

Type Ia Supernovae

Astrophysical Seminar KITP Santa Barbara, 27 January 2005

Friedrich Röpke, Max-Planck-Institut für Astrophysik, Garching

W. Hillebrandt, M. Gieseler, M. Reinecke, C. Travaglio, L. Iapichino, M. Stehle

1. Cosmology

- new cosmological standard picture initiated by SN Ia measurements
- undone homework to SN Ia community: explain peak luminosity-light curve shape relation used to calibrate cosmological distance measurements
- next step: can dark energy equation of state be constrained by SN Ia observations?
- No, unless we can control the systematics.
- ► only way to get a handle on the systematics: modeling from "first principles" (→ 3d neccessary) in conjunction with high quality observations of nearby objects

2. Observations of nearby objects

- over past years reached quality so that it is possible to constrain/discriminate between models (MPA contribution via European Research Training Network) → especially spectroscopic data
- ► 3 examples:

Example 1: Late time (nebular) spectra (Kozma et al., in prep.)

▶ look into the center of the explosion products \rightarrow hints for explosion mechanism

Example 2: Spectropolarimetry (e.g. Wang et al., 2004)

provide information on multi-dimensional structure of explosion

Example 3: Abundance tomography of SN 2002bo (M. Stehle et al., 2004)

- no hydrogen in the spectra
- huge energy release (\sim 1 foe)
- uniform properties \rightarrow standard candles?
- no compact remnant, occur in young and old populations
- \rightarrow thermonuclear explosion of white dwarf star
- ► How can WD reach state to trigger thermonuclear explosion?

scenarios:

▶ double degenerate (DD): 2 WDs merge, smaller is disrupted and accreted onto more massive companion, high rate expected, natural way to aviod hydrogen in spectra problem: too high accretion rate → C-shell flash → ONeMg WD → collapse

- single degenerate (SD): C/O WD accretes matter from non-degenerate binary companion (MS or AGB?)
 - sub-Chandrasekhar: WD composed of C/O center and He-shell, He-shell detonation converges in center, triggers detonation, high rate expected multi-d problem, nucleosynthesis not consistent with main channel
 - Chandrasekhar: accretion until WD reaches Chandrasekhar mass, candidates: supersoft sources (U Sco), cataclysmic binaries problem: too low rate

ignition

- accretion until close to M_{Ch}
- densities reach values of carbon ignition

- convective burning until energy generation exceeds convective cooling
- thermonuclear runaway in small spatial region
- flame formation (central, multi-spot???)

- pure detonation would produce wrong composition of explosion products (Arnett, 1969)
- flame starts out as deflagration
- problem: laminar deflagration flame too slow

- \blacktriangleright interaction of flame with turbulence \rightarrow turbulent combustion
- $\blacktriangleright \quad \text{Re} \sim 10^{14} \rightarrow \text{instabilities generate turbulence}$

- ▶ wrinkling of the flame front \rightarrow flame surface $\uparrow \rightarrow$ net burning rate $\uparrow \rightarrow$ flame propagation strongly accelerated
- later transition to (supersonic) detonation?

- thermonuclear burning disrupts WD
- ► diffuse cloud of ejecta but no compact remnant → remnant of Tycho's supernova (1572)

explosion model (Reinecke et al., 1999, 2002)

- ► hydrodynamics: finite volume approach → PROMETHEUS (Fryxell et al., 1989) implementation of PPM (Colella & Woodward, 1984)
- turbulence on unresolves scales implemented via sub-grid scale model
- ▶ flame model: WD ~ 10^8 cm structure of flame ~ 1mm → not resolvable → modeled as discontinuity between fuel and ashes
- level set method

- ▶ simplified description of nuclear burning (Reinecke, 2002):
 - ▶ include 5 species: ¹²C, ¹⁶O, "Mg" \rightarrow intermediate mass elements, "Ni" \rightarrow iron group elements, α -particles
 - \blacktriangleright at high ρ_{fuel} burn to NSE consisting of "Ni" and α
 - for ρ_{fuel} < 5.25 \times 10⁷ g cm⁻³ burn to "Mg"
 - for $\rho_{fuel} < 1 \times 10^7$ g cm⁻³ burning is no longer followed

nucleosynthesis postprocessing (C.Travaglio, 2004, M. Gieseler)

