Rotational effects on pulsation

D. R. Reese

LESIA, Paris Observatory

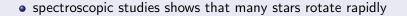
October 20, 2011

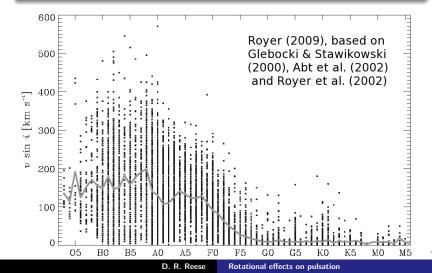
イロン イヨン イヨン イヨン

Interpreting asteroseismic data

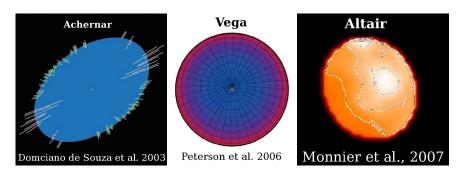
Conclusion

Introduction





Interpreting asteroseismic data



• interferometry reveals the drastic effects of rapid rotation

・ロト ・回ト ・ヨト

∃ >

Effects of rotation

Effects on stars

- short term structural effects (centrifugal deformation, gravity darkening)
- long term evolutionary effects (mixing, transport, stellar lifetime)
- detailed review given in talks by F. Espinosa Lara, M. Pinsonneault and J.-P. Zahn

Effects on stellar pulsations

- many new challenges which need to be addressed
- interpreting stellar pulsations is crucial to gaining a better understanding of rapidly rotating stars

イロト イヨト イヨト イヨト

Outline

1 Introduction

2 Physical effects

- Inertial forces
- Gravito-inertial modes
- Acoustic modes

Interpreting asteroseismic data

- Low frequency modes
- Periodic structures in frequency spectrum
- Mode identification
- Inversion techniques

Conclusion

A ■

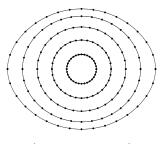
Inertial forces

- stellar rotation introduces 2 inertial forces
 - the centrifugal force
 - the Coriolis force
- neither respects spherical symmetry
 - \Rightarrow two-dimensional eigenvalue problem
 - pulsation modes are no longer described by a single spherical harmonic

< 🗇 🕨

The centrifugal force

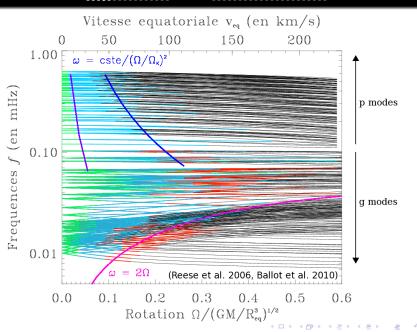
- stellar deformation = $\epsilon \propto \frac{\Omega^2 R_{eq}^3}{GM}$
- the outer layers are the most deformed
- effect on acoustic modes $\propto rac{\epsilon}{\lambda} \propto \omega \Omega^2$
 - $\lambda = {\rm mode's}$ wavelength, $\omega = {\rm mode's}$ frequency
- smaller effect on gravito-inertial modes which tend to be deeper inside the star



The Coriolis force

- conservation of angular momentum
- intervenes directly in the oscillatory movements
- $\bullet\,$ scales as $2\Omega/\omega$
 - strongest effect on low frequency modes \Rightarrow gravito-inertial modes
 - inertial modes (incl. r modes) owe their existence to the Coriolis force (e.g. Papaloizou & Pringle, 1978, Lee 2006, Rieutord et al. 2001, Dintrans et al. 1999)

Interpreting asteroseismic data

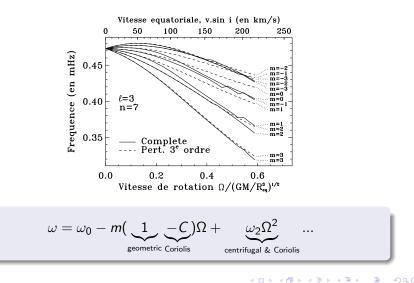


D. R. Reese Rotational effects on pulsation

 Interpreting asteroseismic data

Conclusion

A multiplet



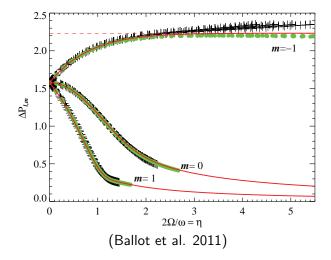
Effects on gravito-inertial modes

Period spacing

 in the non-rotating case, g-modes are evenly spaced out in period, based on Tassoul's asymptotic formula (Tassoul 1980):

