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stellar structure in a nutshell
• a “reminder” of basic stellar structure and evolution
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Kawaler  p Dependent / Independent variables
• Independent variable - a measure of position
• distance from center - r 
• mass fraction within - Mr
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Kawaler  p Dependent / Independent variables
• Independent variable - a measure of position
• distance from center - r
• mass fraction within - Mr

• Things that specify local conditions within a (hydrostatic) star:
• velocity
• density: ρ or n = NA ρ/µ
• pressure: P
• temperature: T
• chemical composition (fraction by mass): Xi

• ion / charge balance: Yi , ne

• internal energy (per unit mass): U
• entropy (per unit mass): S
• heat flow parameters/ x-sections (/mass):  κrad,  κcond,

• energy flow: Lr , Fconv

• energy generation/loss (per unit mass): εnuc , εν
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the ‘core four’
• primary mechanical quantities

• r (or Mr)

• P
• primary thermal quantities

• T
• Lr
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• primary mechanical quantities

• r (or Mr)

• P
• primary thermal quantities

• T
• Lr

• necessary extra information

• composition (element mass fraction Xi)

• necessary derived quantities

• Equation of state: ρ, µ, U, S, ∇ad ,Yi ,etc.

• Atomic physics: yi , κrad,  κcond

• Nuclear physics: εnuc , εν
• confusing physics: Fconv

• NOTE - for pulsation, need partial derivatives of these
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the ‘core four’... plus
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• Continuity

• HSE

• Energy conservation

• Energy transport

7

dMr
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• Equation of state

• ρ (P, T, μ)
• μ(P, T, Xi)
• S (P, T, μ)

• Energy generation

• εnuc(ρ, T, Xi)
• εν(ρ, T, Xi)

• Energy transport

• ∇rad →  κrad (ρ, T, Xi)

• ∇cond →  κcond (ρ, T, Xi)
• ∇convective →  ????



Kawaler - Lecture 2 p input physics
•Equation of state
•easy version(s) - perfect gas, mixed ionization state, ...
•complications - degeneracy, non-ideal effects, disequilibrium

•Nuclear reaction rates
•easy version(s) - S(0) energy approximation and expansions
•complications - hidden low-energy resonances, ...
•complications - neutrino emission

•Radiative transport - opacities
•easy version(s) - Kramers, electron scattering
•complications - real atoms, molecules, coupling, mixtures
•complications - conduction

•Convective transport
•easy version(s) - adiabatic, mixing-length theory
•complications - turbulence happens in 3-D
•complications - interaction with rotation
•complications - interaction with magnetic field
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Kawaler - Lecture 2 p input physics questions
(that asteroseismology can address)

• Equation of State 
• non-ideal effects
• Coulomb crystallization - pulsating cool, massive WDs

• Nuclear processes
• difficult cross-sections - chemical profiles in WD interiors
• neutrino emission - evolution rates in hot WD pulsators

• Radiative transport - opacities 
• Cepheid masses, driving, and the iron bump
• sdB driving (with diffusion thrown in)
• B star pulsations

• the convective flux 
• white dwarf driving and harmonics
• solar-like oscillations
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other issues (non-coefficient)
• time evolution of abundance

• composition changes via nuclear burning 

• direct impact through dS/dt term

• composition changes via chemical diffusion

• diffusion coefficients via atomic physics

• composition changes via turbulence

• instantaneous mixing via convection

• convective overshoot

• partial mixing via semiconvection, other processes

• rotational mixing

• mass loss / accretion

• rotation

• magnetic fields 

• tidal interaction and other effects of companions
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• proximity effects - Coulomb interactions between ions 

• Coulomb potential between two ions:  Z2e2/a, 

• Coulomb effects are expected to become important when 
Z2e2/a ~ kT.   Thus form the ratio

• when ΓC = 1, effects begin to be felt

• solar interior: ΓC = 0.1

• if  ΓC >> 1, effects are strong (mutual ion repulsion)

• ΓC = 175 : ion-ion forces can cause crystallization 
     (first proposed by Salpeter 1961)

• white dwarf interior ΓC = 150 to 250 or more
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EOS - trouble in an ideal world:
particles interact
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• proximity effects - Coulomb interactions between ions 

• Coulomb potential between two ions:  Z2e2/a, 

• Coulomb effects are expected to become important when 
Z2e2/a ~ kT.   Thus form the ratio

• when ΓC = 1, effects begin to be felt

• solar interior: ΓC = 0.1

• if  ΓC >> 1, effects are strong (mutual ion repulsion)

• ΓC = 175 : ion-ion forces can cause crystallization 
     (first proposed by Salpeter 1961)

• white dwarf interior ΓC = 150 to 250 or more
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Y=0.5

Pressure Ionization

Prad
=Pgas

ΓC =
 1degen

WD 
Xtalization

from Paxton et al. 2011
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crystalline white dwarfs?

