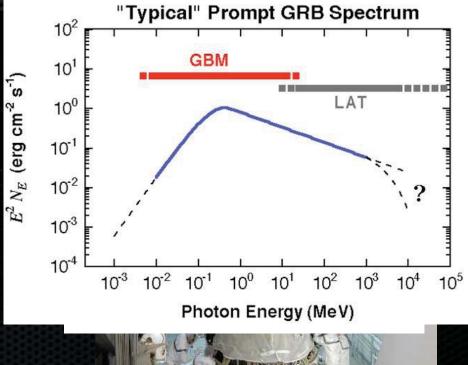
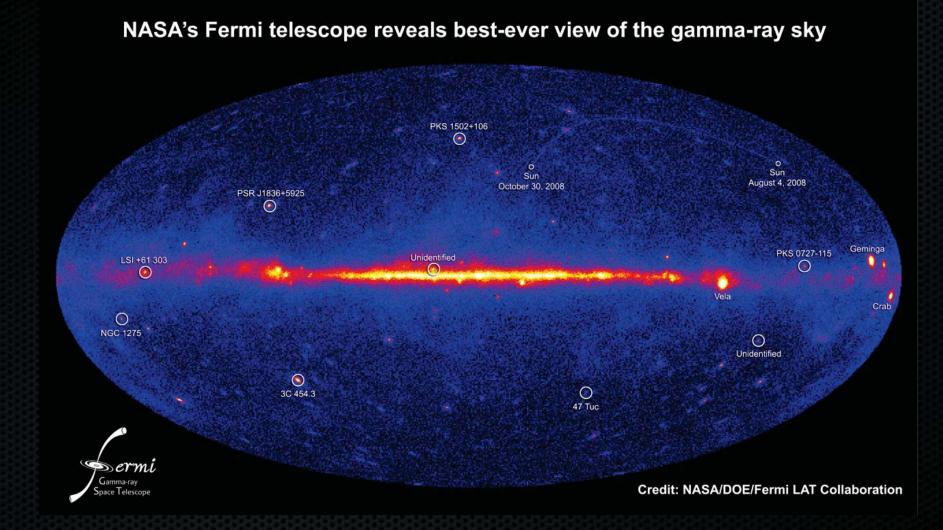
Space Telescope

Fermi Observations of Gamma-ray Bursts

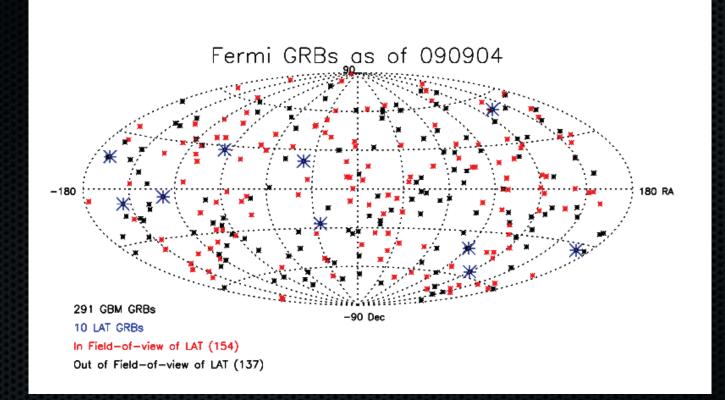
Daniel Kocevski


Kavli Institute for Particle Astrophysics and Cosmology Stanford University

On behalf of the Fermi collaboration

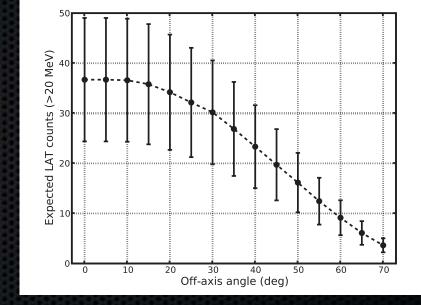

The Fermi Spacecraft

- Launched June 11th, 2008
- Triggering began Aug 7, 2008
- Fermi Gamma-ray Burst Monitor (GBM)
 - Scintillation detectors
 - 12 Nal: 8 keV 1 MeV
 - 2 BGO: 200 keV 40 MeV
- Fermi Large Area Telescope (LAT)
 - Pair conversion telescope
 - Energy coverage: 0.1 to >300 GeV



