abundance (e.g., helium) independently and to separate the surface from the core signatures.
- here we use abrupt variation of the first adiabatic exponent γ_1 induced by He ionization.

-asymptotic p-mode frequency behaviour (n>>l): $[L^2=l(l+1)]$

$$\nu \simeq (n + \frac{1}{2}l + \epsilon)\nu_0 - \frac{AL^2 - B}{\nu}\nu_0^2$$

$$A = \frac{1}{4\pi^2\nu_0} \left[\frac{c(R)}{R} - \int_0^R \frac{1}{r} \frac{dc}{dr} dr \right]$$

- evolutionary computations depend on 3 initial parameters: e.g., $\it Y_0$, $\it Z_0$ and $\it \alpha_c$
- Calibrated (L, R) models: \longrightarrow $Z_0(Y_0,\alpha_c)$ @ any t_{\bigstar} \longrightarrow 2-parameter set of models (Z_0,t_{\bigstar})

-asymptotic p-mode frequency behaviour (n>>l): $[L^2=l(l+1)]$

$$\nu \simeq (n + \frac{1}{2}l + \epsilon)\nu_0 - \frac{AL^2 - B}{\nu}\nu_0^2$$

$$A = \frac{1}{4\pi^2\nu_0} \left[\frac{c(R)}{R} - \int_0^R \frac{1}{r} \frac{dc}{dr} dr \right]$$

- evolutionary computations depend on 3 initial parameters: e.g., $\it Y_0$, $\it Z_0$ and $\it \alpha_c$
- Calibrated (L, R) models: \longrightarrow $Z_0(Y_0,\alpha_c)$ @ any t_{\bigstar} \longrightarrow 2-parameter set of models (Z_0,t_{\bigstar})

-asymptotic p-mode frequency behaviour (n>>l): $[L^2=l(l+1)]$

$$\nu \simeq (n + \frac{1}{2}l + \epsilon)\nu_0 - \frac{AL^2 - B}{\nu}\nu_0^2 - \frac{CL^4 - DL^2 + E}{\nu^3}\nu_0^4 - \frac{FL^6 - GL^4 + HL^2 - I}{\nu^5}\nu_0^6$$

-asymptotic p-mode frequency behaviour (*n*>>*l*):

$$\nu_{\rm s} \simeq (n + \frac{1}{2}l + \epsilon)\nu_0 - \frac{AL^2 - B}{\nu_{\rm s}} \nu_0^2 - \frac{CL^4 - DL^2 + E}{\nu_{\rm s}^3} \nu_0^4 - \frac{FL^6 - GL^4 + HL^2 - I}{\nu_{\rm s}^5} \nu_0^6$$

- calibration using combinations of the seismically determined parameters

$$\xi_{\alpha} = (\widehat{\underline{A}}, \widehat{\underline{C}}, \widehat{F}, -\underline{\delta\gamma_1/\gamma_1}), \qquad \alpha = 1, 2, 3, 4, \qquad \qquad \widehat{\underline{A}} = \nu_0 \underline{A},$$

$$\widehat{\underline{C}} = \nu_0^3 \underline{C},$$

$$\widehat{F} = \nu_0^5 F$$

- asymptotic formula approximates adiabatic ${
 m v_s}$ only if scale height $H\,\gg\,k_{
 m v}^{-1}$
 - glitch-free v_s are frequencies of a "smoothed" stellar model

we need a diagnostics for the acoustic glitch contributions to estimate $-\delta\gamma_1/\gamma_1$ and to construct $\mathbf{v_s}$

Glitch-free BiSON data / model frequencies – asymptotic expression (S_i)

Glitch contributions $\,\delta \nu = \nu \, - \, \nu_{\rm s} \,$ (for $H \, \ll \, k_{\rm v}^{-1}$)

Glitch contributions

$$\delta \nu = \nu - \nu_{\rm s}$$

Gough (1990): $2^{\rm nd}$ frequency differences: $\Delta_2 \nu \equiv \nu_{n-1} - 2\nu_n + \nu_{n+1}$

A model for glitch contributions (A seismic diagnostics)

