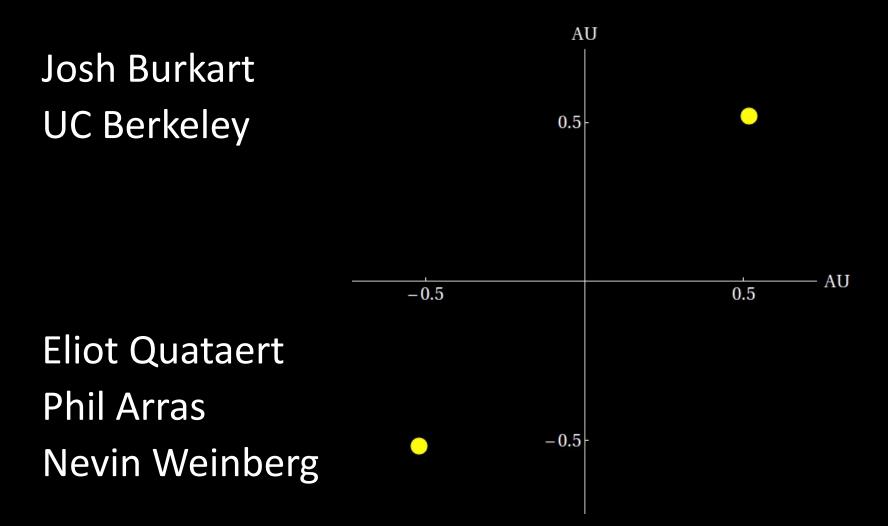
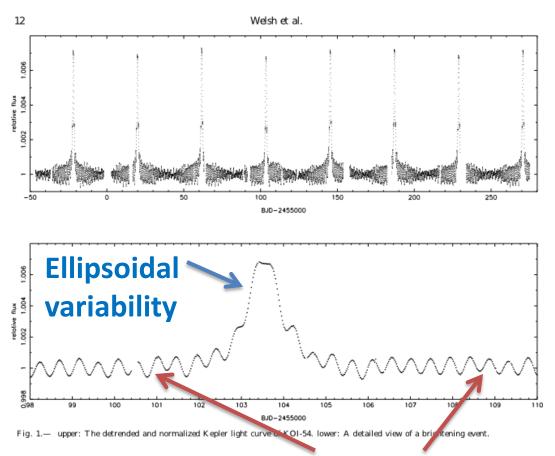
Tidal Asteroseismology: KOI-54



<u>Kepler Object of Interest 54</u>



Tidally/resonantly excited g-modes

 Eccentric stellar binary

$$-e = 0.83$$

$$-P_{\rm orb} = 42 \, \rm days$$

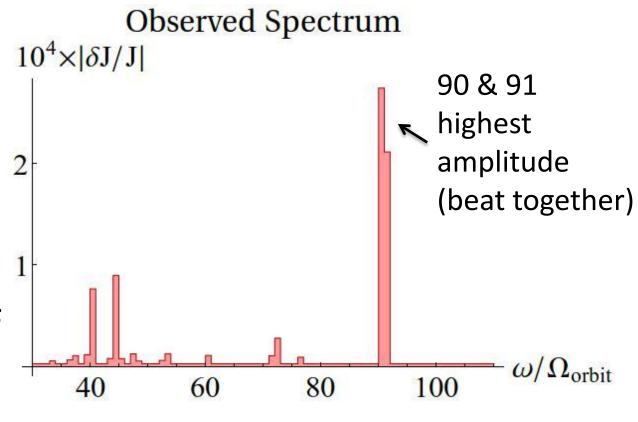
– Two A stars

$$-M_{1,2} = 2.3 M_{\rm Sun}$$

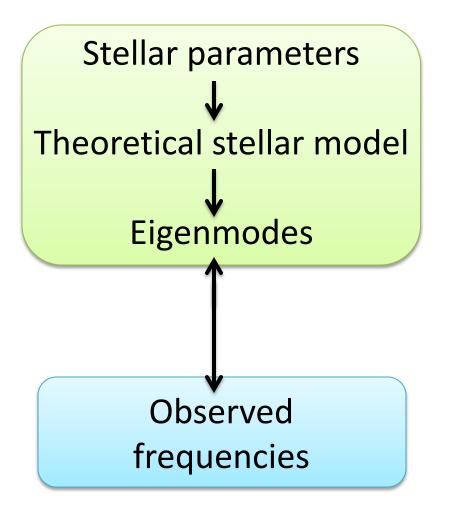
Welsh et al. (2011)