3 Month Sky Map - Top 10

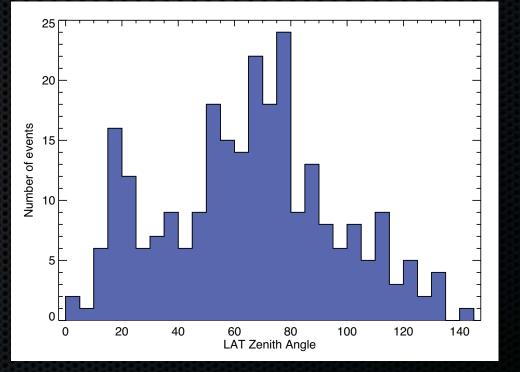
Fermi GRB Detections



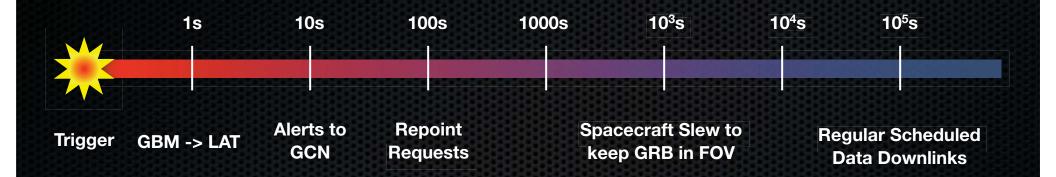
- 291 GBM detections
 - Rate ~ 0.7 bursts/day
- 11 LAT detections
 - Rate ~ 9 bursts/year

LAT Field of View (FOV)

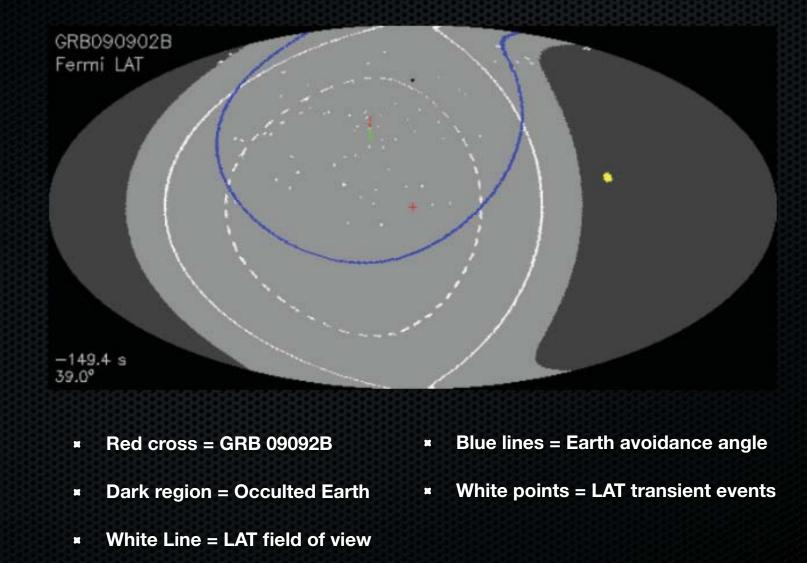
Detector Fields of View


- GBM: Full unocculted sky
- LAT: ~2.4 Sr
- LAT does not see all bursts
- Bursts in the LAT FOV
 - < 65° from the LAT Boresight</p>
 - Sensitivity decreased rapidly above this