• at sufficient pressure, fully ionized 
metals can lock into a crystalline 
lattice

• conditions realized within cores of 
massive white dwarfs while surface 
still warm

• nonradial pulsations can reveal the 
crystallization boundary

Credit: Travis Metcalfe and Ruth Bazinet
Harvard-Smithsonian Center for Astrophysics

”Twinkle, twinkle, little star,
How I wonder what you are!
Up above the world so high,
Like a diamond in the sky!”
	
 	
 	
 Jane Taylor (1783-1824)
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Pulsating DA white dwarfs

Montgomery & Winget 1999
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period spacing vs.
crystallization fraction

Dependence on T
eff

Montgomery & Winget 1999
16
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BPM 37093:
“the diamond star”

•  8 modes, unknown l, n

•  period range 511 s to 636 s

•  M, T spectroscopy constraints on models: 

•  12 available modes, l=1,2
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Metcalfe et al. 2004, 
Kanaan et al. 2005
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BPM 37093:
“the diamond star”
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Kawaler - Lecture 2 p input physics questions
(that asteroseismology can address)

• Equation of State 
• non-ideal effects
• Coulomb crystallization - pulsating cool, massive WDs

• Nuclear processes
• difficult cross-sections - chemical profiles in WD interiors
• neutrino emission - evolution rates in hot WD pulsators

• Radiative transport - opacities 
• Cepheid masses, driving, and the iron bump
• sdB driving (with diffusion thrown in)
• B star pulsations

• the convective flux 
• white dwarf driving and harmonics
• solar-like oscillations
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• Continuity

• HSE

• Energy conservation

• Energy transport

• Equation of state

• ρ (P, T, μ)
• μ(P, T, Xi)
• S (P, T, μ)

• Energy generation

• εnuc(ρ, T, Xi)
• εν(ρ, T, Xi)

• Energy transport

• ∇rad →  κrad (ρ, T, Xi)

• ∇cond →  κcond (ρ, T, Xi)
• ∇convective →  ????

dMr

dr
= 4πr2ρ(r)

dP

dMr
= −GMr

4πr4

dT

dMr
= −∇GMr

4πr4

T

P
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the basic equations



Kawaler - Lecture 2 p non-resonant reaction rates
• simplest general form

• S(0) is a quantity (related to the cross section at 0 energy) 
extrapolated from measurements at higher energy (why?)

�σv�ij =
K0S(0)
ZiZj

T−2/3e−K3T−1/3

22

T=15,000,000K
kT = 1.3 keV

T=15,000,000K
E(Gamow) = 25keV



Kawaler - Lecture 2 p resonant reaction rates
• Simplest general form

• where the resonance at E=Eres selects a single energy from 
the particle energy distribution

�σv�ij = K1 g
ΓiΓj

Γ
T−3/2e−K2/T
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T=15,000,000K
E(Gamow) = 25keV
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12C + 4He → 16O  : rate poorly known
24

el Eid et al. 2004
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from Everett Lipman



Kawaler - Lecture 4 p core helium burning

• 3 4He ⇒ 12C  (triple alpha) 

• as temperature increases, see more 12C+4He ⇒ 16O

• final 16O/12C depends on the reaction rate of  ↑

26

From John 
Lattanzio’s

online stellar 
evolution 
tutorial

http://web.maths.monash.edu.au/~johnl/StellarEvolnV1/m5z02evoln.html
http://web.maths.monash.edu.au/~johnl/StellarEvolnV1/m5z02evoln.html
http://web.maths.monash.edu.au/~johnl/StellarEvolnV1/m5z02evoln.html
http://web.maths.monash.edu.au/~johnl/StellarEvolnV1/m5z02evoln.html
http://web.maths.monash.edu.au/~johnl/StellarEvolnV1/m5z02evoln.html
http://web.maths.monash.edu.au/~johnl/StellarEvolnV1/m5z02evoln.html
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C/O WD core (Metcalfe et al. 2002) 
post-helium burning core abundance profiles

27

0.61 Mo WD model

NACRE

NACRE + 1σ

NACRE - 1σ
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DB pulsator fits - core C/O profile
(Metcalfe 2003)

• compositional stratification in two DB pulsators

• period spacings - composition transition zones

• periods - composition ‘calibration’ given external constraints 
on Teff and log g
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DB pulsator fits - core C/O profile
(Metcalfe 2003)
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(thermal) neutrino emission
• “Coolant” in white dwarf evolution (ν produced, energy carried 

away, but not thermalized in stars → net energy loss (ε < 0)

• ‘Bremsstrahlung neutrinos’:
ν  instead of γ in free-free scattering of ions, e-

• ‘plasmon neutrinos’: 
photon in plasma couples with the plasma, allowing it to 
decay and still conserve momentum and energy

• Energy loss mechanism in NS production (supernova):

• ‘pair neutrinos’:   

• ‘photo neutrinos’:

• These production rates can be computed via QED, 
but have never been tested experimentally.