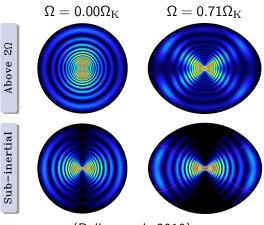
$$P \simeq (n + \alpha_{\ell,g}) \Delta P$$
 where $\Delta P = \frac{2\pi^2}{\sqrt{\ell(\ell+1)}} \left(\int_{r_1}^{r_2} N \frac{dr}{r} \right)^{-1}$

• in the rotating case, the period spacing becomes dependent on $\eta=2\Omega/\omega$



• agrees well with the traditional approximation (Berthomieu et al. 1978, Lee & Saio 1987)

Interpreting asteroseismic data



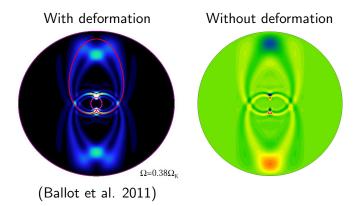
(Ballot et al. 2010)

- critical surface based on Dintrans & Rieutord 2000
- similar confinement also in traditional approximation (e.g. Townsend 2003)

Interpreting asteroseismic data

Conclusion

Rosetta modes



- \bullet in specific frequencies ranges, so far, above 2Ω
- closely follows underlying ray path
- no need for centrifugal force

Acoustic modes

Frequency spacing

• in the non-rotating case, p-modes are evenly spaced out in frequency, based on Tassoul's asymptotic formula (Tassoul 1980):

$$u \simeq \Delta
u (n + rac{\ell}{2} + \epsilon) \quad ext{where} \quad \Delta
u = \left[2 \int_0^R rac{dr}{c}
ight]^{-1}$$

• $\Delta \nu_n = \nu_{n,\ell} - \nu_{n-1,\ell} =$ large frequency separation

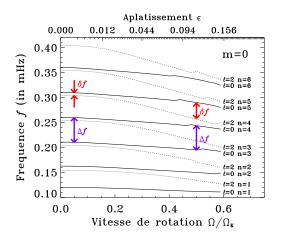
 δν_n = ν_{n,ℓ} − ν_{n−1,ℓ+2} = small frequency separation (from higher order terms in the asymptotic formula)

・ロト ・回ト ・ヨト ・ヨト

Interpreting asteroseismic data

Conclusion

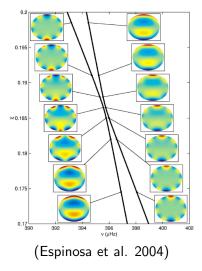
The large and small frequency separations



• $\Delta \nu_n$ survives, but not $\delta \nu_n$

< 🗗 🕨

注 ▶ → 注 ▶



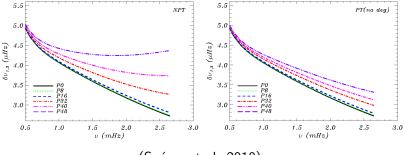
Avoided crossings

- rotation causes avoided crossings between:
 - coupled p modes
 - low order p and g modes
- a hindrance to mode labeling (according to M. Takata's talk, it's already a challenge in 1D)

・ロト ・回ト ・ヨト

Э.

Interpreting asteroseismic data

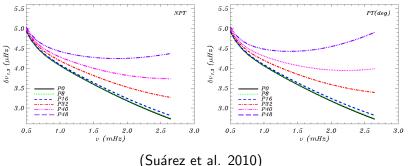


(Suárez et al. 2010)

- mode degeneracy affects the small frequency separation, even at small rotation rates
- also see Ouazzani et al. 2008

< □ > < 🗗 >

Interpreting asteroseismic data



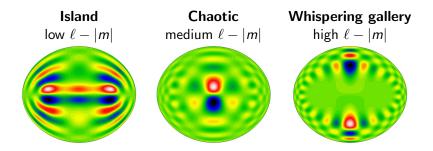
- mode degeneracy affects the small frequency separation, even at small rotation rates
- also see Ouazzani et al. 2008

