Physics of Stellar Winds from Hot, Luminous Massive Stars

Stan Owocki Bartol Research Institute University of Delaware

- Solar-type Coronal Winds
 - Low Mdot ~ 10^{-14} M_{sun}/yr ; V_{inf} ~ V_{esc} ~ 500 km/s
 - Thermally driven with $a \sim V_{esc}$

- Solar-type Coronal Winds
 - Low Mdot ~ 10^{-14} M_{sun}/yr ; V_{inf} ~ V_{esc} ~ 500 km/s
 - Thermally driven with $a \sim V_{esc}$
- Cool (super) giant (super)winds
 - Low V_{∞} ~10's of km/s < Vesc); high Mdot ~= 10⁻⁴ 10⁻⁸ M_{sun}/yr
 - Driven by pulsation and/or dust ?

- Solar-type Coronal Winds
 - Low Mdot ~ 10^{-14} M_{sun}/yr ; V_{inf} ~ V_{esc} ~ 500 km/s
 - Thermally driven with $a \sim V_{esc}$
- Cool (super) giant (super)winds
 - Low V_{∞} ~10's of km/s < Vesc); high Mdot ~= 10⁻⁴ 10⁻⁸ M_{sun}/yr
 - Driven by pulsation and/or dust ?
- Radiatively driven winds of hot stars (OB, WR, LBV)
 - High V_{∞} (~3 Vesc = 2000-3000 km/s) >> Vsound ~ 10 km/s
 - High Mdot (10⁻⁴ 10⁻⁸ M_{sun}/yr)
 - LBVs may have superwind phases (up to $1 M_{sun}/yr$, e.g. η Car)

- Solar-type Coronal Winds
 - Low Mdot ~ 10^{-14} M_{sun}/yr ; V_{inf} ~ V_{esc} ~ 500 km/s
 - Thermally driven with $a \sim V_{esc}$
- Cool (super) giant (super)winds
 - Low V_{∞} ~10's of km/s < Vesc); high Mdot ~= 10⁻⁴ 10⁻⁸ M_{sun}/yr
 - Driven by pulsation and/or dust ?
- Radiatively driven winds of hot stars (OB, WR, LBV)
 - High V_{∞} (~3 Vesc = 2000-3000 km/s) >> Vsound ~ 10 km/s
 - High Mdot (10⁻⁴ 10⁻⁸ M_{sun}/yr)
 - LBVs may have superwind phases (up to $1 M_{sun}/yr$, e.g. η Car)

Radiative force vs. gravity

Radiative Force

Gravitational Force

Radiative force vs. gravity

Radiative Gravitational Force Force $g_{rad} = \int_{0}^{\infty} dv \, \frac{\kappa_{v} F_{v}}{c}$ GM $\Gamma_e \equiv \frac{g_e}{g} = \frac{\kappa_e L / 4\pi r^2 c}{GM / r^2} = \frac{\kappa_e L}{4\pi GM c}$

Radiative force vs. gravity

Stellar Luminosity vs. Mass

Eddington Standard Model (n=3 Polytrope)

Humphreys-Davidson Limit

Line-Driven Stellar Winds

- For normal (sub-Eddington stars) wind is driven is by line scattering of light by electrons bound to metal ions
- This has some key differences from free electron scattering...

Driving by Line-Opacity

Optically thin

 $\overline{\Gamma_{thin}} \sim Q \Gamma_e \sim 1000 \Gamma_e$

Driving by Line-Opacity

Optically thin

Optically thick

e

thick

dv

 ~ 1

Equation of motion:
$$VV' \approx -\frac{GM(1-\Gamma)}{r^2} + \frac{\overline{Q}L}{r^2} \left(\frac{r^2VV'}{\dot{M}\overline{Q}}\right)^{\alpha}$$

inertia gravity CAK line-force

Equation of motion:
$$VV' \approx -\frac{GM(1-\Gamma)}{r^2} + \frac{\overline{Q}L}{r^2} \left(\frac{r^2 VV'}{\dot{M}\overline{Q}}\right)^{\alpha}$$
 (CAK ensemble of thick & thin lines

 $\mathbf{\Omega}$

 $VV' \approx -\frac{GM(1-\Gamma)}{r^2} + \frac{\overline{Q}L}{r^2} \left(\frac{r^2 VV'}{\dot{M}\overline{Q}}\right)^{\alpha} \qquad \begin{array}{c} 0 < \alpha < 1\\ \text{CAK ensemble of thick \& thin lines} \end{array}$

Equation of motion:

inertia ≈ gravity ≈ CAK line-force

Equation of motion:
$$VV' \approx -\frac{GM(1-\Gamma)}{r^2} + \frac{\overline{Q}L}{r^2} \left(\frac{r^2 VV'}{\dot{M}\overline{Q}}\right)^{\alpha}$$
 (CAK ensemble of thick & thin lines

inertia 🕿 gravity ≈ CAK line-force

GCAK ≈ gravity Mass loss rate $\dot{M} \approx \frac{L}{c^2} \left(\frac{\overline{Q}\Gamma}{1-\Gamma}\right)^{\frac{1}{\alpha}-1}$