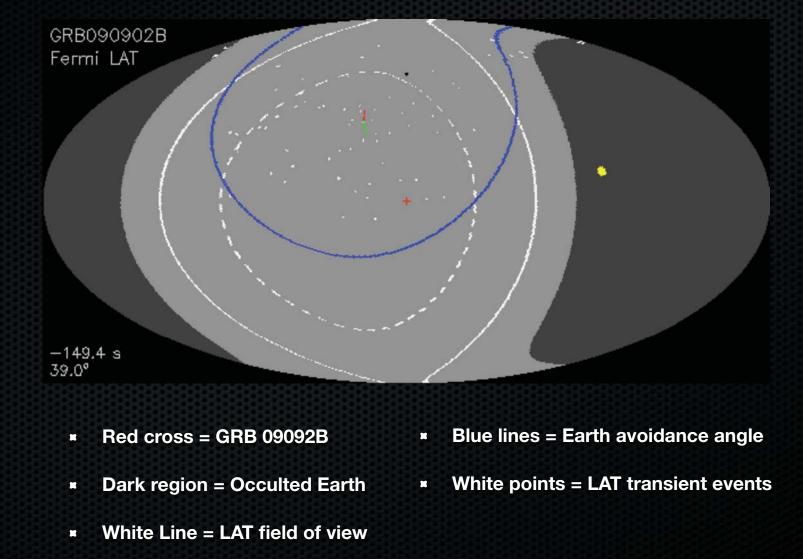
Expected counts vs. boresight angle


Burst Demographics

- GBM Detections
 - 291 events
- GBM Events in LAT FOV:
 - 154 events (52%)
- LAT Detections
 - 10 events was ~3.4%
 - 10 events now ~ 6.4%


Angle of GRB to the LAT boresight at GBM trigger

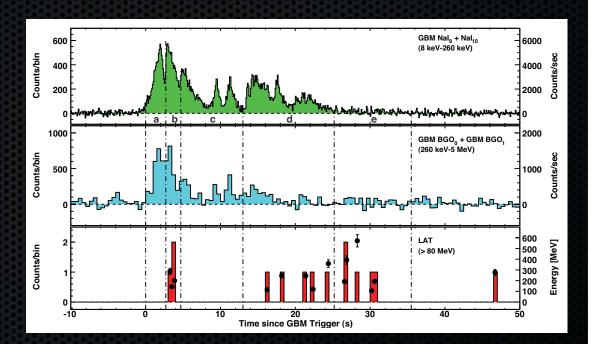
Alerts and Data Flow


- Onboard processing: location, intensity, hardness ratio, classification...
- LAT ground processing (5-12 hours): Updated location, high energy spectrum, flux, afterglow search results
- Final ground processing (24-48 hours): Joint LAT-GBM model fits, fluence, raw GBM data online

Automated Repoint Request

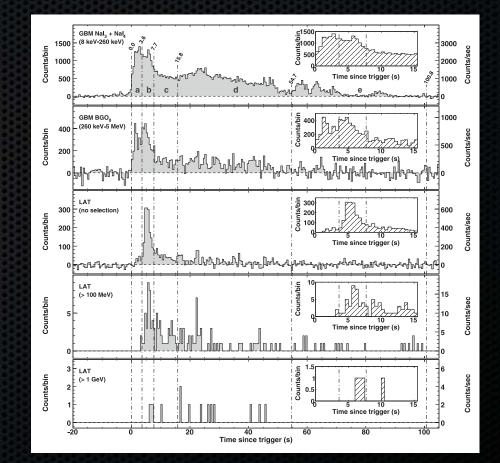
Daniel Kocevski - KITP, September 29th 2009

Automated Repoint Request



Summary of LAT Bursts

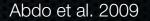
GRB	duration	# of events > 100 MeV	# of events > 1 GeV	delayed HE onset	Long-lived HE	Highest Energy	Redshift
080825C	long	~10	0	~	~	~600 MeV	
080916C	long	>100	>10	~	~	~ 13.2 GeV	4.35
081024B	short	~10	2	~	~	3 GeV	
081215A	long	_	_	_	-	_	
090217	long	~10	0	x	-	~1 GeV	
090323	long	>10	>0	_	~	_	3.57
090328	long	>10	_	_	~	_	0.736
090510	short	>150	>20	~	~	~31 GeV	0.903
090626	long	_	_	_	~	_	
090902B	long	>200	>30	~	~	~ 33 GeV	1.822


GRB 080825C

- First LAT GRB detection!
- Fluence = $2.4 \times 10^{-5} \text{ erg cm}^{-2}$
- LAT Zenith Angle = 60°
 - Near edge of FOV
- 12 LAT Counts > 100 MeV
- No known redshift
- Evidence of long lived HE
- Delayed onset of LAT emission

GRB 080916C

- Fluence ~ $2.4 \times 10^{-4} \text{ erg cm}^{-2}$
- Zphot ~ 4.2
- Eiso ~ 8.8 x 10⁵⁴ ergs
- 145 LAT Counts > 100 MeV
- E_{max} = 13.22 GeV
- Delayed onset
 - Spectrum hardens, then softens
 - Opacity? Proton acceleration?