< □ > < 🗗 >

Interpreting asteroseismic data

Conclusion

New mode classification

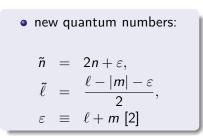


- based on ray dynamics, Lignières & Georgeot (2008, 2009) found different classes of modes:
 - separate geometry
 - separate frequency organization
- more on this in B. Georgeot's talk

イロト イポト イヨト イヨト

Interpreting asteroseismic data

Island modes



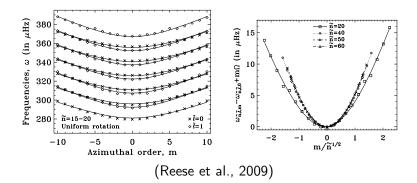
< 口 > < 回 > < 回 > < 回 > < 回 > <

æ

Interpreting asteroseismic data

Conclusion

Island modes



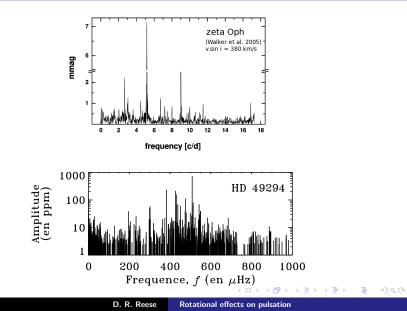
$$\omega_{\tilde{n},\tilde{\ell},\tilde{m}} \simeq \tilde{n}\Delta_{\tilde{n}} + D_{\tilde{m}}(\tilde{\ell})\sqrt{\frac{\tilde{m}^2}{\tilde{n}} + \mu(\tilde{\ell})} - \tilde{m}\Omega + \alpha(\tilde{\ell})$$

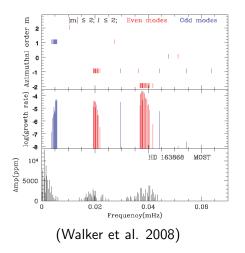
Δ_ñ and Δ_{ℓ̃} = ω_{ℓ̃+1} − ω_{ℓ̃} can be calculated from travel time integrals (B. Georgeot's talk)

Interpreting asteroseismic data

Conclusion

Interpreting asteroseismic data





• $\nu_{\text{inert.}} = \nu_{\text{corot.}} - m\Omega $
• also see Dziembowski
et al. (2007),
Savonije (2007), Saio
et al. (2007),
Cameron et al.
(2008)

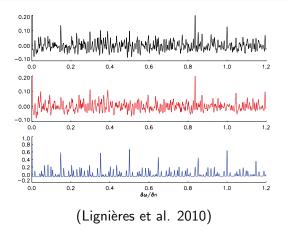
イロン イヨン イヨン イヨン

æ

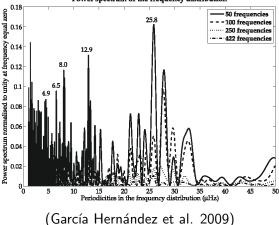
Interpreting asteroseismic data

Conclusion

Periodic structures in frequency spectrum



- auto-correlation function of synthetic spectra
- both $\Delta_{\tilde{n}}$ and Ω can stand out as peaks



Power spectrum of the frequency distribution

- power spectrum of frequency subsets for HD 174936 (observed by CoRoT)
- periodicity which matches $\Delta_{\tilde{n}}$

Mode identification

Importance

- needed to confirm global approach (avoid confusion between $\Delta_{\tilde{n}}$ and Ω)
- more detailed modeling through direct comparison and inverse methods

Difficulties

- difficulties caused by new mode organization
- avoided crossings
- chaotic modes

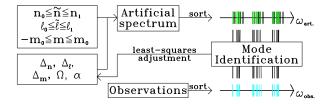
イロト イヨト イヨト イヨト

Interpreting asteroseismic data

Searching for frequency patterns

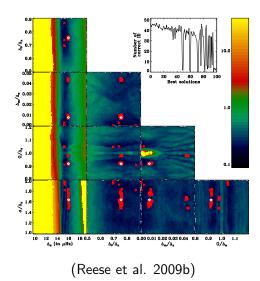
- compare observed frequencies to spectra based on a simplified asymptotic formula
- systematic search through parameter space for closest fit

$$\omega = \tilde{n}\Delta_{\tilde{n}} + \tilde{\ell}\Delta_{\tilde{\ell}} + m^2\Delta_{\tilde{m}} - m\Omega + \tilde{\alpha}$$



