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Introduction

spectroscopic studies shows that many stars rotate rapidly
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interferometry reveals the drastic effects of rapid rotation
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Effects of rotation

Effects on stars

short term structural effects (centrifugal deformation, gravity
darkening)

long term evolutionary effects (mixing, transport, stellar
lifetime)

detailed review given in talks by F. Espinosa Lara, M.
Pinsonneault and J.-P. Zahn

Effects on stellar pulsations

many new challenges which need to be addressed

interpreting stellar pulsations is crucial to gaining a better
understanding of rapidly rotating stars
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Inertial forces

stellar rotation introduces 2 inertial forces

the centrifugal force
the Coriolis force

neither respects spherical symmetry

⇒ two-dimensional eigenvalue problem
pulsation modes are no longer described by a single spherical
harmonic
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The centrifugal force

stellar deformation = ε ∝ Ω2R3
eq

GM

the outer layers are the most deformed

effect on acoustic modes ∝ ε
λ ∝ ωΩ2

λ = mode’s wavelength, ω = mode’s frequency

smaller effect on gravito-inertial modes which tend to be
deeper inside the star174 I. W. Roxburgh: Rapidly rotating stars

2.3. Solution of the structure equations

The structure Eqs. (14)−(17) were solved using a scaled down
version of my stellar evolution code, setting time derivatives
to zero, using a fixed composition (X = 0.70, Z = 0.02)
and equilibrium pp and CN cycle nuclear reactions, and in-
corporating the factors A, B,C,D. The equation of state was
OPAL EOS2001 (Rogers & Nayfonov 2001) and the opacities
a smooth blend of OPAL GN93 (Iglesias & Rogers 1996) and
Alexander & Ferguson (1994) tables; interpolation in the tables
was by local splines which ensures continuity of first deriva-
tives. Convection was described by the local mixing length
model (see Appendix A) with α = 1.8, and convective mixing
is treated as a diffusion process with the diffusion coefficient
determined by the convective model. The structure equations
are discretised to 2nd order on the mesh in M(i) and solved
by relaxation, the solution is taken as having converged when
the relative changes in all variables, δVi/Vi, are less than some
specified value, normally set as 1/N2

i where Ni is the number
of mesh points.

2.4. Surface boundary conditions

The structure of the surface layers of rotating stars is another
area where our understanding is poor and effort needs to be put
in to understand the physics of these layers. This is the case
even for a slowly rotating star like the Sun where a better un-
derstanding of the structure of outer layers is needed before we
can determine the expected shape of the solar surface. This is a
problem with a long history going back to the interpretations of
the solar oblateness measured by Dicke & Goldenberg (1967).
Osaki (1966) proposed that the distribution of angular veloc-
ity is such that there is no meridional circulation and that this
distribution differs little from that of uniform rotation. We shall
here retain the assumption of uniform rotation in the surface
layers, deferring to subsequent work a more detailed study of
the atmosphere.

Since P, T are then constant on equipotential surfaces the
surface boundary condition must also be constant on equipo-
tentials. My evolution code has a simple grey Eddington at-
mosphere which is incorporated into the model by the simple
expedient of imposing the surface boundary condition T 4 =

0.75 T 4
eff(τ + 2/3), P = gτ/κ, high up in the radiative atmo-

sphere an optical depth τ ≈ 0.01−0.001 Since in a rotating
star the flux F, and hence the local Teff, and the local value of
effective gravity |∇Ψ|, vary over an equipotential surface, we
replace them by Ts, gs, their values averaged over the surface
equipotential

T 4
s =

L
σS ψ

=
L

4πσs2A
, gs =

∫

∇Ψ.dS

S ψ

=
GM
s2

C
A

(27)

where S ψ is the area of the equipotential, and take the boundary
condition as T 4 = 0.75T 4

s (τ + 2/3), P = gsτ/κ at some τ. This
condition is then independent of the angle θ f along which we
calculate the model.

Fig. 1. Equipotential surfaces in a model of 2 M� with an angular ve-
locity Ω = 2.2 × 10−4 rad/s. The points on these equipotentials are the
fitting points (rk, θk).

2.5. Mesh resolution and accuracy

Most models were computed taking the reference angle θ f =

π/2, ie along the equator; with Ni = 1000 for the mesh in Mi,
Nk = 8 for the solution of Poisson’s equation, and N j = 360 for
the computation of the factors A, B,C,D. All of θ f ,Ni,N j,Nk

were varied to check that the accuracy of the calculations was
of the order of 1:105. Details are given in Sect. 4 below. The
advantage of taking θ f = π/2 is that it was not necessary to
extend the radial mesh beyond the surface when calculating the
gravitational potential.