Abdo et al. 2009

GRB 080916C

Count Spectrum NAL 0.3 NAI_04 C BGO_OO 10^{3} Rate (counts s⁻¹ keV⁻¹) 10-2 (keV/cm²/s) 0₅ 10 10-6 т[,] 10-Sigma 10 10^{2} 101 10² 103 104 10⁵ 10⁶ 107 10 10³ 10' 10[°]

vF_v Spectrum

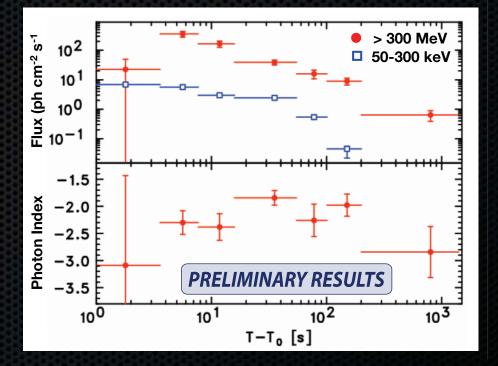
Energy (keV)

 10^{7}

10⁶

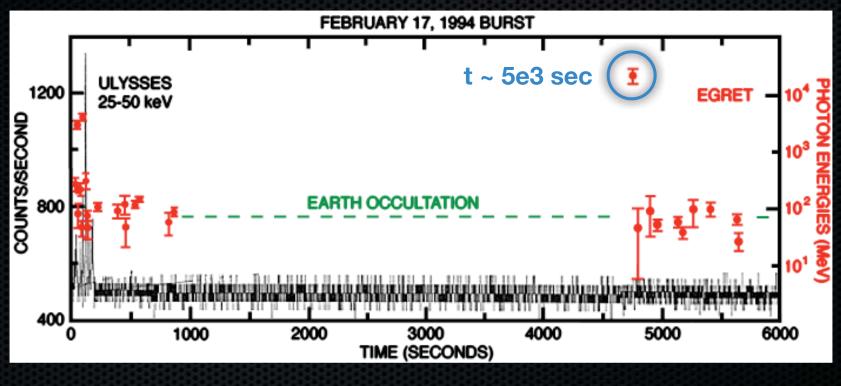
d

No additional spectral components needed


Energy (keV)

No evidence for curvature due to $\gamma\gamma$ or EBL attenuation

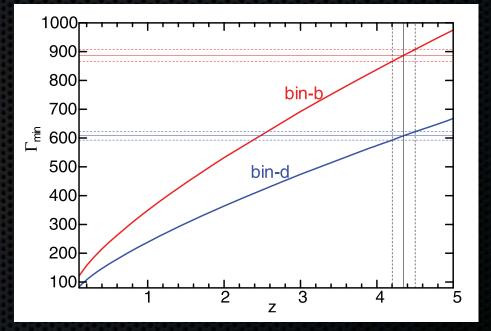
LAT Long Lived HE Emission


GRB 080916C

- Break in 50-300 keV emission
- No break in > 300 MeV emission
- GRB 090232/090328
 - Similar long lived HE emission
 - Several kiloseconds in duration