Dynamical Tide

- ~30
 pulsations
 reported
 (many more
 observable)
- ~20 are perfect harmonics of the orbital frequency



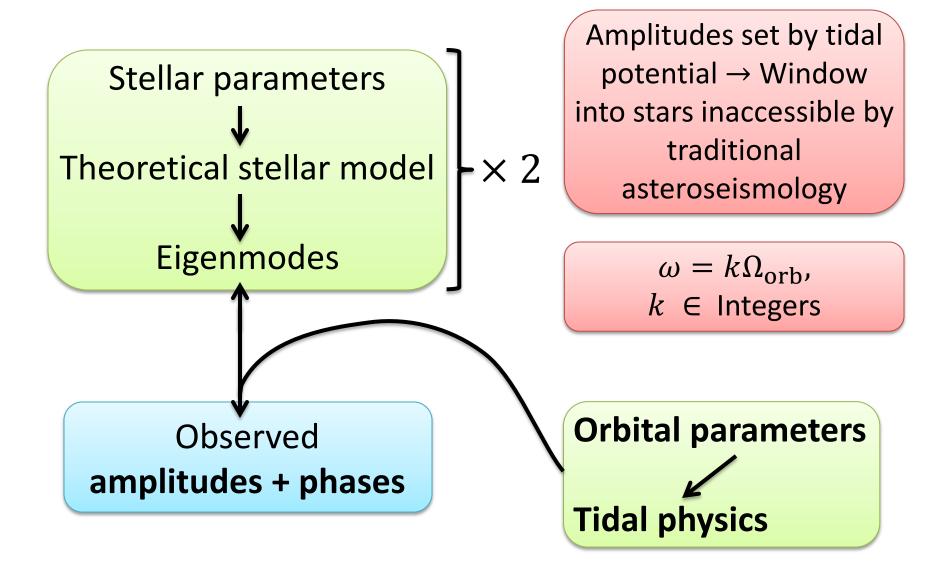
Traditional Asteroseismology



Modes excited by internal stellar processes

Modes ring at their natural frequencies

Tidal Asteroseismology



Mode Excitation

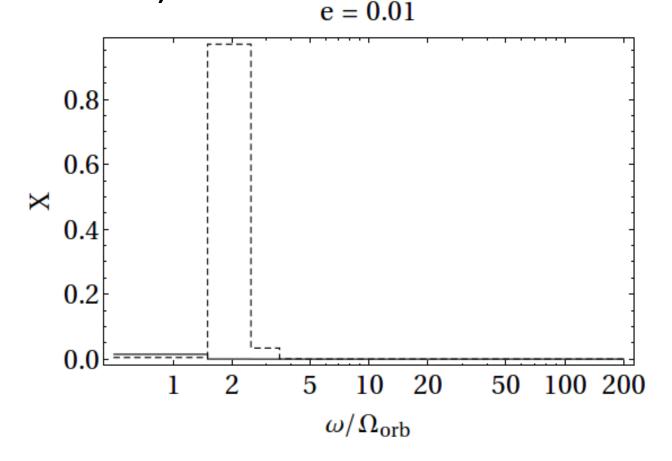
Excited by periodic tidal potential

- Tidal strength
$$\sim \left(\frac{M_2}{M_1}\right) \left(\frac{R_1}{a(1-e)}\right)^{l+1}$$

- Mode identification
 - Quadrupolar: l = 2
 - -|m| = 0, 2
 - Pulsation phases strongly influenced by \boldsymbol{m}
 - $-\Delta J/J \propto \cos[\omega(t-t_p)-\delta], \quad \delta \sim \pm m\phi_o$
 - Visibility dependent on inclination
 - KOI-54 is face on \rightarrow mostly m = 0
 - Mostly g-modes

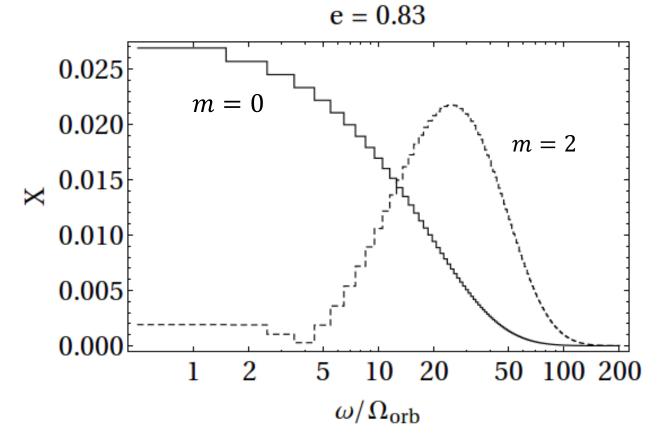
What Frequencies are Excited?