Seismic diagnostics: variational principle in (nonrotating) stars

Linearized, adiabatic, wave equation:

$$\omega^2 \boldsymbol{\xi} = \mathcal{L}(\boldsymbol{\xi})$$

operator $\rho_0 \mathcal{L}$ is hermitian for $\nabla p_0 = 0$ at boundary:

$$\delta\omega \simeq \frac{\delta_{\gamma}\mathcal{K}}{2\omega I}$$

asymptotic limit (JWKB):

$$\delta_{\gamma} \mathcal{K} \simeq \pi \omega^3 \int \kappa^{-1} \frac{\delta \gamma_1}{\gamma_1} |x|^{1/2} |\mathrm{Ai}(-x)|^2 d\tau$$

Seismic diagnostics

Squared adiabatic sound speed $c^2 = \gamma_1 \, p/\rho$

$$\gamma_1 = (\partial \ln p / \partial \ln \rho)_s$$

Seismic diagnostics

Expand γ with respect to Y about Y= 0: $\gamma \simeq (\gamma)_{Y=0} + (\partial \gamma/\partial Y)_{Y=0} Y$.

Glitches may then be written: $\delta \gamma \simeq (\partial \gamma/\partial Y)_{Y=0}\, Y$

Seismic diagnostics

Glitches may be written as:

$$\delta \gamma \simeq (\partial \gamma / \partial Y)_{Y=0} Y$$

Seismic diagnostic

$$\delta
u \simeq \delta_{\gamma}
u + \delta_{
m c}
u + \delta_{
m s}
u$$
He BCZ surface term

$$\begin{split} \delta_{\gamma}\nu &= -\sqrt{2\pi}A_{\mathrm{II}}\Delta_{\mathrm{II}}^{-1}\left[\nu + \frac{1}{2}(m+1)\nu_{0}\right] \\ &\times \left[\mu\beta\int_{0}^{T}\kappa_{\mathrm{I}}^{-1}\mathrm{e}^{-(\tau-\eta\tau_{\mathrm{II}})^{2}/2\mu^{2}\Delta_{\mathrm{II}}^{2}}|x|^{1/2}|\mathrm{Ai}(-x)|^{2}\,\mathrm{d}\tau \right. \qquad \qquad \, \mathrm{HeI} \\ &+ \int_{0}^{T}\kappa_{\mathrm{II}}^{-1}\mathrm{e}^{-(\tau-\tau_{\mathrm{II}})^{2}/2\Delta_{\mathrm{II}}^{2}}|x|^{1/2}|\mathrm{Ai}(-x)|^{2}\,\mathrm{d}\tau \right] \qquad \qquad \, \, \mathrm{HeII} \end{split}$$

$$\delta_{c}\nu \simeq A_{c}\nu_{0}^{3}\nu^{-2} \left(1 + 1/16\pi^{2}\tau_{0}^{2}\nu^{2}\right)^{-1/2} \times \left\{\cos\left[2\psi_{c} + \tan^{-1}(4\pi\tau_{0}\nu)\right] - \left(16\pi^{2}\tilde{\tau}_{c}^{2}\nu^{2} + 1\right)^{1/2}\right\} \qquad \dots \text{BCZ}$$

$$\delta_{\rm s} \nu \simeq \widehat{A} + \widehat{B} \nu + \left[a_0 \nu^2 / 2 + a_1 \nu (\ln \nu - 1) - a_2 \ln \nu + a_3 / 2 \nu \right] / h^2 \dots \text{Surface}$$
 (H, ∇ - $\nabla_{\rm ad}$)

$$x = f(\omega \tau, \epsilon, m)$$
 $\psi_{\rm c} = f(\omega \tau_{\rm c}, \epsilon_{\rm c})$ $h = (\nu_{n+1} - \nu_{n-1})/2$

Seismic diagnostics: surface term $\delta_{ m s} u$

$$\delta_{\rm s}\nu \equiv \Delta_2^{-1} \sum_{k=0}^3 a_k \nu^{-k}$$

$$\simeq \tilde{A} + \tilde{B}\nu + \left[a_0 \nu^2 / 2 + a_1 \nu (\ln \nu - 1) - a_2 \ln \nu + a_3 / 2\nu \right] / h^2$$

 $ilde{A}$ and $ilde{B}$ are two undetermined constants of summation of 3rd - order polynomial

Choose
$$\tilde{A}$$
 and \tilde{B} by minimizing: $E\equiv ||\delta_{\rm s}\nu||_2 = \sum_{\rm s} (\tilde{A}+\tilde{B}\nu+F_{\rm s})^2$

