Doing More with Photometry

Detecting KOI-13.01 Using The Photometric Orbit

Avi Shporer UCSB, LCOGT

1

KITP Oct 27, 2011

KOI-13.01

Announced at Jan 2011 AAS (Rowe et al. 2011, in prep)

Time from mid transit (Hours)

KOI-13.01

Announced at Jan 2011 AAS (Rowe et al. 2011, in prep)

Can we use the out-of-eclipses light curve to detect the planet ?

KOI-13.01

Announced at Jan 2011 AAS (Rowe et al. 2011, in prep)

Can we use the out-of-eclipses light curve to detect the planet ? or, Can we detect non-transiting KOI-13.01-like planets ?

Photometric variability correlated with the orbit

Photometric variability correlated with the orbit

Photometric variability correlated with the orbit

Beaming

• Tidal ellipsoidal deformation $\frac{m_2}{m_s} \left(\frac{r_s}{a}\right)^3 \sin^2 i$

 $\frac{K_{RV}}{c}$

Photometric variability correlated with the orbit

• Tidal ellipsoidal deformation $\frac{m_2}{m_s} \left(\frac{r_s}{a}\right)^3 \sin^2 i$

4 K_{RV}

Reflection/heating

4

Relativistic aberration

 $F_{\nu} = F_{\nu 0} \left[1 + (3 - \alpha) \frac{v_r}{c} \right]$

Relativistic aberration

Relativistic aberration

Photometric variation following orbital motion

Effect	Period	Max/Min	Function	Amplitude
Beaming	Porb	quadrature	sin	$4rac{K_{RV}}{c}$
Ellipsoidal	P _{orb} /2	Max: quadrature Min: conjunction	COS	$\frac{m_2}{m_s} \left(\frac{r_s}{a}\right)^3 \sin^2 i$
Reflection	Porb	conjunction	COS	$\left(\frac{r_s}{a}\right)^2 \sin i$

Problem: non-eclipsing system => Ephemeris not known

Problem: non-eclipsing system => Ephemeris not known

The BEER algorithm (Faigler & Mazeh 2011, Faigler et al. 2011):

Problem: non-eclipsing system => Ephemeris not known

The BEER algorithm (Faigler & Mazeh 2011, Faigler et al. 2011):

Two-step approach:

Problem: non-eclipsing system => Ephemeris not known

The BEER algorithm (Faigler & Mazeh 2011, Faigler et al. 2011):

Two-step approach: I. Fit double-harmonic model for each trial period:

Problem: non-eclipsing system => Ephemeris not known

The BEER algorithm (Faigler & Mazeh 2011, Faigler et al. 2011):

Two-step approach: I. Fit double-harmonic model for each trial period:

$$f(t) = a_0 + a_{1c}\cos(\frac{2\pi}{P}t) + a_{1s}\sin(\frac{2\pi}{P}t) + a_{2c}\cos(\frac{2\pi}{P/2}t) + a_{2s}\sin(\frac{2\pi}{P/2}t)$$

reflection beaming ellipsoidal

Problem: non-eclipsing system => Ephemeris not known

The BEER algorithm (Faigler & Mazeh 2011, Faigler et al. 2011):

Two-step approach: I. Fit double-harmonic model for each trial period:

$$f(t) = a_0 + a_{1c}\cos(\frac{2\pi}{P}t) + a_{1s}\sin(\frac{2\pi}{P}t) + a_{2c}\cos(\frac{2\pi}{P/2}t) + a_{2s}\sin(\frac{2\pi}{P/2}t)$$

reflection beaming ellipsoidal

Problem: non-eclipsing system => Ephemeris not known

The BEER algorithm (Faigler & Mazeh 2011, Faigler et al. 2011):

Two-step approach: I. Fit double-harmonic model for each trial period:

$$f(t) = a_0 + a_{1c}\cos(\frac{2\pi}{P}t) + a_{1s}\sin(\frac{2\pi}{P}t) + a_{2c}\cos(\frac{2\pi}{P/2}t) + a_{2s}\sin(\frac{2\pi}{P/2}t)$$

reflection beaming ellipsoidal

2. For best period, shift phase to zero out a_{2s} , and refit.

Can we detect non-transiting KOI-13.01-like planets ?

Can we detect non-transiting KOI-13.01-like planets ?

• Ephemeris: $P + T_0$

Can we detect non-transiting KOI-13.01-like planets ?

- Ephemeris: $P + T_0$
- Minimum mass: M_psin(i)

Can we detect non-transiting KOI-13.01-like planets ?