Distribution of driving frequencies (Hansen coefficients)



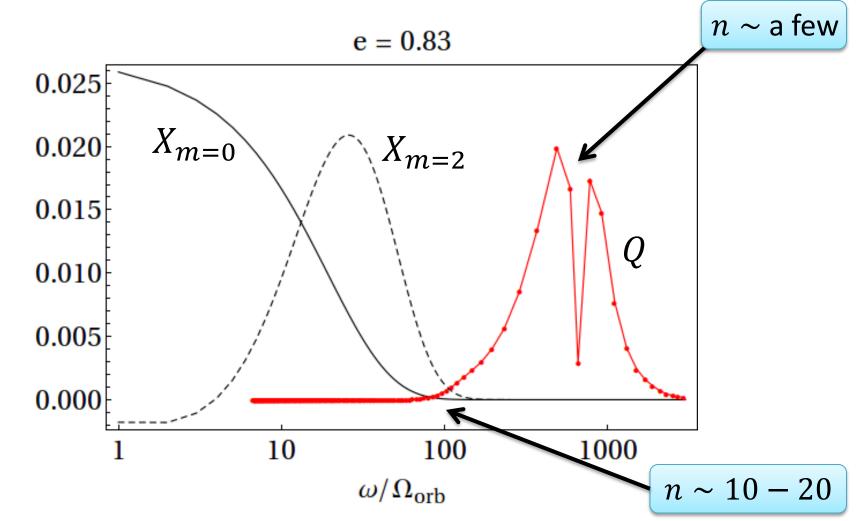
What Frequencies are Excited?

Distribution of driving frequencies (Hansen coefficients)



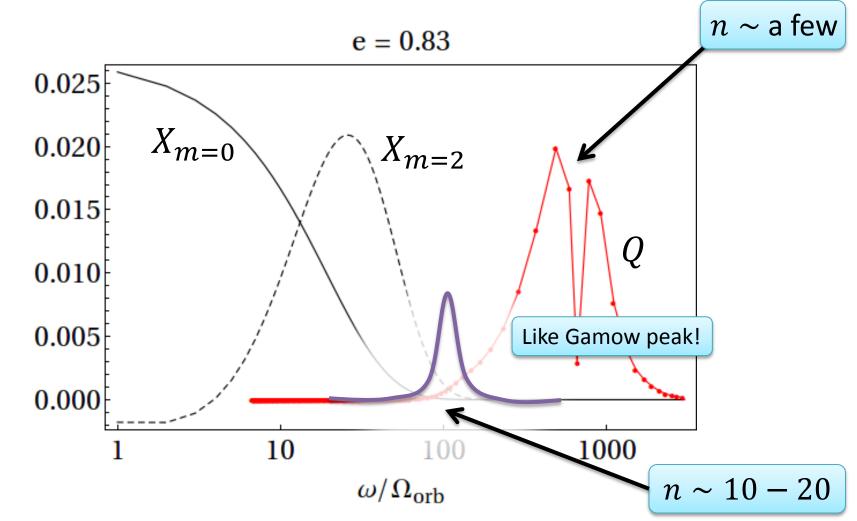
Mode Excitation

Competition sets range of frequencies



Mode Excitation

Competition sets range of frequencies

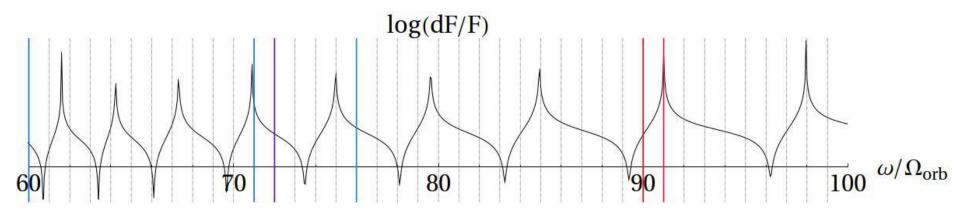


Resonances

• Driving frequencies (corotating frame):

