Dynamics of Black Holes and Binaries Near Sgr \mathbf{A}^{*}

Eric Pfahl
(Chandra Fellow; UVa)

with

Avi Loeb
(CfA)

IAS, December 2, 2004

Recent Observations (X-ray)

Wang, Gotthelf, \& Lang (2002)

Recent Observations (X-ray)

~500 hard X-ray sources within 100 pc:

- $L_{x} \gtrsim 10^{33}$ ergs $^{-1}$
- Wind-accreting neutron stars?
(Pfahl, Rappaport, \& Podsiadlowski 2002)

Recent Observations (X-ray)

Muno et al. (2003)

Recent Observations (X-ray)

1000 hard X-ray sources within 10 pc:

- $L_{X} \simeq 10^{30}-10^{33} \mathrm{erg} \mathrm{s}^{-1}$
- Accreting compact objects in binaries:
- Magnetic white dwarfs.
- Wind-accreting neutron stars.
- Black hole X-ray binaries.
- Surface density $\propto \theta^{-1}$.
- 7 interesting transients (more later).

Recent Observations (near-IR)

Ghez et al. (2003)

Recent Observations (near-IR)

Dozens of young stars within 4000 AU:

- Spectroscopy indicates stars are massive ($\gtrsim 10 M_{\odot}$).
- Don't know how they got there.
- Two stars pass within 100 AU.
- Sgr A* is a black hole ([3-4] $\left.\times 10^{6} M_{\odot}\right)$.
- Do binaries play a role? (Gould \& Quillen 2003)
- Hundreds of radio pulsars?
(Pfahl \& Loeb 2004)
- Density: $n(r) \simeq 10^{5} \mathrm{pc}^{-3}(r / \mathrm{pc})^{-2}$.
- Velocity dispersion: $\sigma(r) \simeq(G M / 3 r)^{1 / 2}$.
- Mixture of young and old stars.
- Are there binaries? (Yes.)
- $\sim 10^{4}$ black holes?
(Morris 1993; Miralda-Escudé \& Gould 2000)

Dynamical Friction

Energy-Loss Timescale:

$$
\tau \sim 10 \operatorname{Gyr}\left(\frac{m}{M_{\odot}}\right)^{-1}\left(\frac{r}{\mathrm{pc}}\right)^{1 / 2}
$$

- Only 1 Gyr for $10 M_{\odot}$ black holes.
- Steady number of $\gtrsim 10^{4}$.
- Binaries also migrate faster than average.

Dynamical Friction

Energy-Loss Timescale:

$$
\tau \sim 10 \mathrm{Gyr}\left(\frac{m}{M_{\odot}}\right)^{-1}\left(\frac{r}{\mathrm{pc}}\right)^{1 / 2}
$$

- Only 1 Gyr for $10 M_{\odot}$ black holes.
- Steady number of $\gtrsim 10^{4}$.
- Binaries also migrate faster than average.

Exchange encounters between binaries and black holes!

Exchange Interaction

Exchange Rate

(1) Proportions:

- Binaries $\sim 10 \%$ of the stars.
- Black holes $\sim 1 \%$ of the stars.

Exchange Rate

(1) Proportions:

- Binaries $\sim 10 \%$ of the stars.
- Black holes $\sim 1 \%$ of the stars.
(2) Binary parameters:
- Mass, $M_{b}=M_{1}+M_{2} ;\left\langle M_{b}\right\rangle \simeq 1 M_{\odot}$.
- Separation, $a ;\langle a\rangle \simeq 0.1 \mathrm{AU}$.

Exchange Rate

(1) Proportions:

- Binaries $\sim 10 \%$ of the stars.
- Black holes $\sim 1 \%$ of the stars.
(2) Binary parameters:
- Mass, $M_{b}=M_{1}+M_{2} ;\left\langle M_{b}\right\rangle \simeq 1 M_{\odot}$.
- Separation, $a ;\langle a\rangle \simeq 0.1 \mathrm{AU}$.
(3) Black holes of mass $M_{B H} \simeq 10 M_{\odot}$.

Exchange Rate

(1) Proportions:

- Binaries $\sim 10 \%$ of the stars.
- Black holes $\sim 1 \%$ of the stars.
(2) Binary parameters:
- Mass, $M_{b}=M_{1}+M_{2} ;\left\langle M_{b}\right\rangle \simeq 1 M_{\odot}$.
- Separation, $a ;\langle a\rangle \simeq 0.1 \mathrm{AU}$.
(3) Black holes of mass $M_{B H} \simeq 10 M_{\odot}$.
(4) Relative speed $\sim \sigma(r)$.