(Reese et al. 2009b)

Interpreting asteroseismic data



- works well only for high frequency and no chaotic modes
- chaotic modes are very likely to be visible (Lignières & Georgeot, 2009)

< ≣⇒

Photometric and spectroscopic mode identification

- multi-color photometric and spectroscopic mode identification commonly used in slowly rotating case
- before doing identification, need for theoretical studies on the forward problem

Interpreting asteroseismic data

Photometric signatures of modes

Previous studies

- Lignières et al. (2006), Lignières & Georgeot (2009)
 - 2D pulsation calculations
 - only temperature fluctuations
 - no limb or gravity darkening
- Daszyńska-Daszkiewicz et al. (2002, 2007), Townsend (2003)
 - perturbative approach or traditional approximation
 - effects of avoided crossings included
 - amplitude ratios and phase differences depend on *m* and *i* (the inclination)

イロト イヨト イヨト イヨト

Results presented here

What it includes

- 2D p-modes of deformed SCF models (Jackson et al. 2005, MacGregor et al. 2007)
- latitude dependent intensities based on Kurucz atmospheres (calculated by C. Barban)
 - limb darkening
 - gravity darkening
- geometric distortion to surface from pulsations

What it lacks

- non-adiabatic effects
 - $\delta {\it T}_{\rm eff}/{\it T}_{\rm eff}$ approximated by $\delta {\it T}/{\it T}$
- calculations in 1 band for now

イロト イヨト イヨト イヨト

 $0.0 \Omega_{c}$

||

C

0.20 i=0° $\ell = 0$ i=30° $\ell = 1$ Visibility 0.15 0.10 0.05 0.00 0.20 i=60° *l*=2 i=90° $\ell = 3$ Visibility 0.15 0.10 0.05 0.00 10 12 14 16 6 8 10 12 14 16 6 8 $\omega/\Omega_{\rm K}$ $\omega/\Omega_{\rm K}$

イロン イヨン イヨン イヨン

æ

0.1

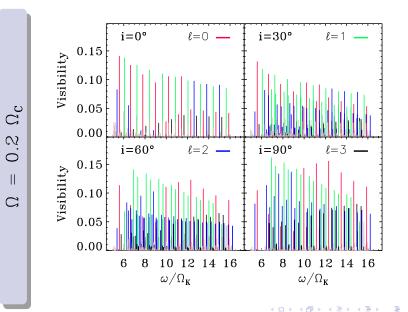
||

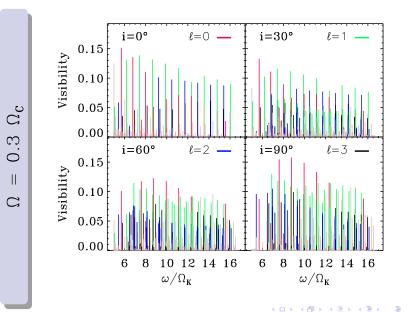
C

i=0° $\ell = 0$ i=30° $\ell = 1$ 0.15 Visibility 0.10 $\Omega_{\rm C}$ 0.05 0.00 i=60° *l*=2 i=90° $\ell = 3$ 0.15 Visibility 0.10 0.05 0.00 6 10 12 14 16 6 8 10 12 8 $14 \ 16$ $\omega/\Omega_{\rm K}$ $\omega/\Omega_{\rm K}$

イロン イヨン イヨン イヨン

Э





0.4

 $\|$

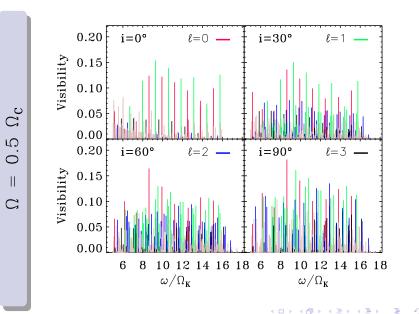
C

0.20 i=0° $\ell = 0$ i=30° $\ell = 1$ Visibility 0.15 0.10 $\Omega_{\mathbf{C}}$ 0.05 0.00 0.20 i=60° *l*=2 i=90° $\ell = 3$ Visibility 0.15 0.10 0.05 0.00 10 12 14 16 6 10 12 14 16 6 8 8 $\omega/\Omega_{\rm K}$ $\omega/\Omega_{\rm K}$