3. Results

Figure 1 shows the equipotential surfaces in a zams star of 2 M�
rotating with angular velocity Ω = 2.2 × 10−4 rad/s and equa-
torial velocity of 299 km s−1. The model was computed with
the angular variation of ρ,Φ modelled by Legendre polynomi-
als P2k, k = 0, 8, fitted at angles θk = kπ/2, k = 0, 8. The refer-
ence angle along which the model was computed was θ f = π/2,
the radial mesh was Ni = 1000 and the angular mesh N j = 360.
Figure 2 shows the variation of the factors A, B,C,D with ra-
dius for this model

Tables 1–4 list the properties of a family of models with
masses 1, 2, 5, 10 M� for a range of angular velocities. In all
cases the luminosity and polar radius decreases with increasing
angular velocity. as was found to be the case in earlier work
using a two zone perturbation model (Faulkner et al. 1968).

Note that for very rapid rotation the ratio of equatorial
to polar radius Re/Rp can exceed 1.5 and the parameter α =
Ω2R3

e/GM can exceed unity. This is primarily due to the con-
tribution of the gravitational quadrupole moment, Φ1(r)P2k

which enhances the gravitational attraction in the equatorial

(Roxburgh 2004)
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The Coriolis force

conservation of angular momentum

intervenes directly in the oscillatory movements

scales as 2Ω/ω

strongest effect on low frequency modes ⇒ gravito-inertial
modes
inertial modes (incl. r modes) owe their existence to the
Coriolis force (e.g. Papaloizou & Pringle, 1978, Lee 2006,
Rieutord et al. 2001, Dintrans et al. 1999)
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A multiplet

ω = ω0 −m( 1︸︷︷︸
geometric

−C︸︷︷︸
Coriolis

)Ω + ω2Ω2︸ ︷︷ ︸
centrifugal & Coriolis

...
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Effects on gravito-inertial modes

Period spacing

in the non-rotating case, g-modes are evenly spaced out in
period, based on Tassoul’s asymptotic formula (Tassoul 1980):

P ' (n +α`,g )∆P where ∆P =
2π2√
`(`+ 1)

(∫ r2

r1

N
dr

r

)−1

in the rotating case, the period spacing becomes dependent
on η = 2Ω/ω
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(Ballot et al. 2011)

agrees well with the traditional approximation (Berthomieu et
al. 1978, Lee & Saio 1987)
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Ω = 0.00ΩK Ω = 0.71ΩK

(Ballot et al. 2010)

critical surface based on Dintrans & Rieutord 2000

similar confinement also in traditional approximation (e.g.
Townsend 2003)
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Rosetta modes

With deformation Without deformation

(Ballot et al. 2011)

in specific frequencies ranges, so far, above 2Ω

closely follows underlying ray path

no need for centrifugal force
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Acoustic modes

Frequency spacing

in the non-rotating case, p-modes are evenly spaced out in
frequency, based on Tassoul’s asymptotic formula (Tassoul
1980):

ν ' ∆ν(n +
`

2
+ ε) where ∆ν =

[
2

∫ R

0

dr

c

]−1

∆νn = νn, ` − νn−1, ` = large frequency separation

δνn = νn, ` − νn−1, `+2 = small frequency separation (from
higher order terms in the asymptotic formula)
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The large and small frequency separations

∆νn survives, but not δνn
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(Espinosa et al. 2004)

Avoided crossings

rotation causes avoided
crossings between:

coupled p modes
low order p and g modes

a hindrance to mode
labeling (according to M.
Takata’s talk, it’s already a
challenge in 1D)
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(Suárez et al. 2010)

mode degeneracy affects the small frequency separation, even
at small rotation rates

also see Ouazzani et al. 2008
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(Suárez et al. 2010)

mode degeneracy affects the small frequency separation, even
at small rotation rates

also see Ouazzani et al. 2008
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New mode classification

Island Chaotic Whispering gallery
low `− |m| medium `− |m| high `− |m|

based on ray dynamics, Lignières & Georgeot (2008, 2009)
found different classes of modes:

separate geometry
separate frequency organization

more on this in B. Georgeot’s talk
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Island modes

new quantum numbers:

ñ = 2n + ε,

˜̀ =
`− |m| − ε

2
,

ε ≡ `+ m [2]

D. R. Reese Rotational effects on pulsation
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Island modes

(Reese et al., 2009)

ωñ, ˜̀, m̃ ' ñ∆ñ + Dm̃(˜̀)

√
m̃2

ñ
+ µ(˜̀)− m̃Ω + α(˜̀)

∆ñ and ∆˜̀ = ω˜̀+1 − ω˜̀ can be calculated from travel time
integrals (B. Georgeot’s talk)
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Interpreting asteroseismic data