 $\sigma_{km} = k\Omega_{\text{orb}} - m\Omega_{\text{rot}}, k \in \text{Integers}$

- If mode frequency $\omega_n = \sigma_{km}$, large resonance
- Modes ring in the inertial frame at harmonics of orbital frequency: $k\Omega_{\rm orb}$ (no Doppler shift)



Our Oscillation Code

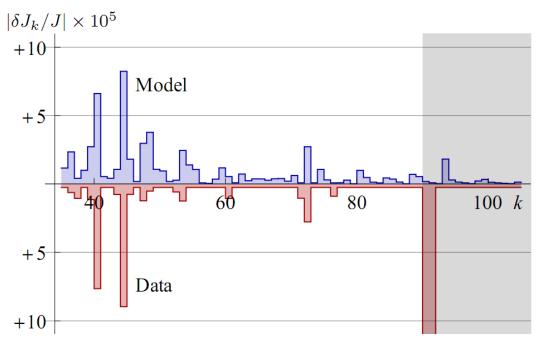
- Tidally forced (inhomogeneous)
- Essential physics:
 - Nonadiabaticity
 - Adiabatic assumption ok for global eigenfrequencies, not for surface behavior of eigenmodes
 - Rotation
 - Linear perturbation theory insufficient

- Coriolis parameter:
$$\frac{2\Omega_{rot}}{\omega} \sim 1$$

• Traditional approximation

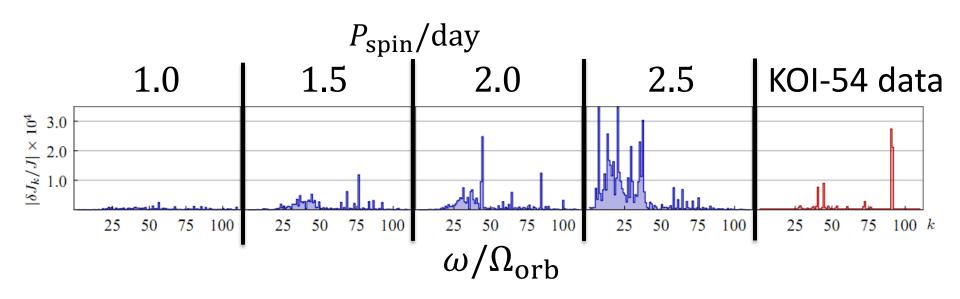
Modeling Results

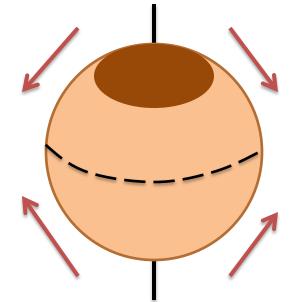
 Preliminary optimization over two grids of MESA models



No unique best fit – many comparably good models

Influence of Rotation



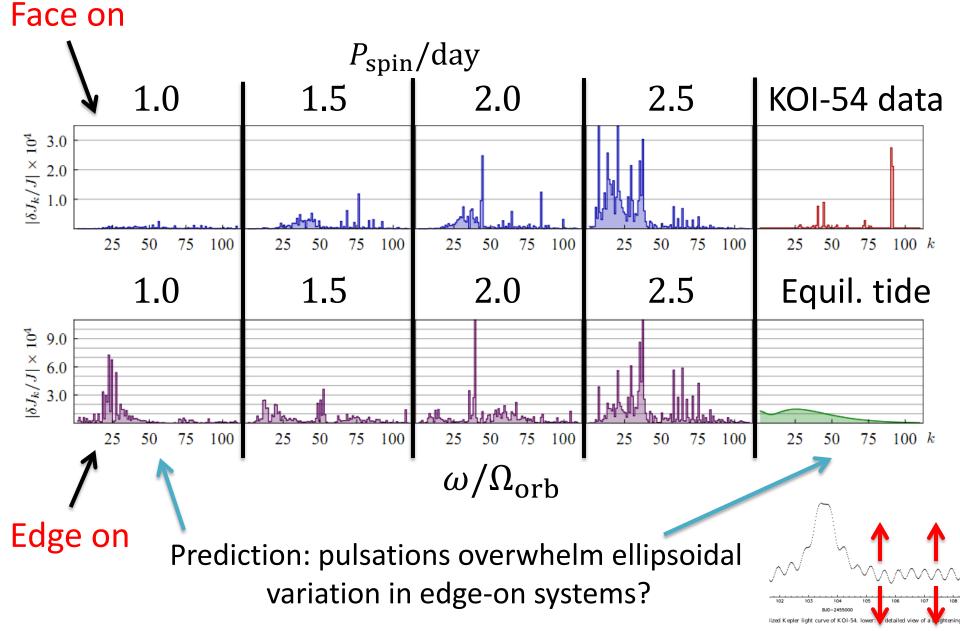


Equatorial mode confinement

$$\Omega_{\rm spin}$$
 \uparrow , l \uparrow , n \uparrow , k_r \uparrow , γ \uparrow