Applying the seismic diagnostic to low-degree p modes: Sun

Seismic diagnostic

$$\delta \nu = \underbrace{\delta_{\rm I} \nu + \delta_{\rm II} \nu + \delta_{\rm c} \nu}_{\text{glitch}} + \underbrace{\delta_{\rm s} \nu}_{\text{surface}}$$

$$-rac{\delta\gamma_1}{\gamma_1} \propto Y$$
 ...helium abundance

For BiSON data:

$$-\delta \gamma_1/\gamma_1|_{\tau_{\text{II}}} = 0.043$$
$$\tau_{\text{II}} = 819 \,\text{s}$$
$$\tau_{\text{c}} = 2310 \,\text{s}$$

For Model S:

0.045

 $815\,\mathrm{s}$

 $2270\,\mathrm{s}$

Applying the seismic diagnostic to a solar-like star

Results for SONG data:

$$-\delta \gamma_1 / \gamma_1 |_{\tau_{\text{II}}} = 0.086$$
$$\tau_{\text{II}} = 818 \,\text{s}$$
$$\tau_{\text{c}} = 2402 \,\text{s}$$

for **model**:

0.062

 $792\,\mathrm{s}$

 $2330\,\mathrm{s}$

$$\gamma_1 = (\partial \ln p / \partial \ln \rho)_s$$

 $-\delta\gamma_1/\gamma_1|_{ au_{\mathrm{II}}}$... rel. depression of γ_1 in He II ionization zone

 $au_{ ext{II}}$... acoustic depth of HeII ionization zone

 $\mathcal{T}_{\mathbf{C}}$... acoustic depth of bottom of convection zone

-asymptotic p-mode frequency behaviour (*n*>>*l*):

$$\nu_{\rm s} \simeq (n + \frac{1}{2}l + \epsilon)\nu_0 - \frac{AL^2 - B}{\nu_{\rm s}} \nu_0^2 - \frac{CL^4 - DL^2 + E}{{\nu_{\rm s}}^3} \nu_0^4 - \frac{FL^6 - GL^4 + HL^2 - I}{{\nu_{\rm s}}^5} \nu_0^6$$

- calibration using combinations of the seismically determined parameters

$$\xi_{\alpha} = (\widehat{\underline{A}}, \widehat{\underline{C}}, \widehat{F}, -\underline{\delta\gamma_1/\gamma_1}), \qquad \alpha = 1, 2, 3, 4, \qquad \qquad \widehat{\underline{A}} = \nu_0 A,$$

$$\widehat{\underline{C}} = \nu_0^3 C,$$

$$\widehat{F} = \nu_0^5 F$$

- approximate solar value ξ_{lpha}^{\odot} by a two-term expansion about reference value $\xi_{lpha}^{
m r}$

$$\xi_{\alpha}^{\odot} = \xi_{\alpha}^{\mathbf{r}} + \left(\frac{\partial \xi_{\alpha}}{\partial t_{\odot}}\right)_{Z} \Delta t + \left(\frac{\partial \xi_{\alpha}}{\partial Z}\right)_{t_{\odot}} \Delta Z - \epsilon_{\xi\alpha}.$$

- and the solution is:

$$t_{\odot} = t_{
m ref} + \Delta t$$
 $Z_{\odot} = Z_{
m ref} + \Delta Z$

from reference model

Eleven models calibrated to solar luminosity and radius

-asymptotic p-mode frequency behaviour (*n*>>*l*):

$$\nu_{\rm s} \simeq (n + \frac{1}{2}l + \epsilon)\nu_0 - \frac{AL^2 - B}{\nu_{\rm s}} \nu_0^2 - \frac{CL^4 - DL^2 + E}{{\nu_{\rm s}}^3} \nu_0^4 - \frac{FL^6 - GL^4 + HL^2 - I}{{\nu_{\rm s}}^5} \nu_0^6$$

- calibration using combinations of the seismically determined parameters

$$\xi_{\alpha} = (\widehat{A}, \widehat{C}, \widehat{F}, -\delta\gamma_1/\gamma_1), \qquad \alpha = 1, 2, 3, 4, \qquad -\delta\gamma_1/\gamma_1 \propto Y$$