 $VV' \approx -\frac{GM(1-\Gamma)}{r^2} + \frac{\overline{Q}L}{r^2} \left(\frac{r^2 VV'}{\dot{M}\overline{O}}\right)^{\alpha} \qquad \begin{array}{c} 0 < \alpha < 1\\ \text{CAK ensemble of thick \& thin lines} \end{array}$

Equation of motion:

inertia \thickapprox gravity \thickapprox CAK line-force

GCAK \approx gravity Mass loss rate $\dot{M} \approx \frac{L}{c^2} \left(\frac{\overline{Q}\Gamma}{1-\Gamma}\right)^{\frac{1}{\alpha}-1}$

inertia \approx gravity Velocity law $V(r) \approx V_{\infty} (1 - R_* / r)^{\beta} \qquad \beta \approx 0.8$ $\sim V_{esc}$

 $VV' \approx -\frac{GM(1-\Gamma)}{r^2} + \frac{\overline{Q}L}{r^2} \left(\frac{r^2 VV'}{\dot{M}\overline{O}}\right)^{\alpha} \qquad \begin{array}{c} 0 < \alpha < 1\\ \text{CAK ensemble of thick \& thin lines} \end{array}$

Equation of motion:

inertia \thickapprox gravity \thickapprox CAK line-force

GCAK \approx gravity Mass loss rate $\dot{M} \approx \frac{L}{c^2} \left(\frac{\overline{Q}\Gamma}{1-\Gamma}\right)^{\frac{1}{\alpha}-1}$

inertia \approx gravity Velocity law $V(r) \approx V_{\infty} (1 - R_* / r)^{\beta} \qquad \beta \approx 0.8$ $\sim V_{esc}$

Wind-Momentum Luminosity law

$$\dot{M} v_{\infty} \sim \overline{Q}^{-1+1/\alpha} L^{\frac{1}{\alpha}} \qquad \qquad \alpha \approx 0.6$$
$$\sim Z^{0.6} L^{1.7} \qquad \qquad \overline{Q} \sim Z$$

How are such winds affected by (rapid) stellar rotation?

Gravity Darkening

 $F(\theta) \sim g_{eff}(\theta)$

higher at pole!

 $M \sim F(\theta)$

 $V_{\infty} \sim \sqrt{g(\theta)}$

increasing stellar rotation

Smith et al. 2003

How are winds affected by a (large-scale) stellar magnetic field?

MiMeS

Magnetism in Massive Stars

P.I.: Gregg A. Wade, Royal Military College 50+ Co-Is, 2008-2012, CFHT Allocation: 640 hours

http://www.physics.queensu.ca/~wade/mimes/ MiMeS___Magnetism_in_Massive_Stars.html

Rigid Field - Hydro Dynamics for $\eta_* >> 1$

Rigid Field - Hydro Dynamics for $\eta_* >> 1$

RRM model for σ Ori E

EM +B-field

 $B_{*} \sim 10^{4} G$

 $> \eta_* \sim 10^6 !$

tilt ~ 55°

Ηα

Stellar spindown time

Table 1. Estimated spin-down time for selected known magnetic stars.									
Star ^a	M/M_{\odot}	R_*/R_{\odot}	P (d)	k	$\dot{M} (10^{-9} \mathrm{M_{\odot}} \mathrm{yr^{-1}})$	$v_\infty(1000\rm kms^{-1})$	$B_{\rm p}~({\rm kG})$	η_*	τ _{spin} (Myr)
θ^1 Ori C ¹	40	8	15.4	0.28	400	2.5	1.1	15.7	8
HD191612 ²	40	18	538	0.17	6100	2.5	1.6	7.6	0.4
ζ Cas ³	8	5.9	5.37	0.1	0.3	0.8	0.34	3200	65.2
σ Ori E ⁴	8.9	5.3	1.2	0.1	2.4	1.46	9.6	1.4×10^{5}	1.4
$\rho \text{ Leo}^5$	22	35	7-47	0.12	630	1.1	0.24	20	1.1

$$\tau_{spin} pprox au_{mass} rac{rac{3}{2}k}{\sqrt{\eta_*}}$$

 $B_{*}^{2}R_{*}^{2}$ $\eta_* \equiv$ $M V_{\infty}$

$$\approx 11 Myr \quad \frac{k_{-1}}{B_{kG}} \frac{M_*}{R_*} \sqrt{\frac{V_8}{M_{-9}}}$$

20

DISCOVERY OF ROTATIONAL BRAKING IN THE MAGNETIC HELIUM-STRONG STAR SIGMA ORIONIS E

R. H. D. TOWNSEND¹, M. E. OKSALA², D. H. COHEN³, S. P. OWOCKI², AND A. UD-DOULA⁴

Department of Astronomy, University of Wisconsin-Madison, Sterling Hall, 475 N. Charter Street, Madison, WI 53706, USA; townsend@astro.wisc.edu

² Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA

³ Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081, USA

⁴ Penn State Worthington Scranton, 120 Ridge View Drive, Dunmore, PA 18512, USA

Received 2010 March 12; accepted 2010 April 14; published 2010 April 26

ABSTRACT

We present new U-band photometry of the magnetic helium-strong star σ Ori E, obtained over 2004–2009 using the SMARTS 0.9 m telescope at Cerro Tololo Inter-American Observatory. When combined with historical measurements, these data constrain the evolution of the star's 1.19 day rotation period over the past three decades. We are able to rule out a constant period at the $p_{null} = 0.05\%$ level, and instead find that the data are well described ($p_{tall} = 99.3\%$) by a period increasing linearly at a rate of 77 ms per year. This corresponds to a characteristic spin-down time of 1.34 Myr, in good agreement with theoretical predictions based on magnetohydrodynamical simulations of angular momentum loss from magnetic massive stars. We therefore conclude that the observations are consistent with σ Ori E undergoing rotational braking due to its magnetized line-driven wind.

Line-driving intrinsically unstable at small-scales

Turbulenceseeded clump collisions

Enhances V_{disp} and thus X-ray emission

Feldmeier et al. 1997

In 2D sims, RT instabilities break shells into clumps

Dessart & Owocki 2005

WR Star Emission Profile Variability

WR Star Emission Profile Variability

Discrete Absorption Components: evidence for large-scale wind structure

Monitoring campaigns of P-Cygni lines formed in hot-star winds often show modulation at periods comparable to the stellar rotation period.

Discrete Absorption Components: evidence for large-scale wind structure

Radiation hydrodynamics simulation of CIRs in a hot-star wind

Monitoring campaigns of P-Cygni lines formed in hot-star winds often show modulation at periods comparable to the stellar rotation period.

These may stem from large-scale surface structure that induces spiral wind variation analogous to solar Corotating Interaction Regions.

Radial pulsations in BW Vul

Wind variations from base perturbations in density and brightness

Wind variations from base perturbations in density and brightness

Dynamic spectra

C IV

July 30, 2001

IAUC 185

Dynamic spectra

C IV

Model line

July 30, 2001

IAUC 185

Massive, Luminous stars:

Several M_{\odot} of circumstellar matter resulting from brief eruptions, expanding at about 50-600 km/s.

SN1987A (courtesy P. Challis)

HD 168625 (Smith 2007)

Sher 25 (Brandner et al. 1997)

Luminous Blue Variables & the Eddington limit

Luminous Blue Variables & the Eddington limit

Luminous Blue Variables & the Eddington limit

Fe-bump can inflate envelope

 $M_{env} \sim 10^{-6} M_{*}$

M_{env} ~ 10⁻⁶ M*

 $T \downarrow \Longrightarrow \kappa \uparrow \Longrightarrow M \uparrow$

Eta Carinae

Eta Car's Extreme PropertiesPresent day: $L_{rad} \approx 5 \times 10^6 L_{\odot}$ $\dot{M} \approx 10^{-3} M_{\odot}/yr$ $\approx L_{Edd}$ $V_{\infty} \approx 600 \, \mathrm{km/s}$

Eta Car's Extreme Properties Present day: $L_{rad} \approx 5 \times 10^6 L_{\odot}$ $\approx L_{Edd}$ $\dot{M} \approx 10^{-3} M_{\odot}/\text{yr}$

1840-60 Giant Eruption: $L_{rad} \approx 20 \times 10^6 L_{\odot}$

 $\dot{M} \approx 0.5 M_{\odot}/\mathrm{yr}$ $V_{\infty} \approx 600 \,\mathrm{km/s}$

Eta Car's Extreme PropertiesPresent day:
$$L_{rad} \approx 5 \times 10^6 L_{\odot}$$
 $\dot{M} \approx 10^{-3} M_{\odot}/\text{yr}$ $\approx L_{\text{Edd}}$ $V_{\infty} \approx 600 \text{ km/s}$

1840-60 Giant Eruption: $L_{rad} \approx 20 \times 10^6 L_{\odot}$

 $\dot{M} \approx 0.5 M_{\odot}/\mathrm{yr}$ $V_{\infty} \approx 600 \,\mathrm{km/s}$

$$\approx L_{kin} = \dot{M} v_{\infty}^2 / 2$$

=> Mass loss is energy or "photon-tiring" limited

Photon Tiring & Flow Stagnation

Fluidized Bed

Summary

- Massive star winds driven by line-scattering
- Strong Line-deshadowing instability

 small-scale clumping & embedded soft X-rays
- Large-scale structure from NRP or bright spots
- Rapid rotation => faster denser polar wind
- Eddington limit => LBV & Eruptions
- Wind magnetic channeling + rotation - centrifugally supported magnetospheres
- Magnetic spindown over 1 Myr