- Ephemeris: $P + T_0$
- Minimum mass: M_psin(i)

Use KOI-13.01 as a test case:

Can we detect non-transiting KOI-13.01-like planets ?

- Ephemeris: $P + T_0$
- Minimum mass: M_psin(i)

Use KOI-13.01 as a test case:

Cut out transit+occultation data

Can we detect non-transiting KOI-13.01-like planets ?

- Ephemeris: $P + T_0$
- Minimum mass: M_psin(i)

Use KOI-13.01 as a test case:

- Cut out transit+occultation data
- Apply BEER approach

detrended light curve, Q0-Q5

detrended light curve, Q0-Q5

Transit+occultation data removed (18%)

detrended light curve, Q0-Q5

Transit+occultation data removed (18%)

Double harmonic period analysis

$$a_0 + a_{1s} \sin\left(\frac{2\pi}{P}t\right) + a_{1c} \cos\left(\frac{2\pi}{P}t\right) + a_{2s} \sin\left(\frac{2\pi}{P/2}t\right) + a_{2s} \cos\left(\frac{2\pi}{P/2}t\right)$$

Double harmonic period analysis

$$a_0 + a_{1s} \sin\left(\frac{2\pi}{P}t\right) + a_{1c} \cos\left(\frac{2\pi}{P}t\right) + a_{2s} \sin\left(\frac{2\pi}{P/2}t\right) + a_{2s} \cos\left(\frac{2\pi}{P/2}t\right)$$

$$\frac{\chi^2}{\chi^2} = \frac{\chi^2_{mean} - \chi^2}{\chi^2}$$

Double harmonic period analysis

$$a_0 + a_{1s} \sin\left(\frac{2\pi}{P}t\right) + a_{1c} \cos\left(\frac{2\pi}{P}t\right) + a_{2s} \sin\left(\frac{2\pi}{P/2}t\right) + a_{2s} \cos\left(\frac{2\pi}{P/2}t\right)$$

$$\frac{\Delta \chi^2}{\chi^2} = \frac{\chi^2_{mean} - \chi^2}{\chi^2}$$

Parameter	Value	
Prbital period, P_{orb} (days)	1.7637 ± 0.0013	

Inferior conjunction time, T_0 (BJD) 2455138.7439 \pm 0.0013

Consistent with Borucki et al. (2011)

Companion mass estimate:

Companion mass estimate:

$$A_{\text{beam}} = 2.7 \ \alpha_{\text{beam}} \left(\frac{M_s}{M_{sun}}\right)^{-2/3} \left(\frac{P_{orb}}{\text{day}}\right)^{-1/3} \left(\frac{M_2 \sin i}{M_J}\right) \text{ ppm}$$

Companion mass estimate:

$$A_{\text{beam}} = 2.7 \ \alpha_{\text{beam}} \left(\frac{M_s}{M_{sun}}\right)^{-2/3} \left(\frac{P_{orb}}{\text{day}}\right)^{-1/3} \left(\frac{M_2 \sin i}{M_J}\right) \text{ ppm}$$
$$M_2 \sin i = \frac{0.37}{\alpha_{beam}} \left(\frac{M_s}{M_{sun}}\right)^{2/3} \left(\frac{P_{orb}}{\text{day}}\right)^{1/3} \left(\frac{A_{beam}}{\text{ppm}}\right) M_J$$

Companion mass estimate: $A_{\text{beam}} = 2.7 \ \alpha_{\text{beam}} \left(\frac{M_s}{M_{sun}}\right)^{-2/3} \left(\frac{P_{orb}}{\text{day}}\right)^{-1/3} \left(\frac{M_2 \sin i}{M_J}\right) \text{ ppm}$ $M_2 \sin i = \frac{0.37}{\alpha_{beam}} \left(\frac{M_s}{M_{sun}}\right)^{2/3} \left(\frac{P_{orb}}{\text{day}}\right)^{1/3} \left(\frac{A_{beam}}{\text{ppm}}\right) M_J$

$$A_{beam} = 9.32 \pm 0.86 \text{ ppm}$$

Companion mass estimate: $A_{\rm b}$

$$A_{\text{beam}} = 2.7 \ \alpha_{\text{beam}} \left(\frac{M_s}{M_{sun}}\right)^{-2/3} \left(\frac{P_{orb}}{\text{day}}\right)^{-1/3} \left(\frac{M_2 \sin i}{M_J}\right) \text{ ppm}$$
$$M_2 \sin i = \frac{0.37}{\alpha_{\text{beam}}} \left(\frac{M_s}{M_{sum}}\right)^{2/3} \left(\frac{P_{orb}}{\text{day}}\right)^{1/3} \left(\frac{A_{beam}}{\text{ppm}}\right) M_J$$