HE emission from GRB 080916C

Long Lived HE Emission

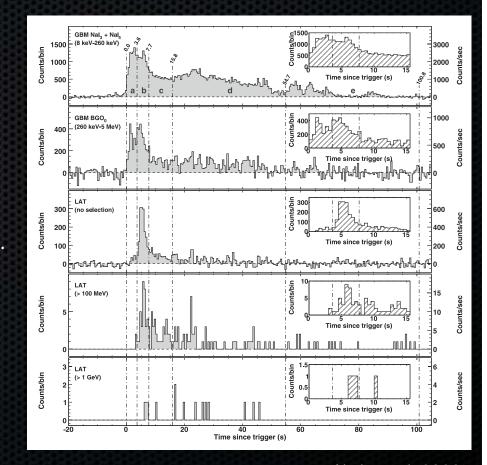


Hurley et al. 1994

EGRET detected very long lived emission

Minimum Lorentz Factor

- No spectral rollover
 - E_{max} = 13.22 GeV
 - No $\gamma\gamma$ attenuation
- ∆t ~ 2 sec (~ R/c)
- **Z**phot ~ 4.2
- $\tau_{\gamma\gamma}(E_{\max}, z, \Delta t, \Gamma, \beta) < 1$
- **■** <u>Γ</u>min ~ 870

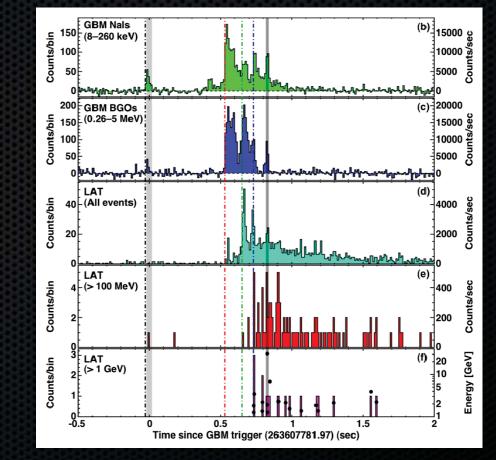


Abdo et al. 2009

Quantum Gravity Limits

- Lorentz invariance violations
 - Frequency dependent c
 - Delayed arrival time of γs

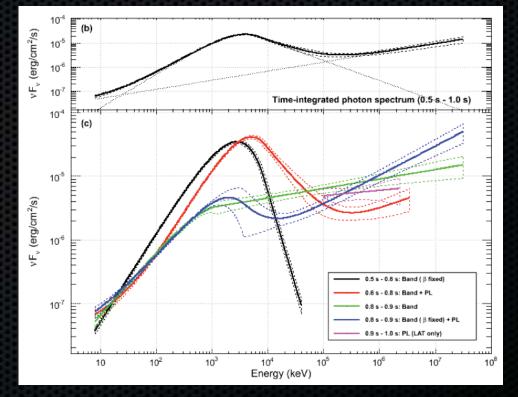
- MQG > 1.3 x 10¹⁸ GeV/c²
- $M_{planck} = 1.22 \times 10^{19} \, \text{GeV/c}^2$



Abdo et al. 2009

Assumes the LAT emission wasn't emitted before t₀!

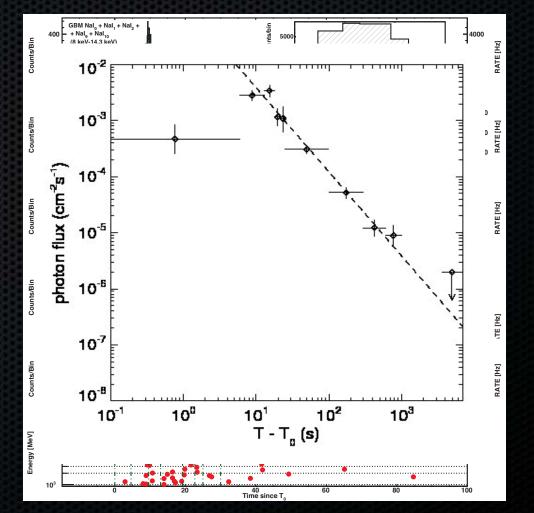
GRB 090510


- Short GRB (T90 ~ 2 sec)
- Zphot ~ 0.903
- Emax = 31 GeV
- Γ_{min} ~ 1200
- $M_{QG} / M_{planck} > 5.63$
- Delayed LAT emission
 - > 100 MeV begins T0 + 0.63 s
- Extended LAT emission
 - 0.1 GeV detected to T0+200s

Abdo et al. Nature 2009

Extra Component in 090510

- Spectral Evolution
- Band + Power Law
 - > 5 σ fit improvement
 - Delayed onset
- E_{pk} ~ 3.9 ± 0.3 MeV
 - Highest Recorded
- PL Photon Index = -1.62
- No evidence of power law at low energies!