30

γ* → ν + ν

γ +γ→ e+ + e- →ν + ν
γ + e- → e- + ν + ν
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neutrino emission from white dwarfs
31

Althaus et al. (2010)
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Winget et al. (2004)

Lneutrino > Lphoton

32

neutrino emission from white dwarfs
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deduce period changes via phase changes 
using (O-C) diagram

• secular change via stellar 
cooling - stellar evolution 
while you watch

• reflex orbital motion - 
low-mass companions
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(O − C) = (∆t)2
1
P

dP

dt
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for nonradial pulsations
(g-modes)

• contraction / heating

•  period decrease with time

• expansion / cooling

•  period increase with time

1
P

dP

dt
=

a

R

dR

dt
− b

T

dT

dt
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G117-B15a: a very stable optical clock
(Kepler et al. )
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consistent with WD cooling models as long as core 
composition lighter than neon - soon constrain C/O ratio!
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neutrino signal in DB white dwarfs

DB white dwarfs (Winget et al. 2004)
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how long to measure dP/dt?
37

• P ~ 300 s ; dP/dt ~ 10-13

• 1/P(dP/dt) ~ 3x10 -16 s-1  (τ ~ 108 years)

• phase uncertainty in a ‘good’ run ~ 10 s

• 10s = (O-C) = (Δt)2 × 3x10-16 

(Δt)2 = 10 s / 3x10-16 s-1

Δt ~ 3x1016 s ~ 6 years for a measurable (O-C)

(O − C) = (∆t)2
1
P

dP

dt
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best candidate: EC20058
Denis Sullivan - 1997 - 2011+

38

we’re getting there...



Kawaler - Lecture 2 p Energy Transport - radiative
• As posed, it is contained in ∇:

• photon diffusion (‘radiative’ heat transport):  ∇= ∇rad 

• κr - the radiative opacity:

• flux:

• integrate: 

• where 

• so 

dT

dMr
= −∇GMr

4πr4

T

P

Fν = −4π

3
1

ρκν

∂Bν

∂T

dT

dr

∇rad ≡
3κr

16πac

Lr

T 4

P
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0
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about that κν

• atomic processes

• electron scattering (easy...)

• free-free scattering

• bound-free absorption

• bound-bound absorption - the 
messiest of all

• molecular absorption - also messy!

• H-

• CO, OH, H2O, CH4, ...

40

Rogers & Iglesias (1994)
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some simple examples of atomic κν
OPAL: Rogers & Iglesias (1992): log T=5.4, log ρ=-5.3
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opacity sources in models
(MESA - Paxton et al. 2011)
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Pulsating stars in 
the HR diagram

from J. Christensen-
Dalsgaard
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Cepheids: core helium burning Pop I stars

• lower mass limit - large enough to avoid core He 
flash ~ 2-3 Mo

• cross instability strip during “blue loop” of core He 
burning (and post-core exhaustion)

• most likely to find them at extreme blue end of the 
loop (slowest evolution)
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Cepheid Masses circa 1985
• “Beat” Cepheids

• period ratio of first overtone to fundamental: P1/P0 

• observed values: 0.70 < P1/P0 < 0.71

• but... model periods were far from this value

45

from Moskalik 
et al. 1992
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but... a solution was already foreseen:
Norman Simon: 1981
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but... a solution was already foreseen:
Norman Simon: 1982
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‘normal’ opacities

augmented metal
opacities

but... a solution was already foreseen:
Norman Simon: 1982
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but... a solution was already foreseen:
Norman Simon: 1982
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• early version of OPAL opacities found much higher 

opacities precisely where Simon said:  i.e.