- record evolution of density, energy, temperature by tracer particles equally distributed in mass shells (Lagrangian component in Eulerian explosion code)
- use tracer information to perform nuclear postprocessing with nuclear reaction network (384 isotopes) provided by F.K. Thielemann

Simulation

isosurface represents
 flame front

Friedrich Röpke, Max-Planck-Institut für Astrophysik

Status of modeling

▶ "best model" (b30, M. Reinecke, 2003): 0.4 M_☉ of ⁵⁶Ni, 0.7 foe

Simulations

parameter study with 3D models (Röpke et al., 2004 and in prep.)

- Which parameters can account for SN Ia diversity?
 - 1. progenitor's carbon-to-oxygen ratio $\rightarrow X(^{12}C) = 0.3, 0.46, 0.62$
 - 2. central density at ignition $\rightarrow \rho_c = [1.0, 2.6] \times 10^9 \text{ g cm}^{-3}$
 - 3. progenitor's metallicity (Timmes et al. 2003) \rightarrow Z = 0.5, 1.0, 3.0 Z_{\odot} \rightarrow ²²Ne fraction
 - 4. rotation
 - 5. flame ignition ...
- change parameters independently to study effects (but of course in a realistic scenario interrelated → here: not based on stellar evolution of progenitor)
- simplified setup

temporal evolution of explosion energy

Progenitor's C/O Ratio

Progenitor's C/O Ratio

chemical evolution of the explosion models

Friedrich Röpke, Max-Planck-Institut für Astrophysik

Central Density

Central Density

gravitational acceleration at mean flame position, turbulent energy

- two competing effects
 - \blacktriangleright with higher ρ_c increased flame propagation velocities \rightarrow more material burnt at high densities
 - at higher densities increased electron capture rates \rightarrow less ⁵⁶Ni

Metallicity

▶ produced ⁵⁶Ni mass

linear relation as analytically predicted by Timmes et al. (2003)

variations of the models due to initial parameters:

parameter	variation of ⁵⁶ Ni mass (\rightarrow peak luminosity)	variation of explosion energy (light curve shape)
C/O ratio	a few percent	\sim 14%
central desnity (preliminary result!)	$\sim 6\%$	$\sim 17\%$
metallicity	\sim 20%	none

- can account partially for observed diversity
- no single parameter reproduces the empirically established peak luminosity-light curve shape relation
- probably combination of parameters (stellar evolution)
- synthetic light curves from explosion models needed!

Homologous expansion

- for derivation of synthetic light curves, spectra models must be close to homologous expansion
- \blacktriangleright previous multi-dimensional explosion models reached to \sim 2 s
- \blacktriangleright goal: evolve models to \sim 10 s to reach homologous expansion (F.R., 2004)
- co-expanding computational grid, tracking outer mass shell of WD instead of static non-uniform grid used so far
- model meets criteria for homologous expansion after \sim 10 s:
 - $v(r) \propto r$ (deviation below 5%)
 - $\blacktriangleright |\nabla p|, |\nabla \Phi| \text{ small}$
 - $\blacktriangleright \quad \mathsf{E}_{kin} \gg \mathsf{E}_{int}, \ \mathsf{E}_{grav}$

Nebular spectra

Full-star models

- purpose: assess octant-symmetry in previous simulaitons by comparison with full-star model
- ▶ initial condition corresponds to mirrored c3-model (Reinecke, 1999,2002)

Full star models

- "foamy" initial flame configuration
- anisotropic,
 asymmetric
 flame shape
- center of initial flame
 ~13 km misaligned
 with WD center

Asymmetries

KITP, 01/27/2005

Friedrich Röpke, Max-Planck-Institut für Astrophysik

Future directions

deflagration models can explain many observational features but need improvements

- large simulation in preparation
- cure low velocity unburnt material problem:
 - improve sub-grid scale model (W. Schmidt, U Würzburg)
 - test initial flame configurations
 - distributed burning in late phases
 - delayed detonation?
 - ► ...
- implement electron captures \rightarrow study variation of central density
- improve initial models
- improve description of nuclear burning in explosion models
- ► (...)