Abdo et al. Nature 2009


Raises all kinds of questions!

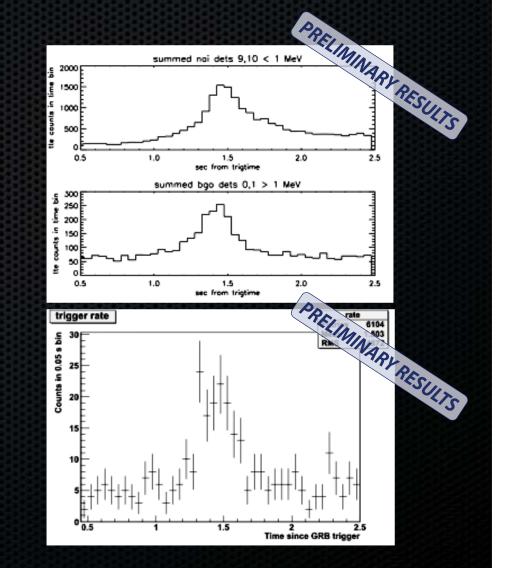
GRB 090902B

- Extremely bright long GRB
- Delayed LAT emission
 - > 100 MeV begins T0 + 10 s
- Extended LAT emission
 - 0.1 GeV detected to T0+200s
 - Flux ~ t^{-1.5}
- Extra spectral component
 - Band + Power Law
 - Photon Index = -1.9

Extra Components in 090902B

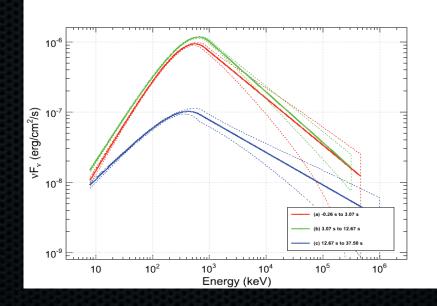
Abdo et al. 2009

Abdo et al. 2009


- Extra component at low and high energy!
- Low energy component consistent with extrapolation of HE power law
- Power law component = 24% of the total fluence

Summary of LAT Bursts

GRB	duration	# of events > 100 MeV	# of events > 1 GeV	delayed HE onset	Long-lived HE	Highest Energy	Redshift
080825C	long	~10	0	~	~	~600 MeV	
080916C	long	>100	>10	~	~	~ 13.2 GeV	4.35
081024B	short	~10	2	~	~	3 GeV	
081215A	long	_	_	_	-	_	
090217	long	~10	0	x	-	~1 GeV	
090323	long	>10	>0	_	~	_	3.57
090328	long	>10	_	_	~	_	0.736
090510	short	>150	>20	~	~	~31 GeV	0.903
090626	long	_	_	_	~	_	
090902B	long	>200	>30	~	~	~ 33 GeV	1.822


GRB 081215A

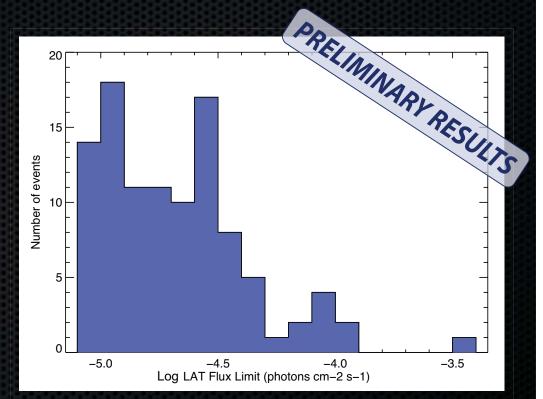
- GBM light curve:
 - Very hard, narrow pulse on top of broad emission episode
 - **T**90 ~ 7.7 sec
- LAT Light curve
 - Narrow, similar T90
- No delay in high energy emission!