• Iglesias & Rogers 1991
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Cepheid Masses circa 1992
• “Beat” Cepheids

• period ratio of first overtone to fundamental: P1/P0 

• observed values: 0.70 < P1/P0 < 0.71

• new models with new opacities are just fine

51

from Moskalik 
et al. 1992
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non-adiabatic pulsation:
driving, damping, and the convective flux

• Radiative energy transport - opacities and driving 
• Cepheid masses, driving, and the iron bump
• (massive pulsators and the iron bump)
• sdB driving (with diffusion thrown in)

• the convective flux
- white dwarf driving and harmonics
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the kappa mechanism

• if the integrand is > 0, then that region contributes to a 
positive value of  Wrad and therefore pulsation driving

• typical values for power law opacity:
         κT ~ -3.5 ;  κρ ~ 1.0  ;  Γ3 ~ 5/3   so ( ) < 0

• ** Damping or driving when thermal response time of 
the layer is comparable to the pulsation period:
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• ‘normal’ situation

• compression cycle:  

• T, ρ increase, κ decreases:

• region becomes ‘leakier’ to radiation

• Flux can increase, so energy is not ‘bottled up’

• Wtot < 0

• ‘unstable’ situation (partial ionization)

• compression cycle:

• T, ρ increase

• κ does not decrease 

• (energy goes into ionization)

• Flux ‘bottled up’ 

• can only release energy on ‘downstroke’ when T falls

• GENERAL CONDITION - partial ionization
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the kappa mechanism
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an example of pure kappa
55



Pulsating stars in 
the HR diagram

from J. Christensen-
Dalsgaard
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sdB stars and standard models

Østensen 2008
57
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Driving 
Mechanism:

opacity effect with 
levitated Iron

(Charpinet et al.  1996-2002)
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Charpinet, Fontaine, & Brassard 2009:
“nonadiabatic asteroseismology”

of sdB stars

• kappa mechanism is robust in sdB stars

• predictive 

• observed pulsations (given Teff, log g) 
 require levitated iron

• use observed period ranges to 
place strong constraints on subsurface Fe
(and on processes that would dilute the driving)
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instability regions

Østensen 2008

red/green = short period            purple = long-period
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Charpinet et al. (2007)

62



Kawaler - Lecture 3 p 

Hu et al. (2010)

Fe enhancement ... + grav settling
Fr

eq
ue

nc
y

Teff
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Pulsating stars in 
the HR diagram

from J. Christensen-
Dalsgaard



Kawaler - Lecture 3 p 

convection efficiency constraints from 
pulsating white dwarfs

• nonlinear pulse shape for high-
amplitude pulsating white dwarfs 
depend on convective time scales 
near the surface

• Blue edge for DB white dwarfs is 
sensitive to the parameters of 
mixing length theory (and 
therefore efficiency of (near) 
surface convection)
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pulse shapes
Mike Montgomery (2005, 2006, 2009)

• subsurface flux variations are sinusoidal

• convective turnover time << pulsation periods

• instantaneous response of convection zone to changes 
through a pulsation cycle (via MLT) yields

                                             where N ~ 25

• look at flux (and temperature) variations and model the 
light curve accordingly to yield a ‘pulse shape’

• adjustable parameters:  τo, N, and inclination θ 
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τc ≈ τ0

�
Teff

T0

�−N
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pulse shapes
Mike Montgomery (2006 - 2010)
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pulse shapes
Mike Montgomery (2006 - 2010)
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input physics questions
(that asteroseismology can address)

• Equation of State 

• non-ideal effects

• Coulomb crystallization - pulsating cool, massive WDs

• Nuclear processes

• difficult cross-sections - chemical profiles in WD interiors

• neutrino emission - evolution rates in hot WD pulsators

• Radiative energy transport - opacities and driving 

• Cepheid masses, driving, and the iron bump

• sdB driving (with diffusion thrown in)

• B star pulsations

• the convective flux 

• white dwarf driving and harmonics
• solar-like oscillations
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other issues (non-coefficient)
• time evolution of abundance

• composition changes via nuclear burning 

• direct impact through dS/dt term

• composition changes via chemical diffusion

• diffusion coefficients via atomic physics

• composition changes via turbulence

• instantaneous mixing via convection

• convective overshoot

• partial mixing via semiconvection, other processes

• rotational mixing

• mass loss / accretion

• rotation

• magnetic fields 

• tidal interaction and other effects of companions
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Tidal (non) synchronization in a close binary
(Pablo et al. 2011)

• sdB (pulsator) and low-mass (~0.2 Mo) M dwarf in a binary

• binary period = 9.56 hours ; orbital separation about 5 R*

• Tidal synchronization time scale (a la Zahn 1975): ~ 109  yr

• so we expect that the sdB should not 
       be in synchronous rotation

• g-mode pulsations in sdB show splitting corresponding to a 
rotation period of 9.63 days

• other sdB pulsators in binaries do appear to be synchronous

• PG 1336 - shorter period;  τsync <  106 yr

• Feige 48 - more massive companion; but τsync ~  108 yr
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B4 triplets - Prot = 9.63 d
72
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