(Lefèvre et al. 2009)D. R. Reese Rotational effects on pulsation
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(Walker et al. 2008)

νinert. = |νcorot.−mΩ|
also see Dziembowski
et al. (2007),
Savonije (2007), Saio
et al. (2007),
Cameron et al.
(2008)
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Periodic structures in frequency spectrum

Fig. 3 Same as Fig. 1. The inclination angle is now equal to

(Lignières et al. 2010)

auto-correlation function of synthetic spectra

both ∆ñ and Ω can stand out as peaks
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(Garćıa Hernández et al. 2009)

power spectrum of frequency subsets for HD 174936
(observed by CoRoT)

periodicity which matches ∆ñ
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Mode identification

Importance

needed to confirm global approach (avoid confusion between
∆ñ and Ω)

more detailed modeling through direct comparison and inverse
methods

Difficulties

difficulties caused by new mode organization

avoided crossings

chaotic modes
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Searching for frequency patterns

compare observed frequencies to spectra based on a simplified
asymptotic formula

systematic search through parameter space for closest fit

ω = ñ∆ñ + ˜̀∆˜̀ + m2∆m̃ −mΩ + α̃

(Reese et al. 2009b)
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(Reese et al. 2009b)

works well only for
high frequency
and no chaotic
modes

chaotic modes are
very likely to be
visible (Lignières
& Georgeot, 2009)

D. R. Reese Rotational effects on pulsation



Introduction Physical effects Interpreting asteroseismic data Conclusion

Photometric and spectroscopic mode identification

multi-color photometric and spectroscopic mode identification
commonly used in slowly rotating case

before doing identification, need for theoretical studies on the
forward problem
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Photometric signatures of modes

Previous studies

Lignières et al. (2006), Lignières & Georgeot (2009)

2D pulsation calculations
only temperature fluctuations
no limb or gravity darkening

Daszyńska-Daszkiewicz et al. (2002, 2007), Townsend (2003)

perturbative approach or traditional approximation
effects of avoided crossings included
amplitude ratios and phase differences depend on m and i (the
inclination)
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Results presented here

What it includes

2D p-modes of deformed SCF models (Jackson et al. 2005,
MacGregor et al. 2007)

latitude dependent intensities based on Kurucz atmospheres
(calculated by C. Barban)

limb darkening
gravity darkening

geometric distortion to surface from pulsations

What it lacks

non-adiabatic effects

δTeff/Teff approximated by δT/T

calculations in 1 band for now
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(Reese et al., in preparation)
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(Reese et al., in preparation)
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Line profile variations (LPVs)

most current methods treat the effects of rotation
perturbatively (up to 1st for the eigenfunctions)

for example : Schrijvers et al. (1997), FAMIAS (Zima 2008)

exceptions :

Clement (1994) uses 2D calculations
Lee & Saio (1990) and Townsend (1997) use the traditional
approximation

Clement, 1994 Townsend, 1997
D. R. Reese Rotational effects on pulsation
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Results presented here

2D p-modes of deformed SCF models (Jackson et al. 2005,
MacGregor et al. 2007)

Planck’s black-body spectrum

Claret (2000) limb-darkening law (no latitude dependence)

simple Gaussian absorption profiles

no deformation from pulsations
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Example
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n = 6

` = 5

m = 3

Ω = 0.1ΩC
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n = 6

` = 5

m = 3

Ω = 0.2ΩC
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n = 6

` = 5

m = 3

Ω = 0.3ΩC
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n = 6

` = 5

m = 3

Ω = 0.4ΩC
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n = 6

` = 5

m = 3

Ω = 0.5ΩC
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n = 6

` = 5

m = 3

Ω = 0.6ΩC
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n = 6

` = 5

m = 3

Ω = 0.7ΩC
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n = 6

` = 5

m = 3

Ω = 0.8ΩC
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Inversions

if mode identification succeeds, it may be possible to invert
for Ω, using the generalized splitting:

ω−m−ωm

2m ' Ωeff
m +Ωeff

−m

2 + Cm+C−m

2

Ωeff =
R
V Ωρo‖~ξ‖2dVR
V ρo‖~ξ‖2dV

C = i
m

R
V ρo

~Ω·(~ξ∗×~ξ)dVR
V ρo‖~ξ‖2dV
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Conclusion

Needs

interpreting pulsation data remains a challenge

computational aspects
mode identification

need for further observational constraints

global parameters
multicolor and spectroscopic data
easier stars (such as pole-on)

Prospects

better grasp of global stellar properties

better grasp of physical processes (differential rotation,
mixing, transport)
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