・ロト ・回ト ・ヨト

< ∃>

э



 $\|$

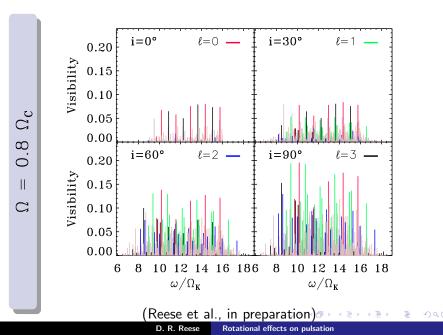
i=0° $\ell = 0$ i=30° $\ell = 1$ 0.20 Visibility 0.15 0.10 $\Omega_{\mathbf{C}}$ 0.05 0.00 0.6 i=90° i=60° $\ell = 2$ $\ell = 3$ 0.20 Visibility 0.15 C 0.10 0.05 0.00 10 12 14 16 18 6 10 12 14 16 18 6 8 8 $\omega/\Omega_{\rm K}$ $\omega/\Omega_{\rm K}$

・ロト ・回ト ・ヨト

< ∃>

э

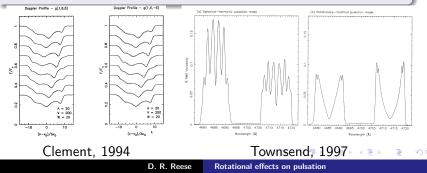
i=0° $\ell = 0$ i=30° $\ell = 1$ 0.20 Visibility 0.15 0.10 $0.7 \Omega_{c}$ 0.05 0.00 i=90° i=60° $\ell = 3$ $\ell = 2$ 0.20 Visibility 0.15 ||C 0.10 0.05 0.00 6 8 10 12 14 16 18 6 8 10 12 14 16 18 $\omega/\Omega_{\rm K}$ $\omega/\Omega_{\rm K}$ (Reese et al., in preparation) э э D. R. Reese Rotational effects on pulsation



Interpreting asteroseismic data

Line profile variations (LPVs)

- most current methods treat the effects of rotation perturbatively (up to 1st for the eigenfunctions)
 - for example : Schrijvers et al. (1997), FAMIAS (Zima 2008)
- exceptions :
 - Clement (1994) uses 2D calculations
 - Lee & Saio (1990) and Townsend (1997) use the traditional approximation



Results presented here

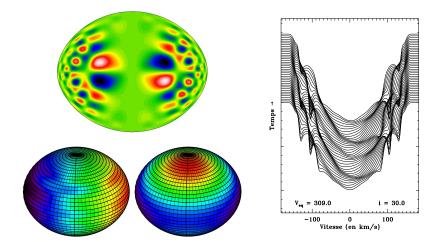
- 2D p-modes of deformed SCF models (Jackson et al. 2005, MacGregor et al. 2007)
- Planck's black-body spectrum
- Claret (2000) limb-darkening law (no latitude dependence)
- simple Gaussian absorption profiles
- no deformation from pulsations