 $A_{beam} = 9.32 \pm 0.86 \text{ ppm}$

$$M_2 \sin i = 9.2 \pm 1.1 M_J$$

Based on stellar parameters of Szabo et al. (2011)

Companion mass estimate: $A_{\text{beam}} = 2.7 \ \alpha_{\text{beam}} \left(\frac{M_s}{M_{sun}}\right)^{-2/3} \left(\frac{P_{orb}}{\text{day}}\right)^{-1/3} \left(\frac{M_2 \sin i}{M_J}\right) \text{ ppm}$ $\longrightarrow M_2 \sin i = \frac{0.37}{\alpha_{beam}} \left(\frac{M_s}{M_{sun}}\right)^{2/3} \left(\frac{P_{orb}}{\text{day}}\right)^{1/3} \left(\frac{A_{beam}}{\text{ppm}}\right) M_J$

$$A_{beam} = 9.32 \pm 0.86 \text{ ppm}$$

 $M_2 \sin i = 9.2 \pm 1.1 \text{ M}_J$

Photometric mass measurement

Based on stellar parameters of Szabo et al. (2011)

11

Fitted coefficients

Coefficient	Effect	Value	
		[ppm]	
a_{1c}	Reflection	-39.78 ± 0.52	
a_{1s}	Beaming	5.28 ± 0.44	
a_{2c}	Ellipsoidal	-30.25 ± 0.62	
a_{2s}		0.0 ± 0.48	

Fitted coefficients

Coefficient	Effect	Value	
		[ppm]	
a_{1c}	Reflection	-39.78 ± 0.52	
a_{1s}	Beaming	5.28 ± 0.44	
a_{2c}	Ellipsoidal	-30.25 ± 0.62	
a_{2s}		0.0 ± 0.48	

---- 2 ppm, 10 mag --- 20 ppm, 15 mag

Assuming:

- 7 σ detection
- 3.5 yr mission
- *i* = 60 deg

----- 2 ppm, 10 mag ----- 20 ppm, 15 mag

Assuming:

- 7 σ detection
- 3.5 yr mission
- *i* = 60 deg

----- 2 ppm, 10 mag ----- 20 ppm, 15 mag

Assuming:

- 7 σ detection
- 3.5 yr mission
- *i* = 60 deg

Photometric Orbit can detect:

---- 2 ppm, 10 mag --- 20 ppm, 15 mag

Assuming:

- 7 σ detection
- 3.5 yr mission
- *i* = 60 deg

Photometric Orbit can detect:
Non-transiting KOI-13.01-like planets

---- 2 ppm, 10 mag ---- 20 ppm, 15 mag

Assuming:

- 7 σ detection
- 3.5 yr mission
- *i* = 60 deg

Photometric Orbit can detect:
Non-transiting KOI-13.01-like planets
Non-transiting companions down to ~1 MJ

independently detected by Mazeh et al. 2011

Unlikely to be a 2nd planet...

Unlikely to be a 2nd planet...

$P_{2nd}: P_{orb} = 1.06: 1.76 = 3:5$

Planet induced pulsation?

Unlikely to be a 2nd planet...

 $P_{2nd}: P_{orb} = 1.06: 1.76 = 3:5$ Planet induced pulsation? Like WASP-33 pulsations ?

Unlikely to be a 2nd planet...

P_{2nd}: P_{orb} = 1.06 : 1.76 = 3:5
Planet induced pulsation?
Like WASP-33 pulsations ?
A-type host

Unlikely to be a 2nd planet...

P_{2nd}: P_{orb} = 1.06 : 1.76 = 3:5
Planet induced pulsation?
Like WASP-33 pulsations ?
A-type host
P_{orb} = 1.2 d

Unlikely to be a 2nd planet...

 $P_{2nd}: P_{orb} = 1.06: 1.76 = 3:5$ Planet induced pulsation?
Like WASP-33 pulsations ?
• A-type host
• $P_{orb} = 1.2$ d
• Spin-orbit misaligned

Szabo et al. 2011: Spin-orbit resonance

Kepler

...and we can do **MUCH** more with photometry with the Kepler **Extended Mission**