Exchange Rate

(1) Proportions:

- Binaries $\sim 10 \%$ of the stars.
- Black holes $\sim 1 \%$ of the stars.
(2) Binary parameters:
- Mass, $M_{b}=M_{1}+M_{2} ;\left\langle M_{b}\right\rangle \simeq 1 M_{\odot}$.
- Separation, $a ;\langle a\rangle \simeq 0.1 \mathrm{AU}$.
(3) Black holes of mass $M_{B H} \simeq 10 M_{\odot}$.
(4) Relative speed $\sim \sigma(r)$.

Exchange cross section: $\Sigma \simeq 4 \pi\langle a\rangle G\left(\left\langle M_{b}\right\rangle+M_{B H}\right) \sigma^{-2}$.

Cross Sections

$$
(1+1)+10
$$

Exchange-Ionization-Collision

Eric Pfahl, Avi Loeb
Black Holes, Binaries, and Sgr A*

Exchange Rate

Rate per black hole:

$$
\begin{aligned}
\Gamma(r) & \sim n_{\mathrm{bin}} \sum \sigma \\
& \sim \text { few } \times 10^{-11} \mathrm{yr}^{-1}\left(\frac{r}{\mathrm{pc}}\right)^{-3 / 2} .
\end{aligned}
$$

Exchange Rate

Rate per black hole:

$$
\begin{aligned}
\Gamma(r) & \sim n_{\mathrm{bin}} \sum \sigma \\
& \sim \text { few } \times 10^{-11} \mathrm{yr}^{-1}\left(\frac{r}{\mathrm{pc}}\right)^{-3 / 2} .
\end{aligned}
$$

Total rate in the central parsec:

$$
\begin{aligned}
\Gamma_{\text {tot }} & =4 \pi \int_{0.1 \mathrm{pc}}^{1 \mathrm{pc}} d r r^{2} n_{\mathrm{BH}}(r) \Gamma(r) \\
& \sim \text { few } \times 10^{-6} \mathrm{yr}^{-1}
\end{aligned}
$$

Exchange Rate

Rate per black hole:

$$
\begin{aligned}
\Gamma(r) & \sim n_{\mathrm{bin}} \sum \sigma \\
& \sim \text { few } \times 10^{-11} \mathrm{yr}^{-1}\left(\frac{r}{\mathrm{pc}}\right)^{-3 / 2} .
\end{aligned}
$$

Total rate in the central parsec:

$$
\begin{aligned}
\Gamma_{\text {tot }} & =4 \pi \int_{0.1 \mathrm{pc}}^{1 \mathrm{pc}} d r r^{2} n_{\mathrm{BH}}(r) \Gamma(r) \\
& \sim \text { few } \times 10^{-6} \mathrm{yr}^{-1} .
\end{aligned}
$$

Lifetime: $\lesssim 10^{9} \mathrm{yr}$ for dynamical friction.
Maybe 100-1000 black holes with $\sim 1 M_{\odot}$ companions.

Simulations

Blue $=1+1 ;$ Red $=1+10 ; N=5000$

Simulations

Blue $=1+1 ;$ Red $=1+10 ; N=4725$

Simulations

Blue $=1+1 ;$ Red $=1+10 ; N=4725$

Simulations

$$
\text { Blue }=1+1 ; \text { Red }=1+10 ; N=4725 \quad a \rightarrow a\left(1-e^{2}\right)
$$

Simulations

Blue $=1+1 ;$ Red $=1+10 ; N=4489$

Simulations

Blue $=1+1 ;$ Red $=1+10 ; N=4264$

Simulations

Blue $=1+1 ;$ Red $=1+10 ; N=4070$

Simulations

Blue $=1+1 ;$ Red $=1+10 ; N=3870$

X-ray Transients

Muno, Pfahl et al. (2004)

X-ray Transients

Source (CXOGC J)	Offset $($ arcmin $)$	Min L_{X}			
$2-8 \mathrm{keV}$					Max L_{X}
:---					
$174502.3-285450$					
$174554.3-285454$					
$174535.5-290124$					
6.38					
$174538.0-290022$					
$174540.0-290005$					
0.44					
10^{31}					
$174541.0-290014$					
$174540.0-290031$					