		_		Н	4 1	_	
ξ_{lpha}	t_{\odot} (Gy)	Z_0	Y_0		t_{\odot} (Gy)	Z_0	Y_0
$\hat{A}, \hat{C}, \hat{F}, -\delta\gamma_1/\gamma_1$	4.592	0.0156	0.252	П	4.597	0.0155	0.251
$\hat{A},\hat{F},-\delta\gamma_1/\gamma_1$	4.580	0.0157	0.252		4.582	0.0156	0.251
$\hat{C}, \hat{F}, -\delta\gamma_1/\gamma_1$	4.591	0.0157	0.252		4.595	0.0155	0.251
$\hat{A},\hat{C},-\delta\gamma_1/\gamma_1$	4.597	0.0160	0.254		4.603	0.0160	0.253
\hat{A},\hat{C},\hat{F}	4.619	0.0153	0.252		4.632	0.0151	0.248
\hat{A},\hat{C}	4.638	0.0147	0.246		4.654	0.0143	0.245

Referenz model 0: 4.60 Gy, $Z_0=0.02$

Referenz model 2: 4.37 Gy, $Z_0=0.02$

-asymptotic p-mode frequency behaviour (*n*>>*l*):

$$\nu_{\rm s} \simeq (n + \frac{1}{2}l + \epsilon)\nu_0 - \frac{AL^2 - B}{\nu_{\rm s}} \nu_0^2 - \frac{CL^4 - DL^2 + E}{{\nu_{\rm s}}^3} \nu_0^4 - \frac{FL^6 - GL^4 + HL^2 - I}{{\nu_{\rm s}}^5} \nu_0^6$$

- calibration using combinations of the seismically determined parameters

$$\xi_{\alpha} = (\widehat{A}, \widehat{C}, \widehat{F}, -\delta\gamma_1/\gamma_1), \qquad \alpha = 1, 2, 3, 4, \qquad -\delta\gamma_1/\gamma_1 \propto Y$$

ξ_{lpha}	t_{\odot} (Gy)	Z_0	$C_{\Theta 11}^{1/2}$	$-(-C_{\Theta 12})^{1/2}$	$C_{\Theta 22}^{1/2}$
$\hat{A}, \hat{C}, \hat{F}, -\delta\gamma_1/\gamma_1$	4.592	0.0156	0.039	0.0013	0.0005
$\hat{A}, \hat{F}, -\delta \gamma_1/\gamma_1$	4.580	0.0157	0.045	0.0016	0.0006
$\hat{C}, \hat{F}, -\delta \gamma_1/\gamma_1$	4.591	0.0157	0.044	0.0004	0.0005
$A, C, -\delta\gamma_1/\gamma_1 \ \hat{A}, \hat{C}, \hat{F}$	4.597 4.619	0.0160 0.0153	0.045 0.095	0.0036 0.0104	0.0008 0.0013
\hat{A},\hat{C}	4.638	0.0147	1.049	0.1791	0.0306
-					

Referenz model 0: 4.60 Gy, $Z_0=0.02$

error co-variance matrix

Note: Model S: age=4.60 Gy, Z_0 =0.0196

Referenz model①: 4.60 Gy, Z=0.02

Referenz model②: 4.37 Gy, Z=0.02

Results for $\frac{\text{five-times calibrated}}{\text{five-times calibrated}} \text{ reference models} \\ \text{using BiSON data & } (\widehat{\pmb{A}}, \widehat{\pmb{C}}, \widehat{F}, -\delta\gamma_1/\gamma_1)$

_	Reference model	$t_{\odot}~(\mathrm{Gy})$	Z_0	Y_0
	$4.60 \text{ Gy}/Z_0 = 0.02$	4.604	0.0155	0.250
2	$4.37 \text{ Gy}/Z_0 = 0.02$	4.603	0.0155	0.250

Note: Model S: age = 4.60 Gy, $Z_0 = 0.0196$

Five-times calibrated

Referenz model \bigcirc : 4.60 Gy, Z_0 =0.02

--- Referenz model②: 4.37 Gy, $Z_0=0.02$

Kjeldsen et al. (2008) :
$$\langle \Delta \rangle (\pm 0.5\%) \; , \langle \delta \nu \rangle (\pm 10\%) \; , T_{\rm eff}(\pm 2\%)$$

$$\downarrow t_{\star}(\pm 10\%)$$

Summary/conclusion

- ► Seismic diagnostics (2nd frequency differences) of low-degree modes can be used to estimate gross properties (Y, DCZ) of solar-type stars.
- ▶ Removing the seismic signature of rapid variations in the background state from the frequencies could substantially improve the calibration of stellar ages and abundances.
- ► This seismic calibration procedure can be applied to data from CoRoT, Kepler and planned observing campaigns (SONG).
- ► The values of Z should not be regarded strictly as statements for initial heavy-element abundance, but rather as a measure of the opacity in the radiative interior.