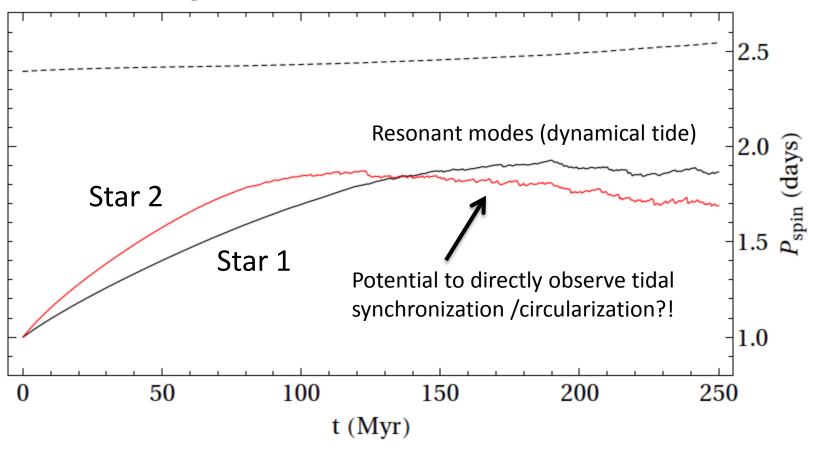
$$\left(\text{g-modes:} \ \omega \sim \omega_0 \times \frac{l}{n}\right)$$

Influence of Rotation



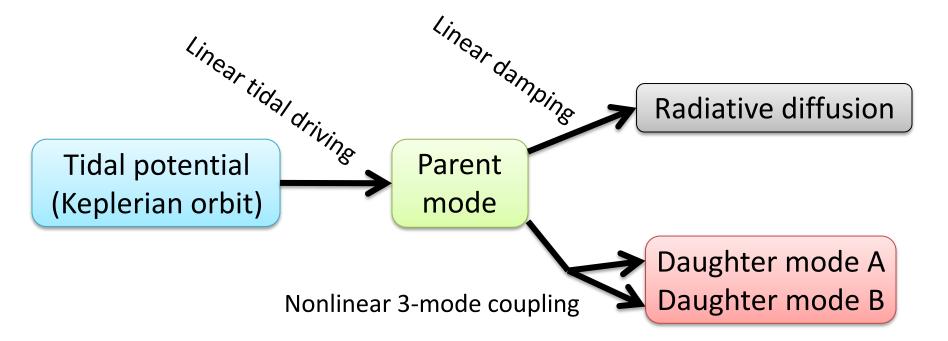
Rotational Pseudosynchronization

- Secular orbital evolution simulation
 - Predicts spin periods consistent with pulsation modeling



Nonharmonic Pulsations: Nonlinear Coupling

- 91.00 = 22.42 + 68.58! (in units of Ω_{orb})
 - Nonlinear parametric resonance of linearly driven parent to daughter pair (e.g. Weinberg et al. 2011)



Nonharmonic Pulsations: Nonlinear Coupling

- > 10 other nonharmonic pulsations, but no other pairs with $\omega_{parent} = \omega_{d1} + \omega_{d2}$?
 - OK: Pair members have different energies and/or m & l values \rightarrow one much less observable
- Nonlinear stability analysis: parent amplitude $\sim 100 \times {\rm below}$ instability threshold?
- Observationally tests theory of nonlinear mode coupling
 - Relevant for theory of tidal dissipation

Tidal Asteroseismology Summary

- Asteroseismology for eccentric binaries
 - Tidally driven oscillations rather than unstable modes
 - Model amplitudes/phases, not frequencies
 - Not just the instability strip
 - Mode identification advantages (l = 2, etc.)
- Essential stellar mode physics:
 - Nonadiabaticity (radiative diffusive damping)
 - Rotation > linear order
- Direct observation of nonlinear mode coupling
- Still forthcoming:
 - Observations + theory \rightarrow detailed system constraints