X-ray Transients

$\begin{aligned} & \hline \text { Source } \\ & \text { (CXOGC J) } \end{aligned}$	Offset (arcmin)	$\begin{array}{r} \operatorname{Min} L_{X} \\ 2-8 \end{array}$	$\mathrm{eV}^{\operatorname{Max} L_{x}}$
174502.3-285450	9.98	$<7 \times 10^{31}$	1.5×10^{36}
174554.3-285454	6.38	$<2 \times 10^{31}$	6.2×10^{34}
174535.5-290124	1.35	$<9 \times 10^{30}$	3.3×10^{35}
174538.0-290022	0.44	1.2×10^{33}	2.6×10^{34}
174540.0-290005	0.37	$<4 \times 10^{31}$	3.4×10^{34}
174541.0-290014	0.31	$<8 \times 10^{31}$	4.8×10^{33}
174540.0-290031	0.05	$<2 \times 10^{31}$	8.5×10^{34}

- 4 transients inside 0.5^{\prime} (1 pc); 3 within $1-10^{\prime}(2.5-25 \mathrm{pc})$.
- Mass within 1 pc is $\sim 2 \times 10^{6} M_{\odot}$.
- Mass in $2.5-25 \mathrm{pc}$ is $\sim 5 \times 10^{7} \mathrm{M}_{\odot}$.

X-ray Transients

Source (CXOGC J)	Offset $($ arcmin $)$	Min L_{X} 2-8 keV	
$174502.3-285450$	9.98	$<7 \times 10^{31}$	1.5×10^{36}
$174554.3-285454$	6.38	$<2 \times 10^{31}$	6.2×10^{34}
$174535.5-290124$	1.35	$<9 \times 10^{30}$	3.3×10^{35}
$174538.0-290022$	0.44	1.2×10^{33}	2.6×10^{34}
$174540.0-290005$	0.37	$<4 \times 10^{31}$	3.4×10^{34}
$174541.0-290014$	0.31	$<8 \times 10^{31}$	4.8×10^{33}
$174540.0-290031$	0.05	$<2 \times 10^{31}$	8.5×10^{34}

- 4 transients inside 0.5^{\prime} (1 pc); 3 within $1-10^{\prime}(2.5-25 \mathrm{pc})$.
- Mass within 1 pc is $\sim 2 \times 10^{6} M_{\odot}$.
- Mass in $2.5-25 \mathrm{pc}$ is $\sim 5 \times 10^{7} \mathrm{M}_{\odot}$.
- $(N / M)_{1} \sim 2 \times 10^{-6} ;(N / M)_{2.5-25} \sim 6 \times 10^{-8}$
- Overabundance per unit mass of ~ 30 in the central parsec.

Double Black Holes

- $(1+10)+10 \rightarrow(10+10)+1$
- Cross section similar to $(1+1)+10$.
- Proportion of single black holes same.
- Pool of $(1+10)$ binaries only $0.1-1 \%$ of the total.

Double Black Holes

- $(1+10)+10 \rightarrow(10+10)+1$
- Cross section similar to $(1+1)+10$.
- Proportion of single black holes same.
- Pool of $(1+10)$ binaries only $0.1-1 \%$ of the total.

Probably $<10 \mathrm{BH}+\mathrm{BH}$ binaries for every $10^{3} \mathrm{BH}+$ stars.

Double Black Holes

- $(1+10)+10 \rightarrow(10+10)+1$
- Cross section similar to $(1+1)+10$.
- Proportion of single black holes same.
- Pool of $(1+10)$ binaries only $0.1-1 \%$ of the total.

Probably $<10 \mathrm{BH}+\mathrm{BH}$ binaries for every $10^{3} \mathrm{BH}+$ stars.

Important gravity-wave sources?

$$
\tau_{\mathrm{GW}} \simeq 1.6 \times 10^{10} \mathrm{yr}\left(\frac{a}{0.1 \mathrm{AU}}\right)^{4}\left(\frac{M}{10 M_{\odot}}\right)^{-3}\left(1-e^{2}\right)^{7 / 2}
$$

Outlook

Next Steps:
(1) Full spectrum of stellar masses and evolutionary states.
(2) All varieties of compact objects.
(3) Proper rate estimates and more realistic simulations.

Specific Problems:
(1) Sources of X-rays and gravitational radiation.
(2) Double compact-object binaries.
(3) Collisions in general.
(Collisions between black holes and stars.
(0) Generalize to other galactic nuclei.