Image: A matrix

Interpreting asteroseismic data

Conclusion

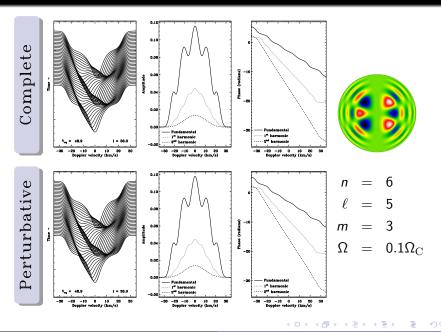
Example



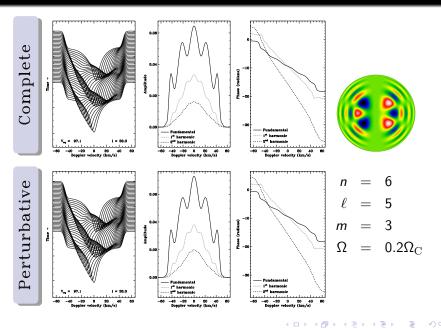
・ロン ・四 と ・ ヨ と ・ モ と

Э

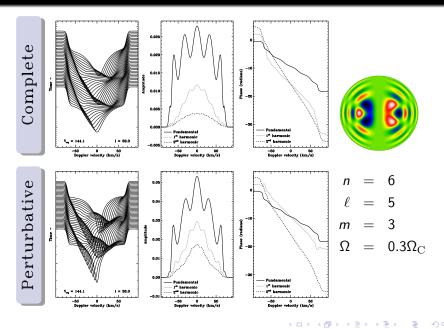
Interpreting asteroseismic data



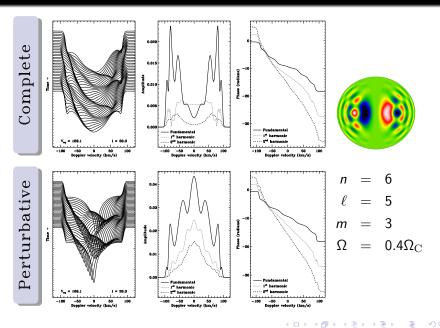
Interpreting asteroseismic data



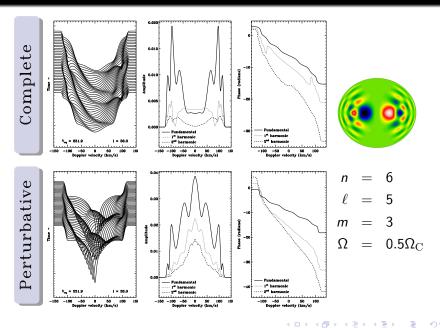
Interpreting asteroseismic data



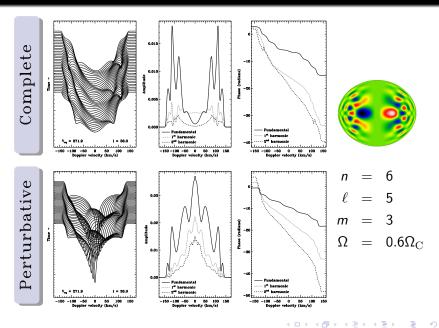
Interpreting asteroseismic data



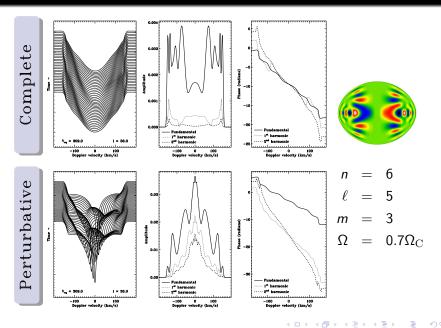
Interpreting asteroseismic data



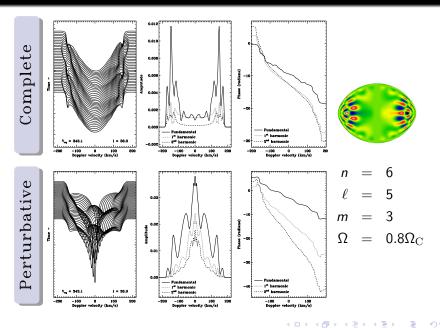
Interpreting asteroseismic data



Interpreting asteroseismic data



Interpreting asteroseismic data

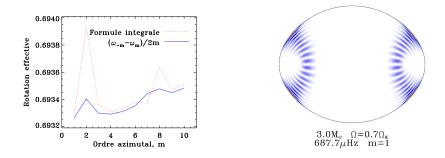


Interpreting asteroseismic data

Conclusion

Э.

Inversions



 if mode identification succeeds, it may be possible to invert for Ω, using the generalized splitting:

$$\Omega_{\rm eff} = \frac{\frac{\omega_{-\rm m} - \omega_{\rm m}}{2m} \simeq \frac{\Omega_{\rm m}^{\rm eff} + \Omega_{-\rm m}^{\rm eff}}{2} + \frac{\mathcal{C}_{\rm m} + \mathcal{C}_{-\rm m}}{2}}{\int_{V} \Omega \rho_{\rm o} \|\vec{\xi}\|^2 dV} \qquad \mathcal{C} = \frac{i}{m} \frac{\int_{V} \rho_{\rm o} \vec{\Omega} \cdot (\vec{\xi}^* \times \vec{\xi}) dV}{\int_{V} \rho_{\rm o} \|\vec{\xi}\|^2 dV}$$

Conclusion

Needs

- interpreting pulsation data remains a challenge
 - computational aspects
 - mode identification
- need for further observational constraints
 - global parameters
 - multicolor and spectroscopic data
 - easier stars (such as pole-on)

Prospects

- better grasp of global stellar properties
- better grasp of physical processes (differential rotation, mixing, transport)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< E