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Asteroseismology of rapidly rotating stars

= New observations: space missions Corot, Kepler
= An asymptotic theory is important for mode identification and interpretation

=- For slowly rotating stars (e.g. the sun): an asymptotic theory has been built
(Tassoul 1980, Deubner and Gough 1984, Roxburgh and Vorontsov 2000)

=- Requires approximate spherical symmetry
=-Cannot be used for rapidly rotating stars, not spherically symmetric

=- Focus of this talk: build an asymptotic theory for acoustic waves (p-modes)
in rapidly rotating stars using acoustic ray dynamics

= Results will be checked by comparisons with modes obtained by
numerical simulations of a polytropic model
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Ray limit of acoustic waves

= As for many other waves, the propagation of short-wavelength acoustic
waves can be described by rays

eikonal equation:

w? = w? +c2k? 1)
Cs is the sound speed and w, is the cut-off frequency whose sharp increase in
the outermost layers of the star provokes the back reflection of acoustic
waves.

= Acoustic ray: trajectory tangent to the wave vector k at the pointx —
Hamiltonian classical equations of motion (Lighthill 78, Gough 93)

= Should enable to construct acoustic wave dynamics at high frequency, in
the same way as quantum mechanics for 4 — 0 can be built from classical
mechanics
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New types of ray trajectories in rotating stars
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Phase space structure

= Poincaré Surfaces of Section give a global view of the ray dynamics properties
= At Q = 0 the system is integrable (stable and localized trajectories)
= At high rotation, integrable and chaotic zones (mixed systems).

Q = 0.6Qx
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Asymptotic mode classification

= Predictions of the ray-based theory (or quantum chaos theory): modes are
constructed on phase space structures
= Sucessfully confronted with numerically computed modes
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Consequences for spectra

=- Prediction (quantum chaos theory): Spectrum should be divided into
well-defined subspectra

= Near-integrable regions produce regular sub-spectra w = fj(nj, ¢, m)
=- The chaotic region produces an irregular sub-spectrum with specific
statistical properties

Frequency sub-spectra of four
classes of modes :
(a) 2-period island modes

(b)
(b) chaotic modes
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Visibility of the modes

e At high rotation, whispering gallery modes are very strongly cancelled
e The (spatially irregular) chaotic modes are weakly cancelled

Frequency spectra with
amplitude given by the
visibility for a star seen
pole-oni = 0 and
equator-on i = m/2:
2-period island modes
(blue), chaotic modes (red),
6-period island modes
(magenta)
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= At high rotation, the spectrum is dominated by the 2-period island

modes and chaotic modes
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Regular spectrum: 2-period island modes

= Largest group of
near-integrable modes

= Built around a central
periodic orbit

=- Can be built systematically
using parabolic equation
method (Babich)
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Example of mode
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Asymptotic formula
@

Result gives closed formula for 2-period island modes:
1 1
[27r(n + 5) + (6 + 2) (27N, + a)}

Wnem = g
v G

= Equation valid asymptotically for n large and ¢ < n.
= s is the curvilinear coordinate along the central periodic orbit ~
=-n and ¢ correspond to the number of nodes in the directions parallel and
and §¢ = 2Ncta
e

2m
5 g

transverse to the orbit.
= wn¢,m €ssentially described by two quantities, on =

(which depend on m)

= The quantities on and ¢ probe the sound velocity along the path of the
periodic orbit and its transverse derivatives.
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Comparison with numerical modes: spectrum
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Comparison between actual regularities of regular modes and theoretical predictions
for m = 0 and different values of /Qx Inset: Same for m = 1.

Bertrand Georgeot (Quantware)



Comparison with numerical modes: amplitude
distribution

The same theory enables to construct the amplitude distribution of the modes
in terms of transverse Hermite polynomials modulated by the longitudinal
coordinate.
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Amplitude distributions on the equator for a theoretical and a numerical mode.
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Irregular (chaotic) spectrum

=- No simple asymptotic formula for chaotic modes

=- Conjecture (Bohigas-Giannoni-Schmit): level spacing statistics of chaotic
modes should follow Random Matrix Theory

= Verified by the numerical acoustic stellar modes

Integrated spacing
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distribution typical of
integrable systems.
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Conclusion

e Dynamics of acoustic rays shows a transition from integrable to mixed
system when rotation increases

o For sufficiently large rotation, the spectrum should be divided into
well-defined regular or irregular subsets.

e This picture holds for numerical modes computed from a polytropic star
model.

e The regular and irregular modes have both high visibility.

e First results of COROT: some regularity seems to be detected in § scuti
stars — more work to connect to observed spectra.

o Identification of the spectra should lead to better understanding of the
star interior.

e Extensions: more refined numerical models, stratification, inertial modes,
etc...
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