GRB 090217

- No delay in HE emission
 - > 100 MeV events detected from trigger
- Band model with no spectral evolution
- No extended emission

Delayed HE and extended emission trends to not extend to all LAT detected events!

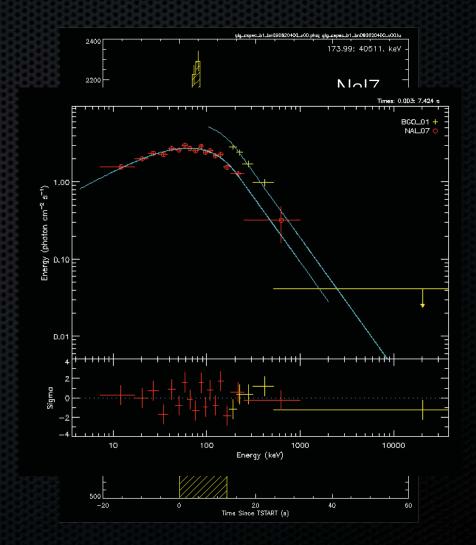
LAT Upper Limits


- What are the upper limits to the 0.1-300 GeV flux for GBM only bursts?
- Can we rule out high energy emission for these events?
- How do these upper limits compare to the expected flux?
- Could point to interesting physics
 - Intrinsic spectral breaks?
 - = EBL or $\gamma \gamma$ absorption?

LAT Count Map of hypothetical GRB Position

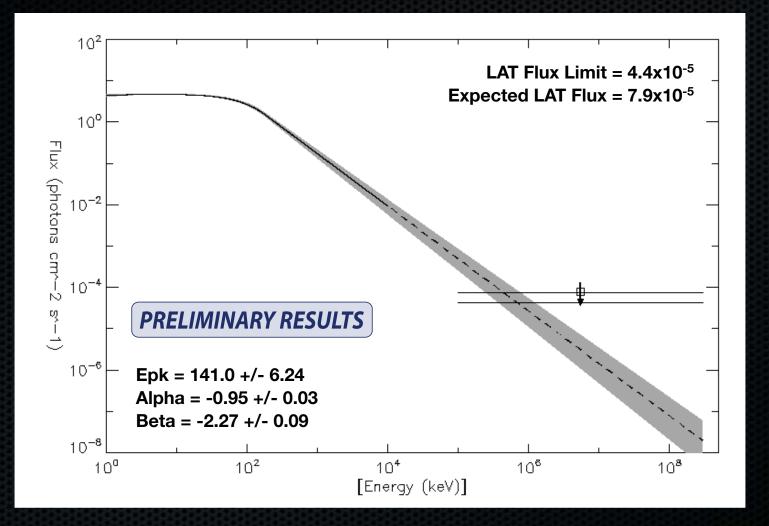
LAT Upper Limits (Year 1)

- GBM events in LAT FOV:
 - **121** events (47%)
- Events with flux upper limits
 - 104 events (40%)
 - Assume beta = -2.2
- Median flux limit (0.1 to 300 GeV)
 - ~ 2.6x10⁻⁵ photons cm⁻² s⁻¹
 - Over T90 duration
- Implications for extra components?


Extra Components

- SSC & pion decay components No obvious evidence s⁻¹) cm⁻² SSC? Unless significantly delayed Flux (photons Synchrotron Implications of flux limits • Y < 1, $\epsilon_B > \epsilon_e$ 100 GeV Y >> 100, Epk_{SSC} >> 10 GeV 100 KeV 10 GeV
 - EBL attenuation?
 - No evidence for EBL in any LAT event

GBM Extrapolation


Bright BGO Sample

- GBM events with > 70 BGO cts
- But no LAT detections
- 79 events
 - 33 in LAT FOV
- Performed spec fits with rmfit
 - 15 events in "Gold" sample
 - Median beta ~ -2.3

GRB 090620.400

GRB 080925.775

Spectral cutoff required to explain LAT non-detection!

Current Problems

- Power law index to GeV energies with no evidence of SSC
 - Y < 1, $\epsilon_B > \epsilon_e$
 - γ >> 100, Epkssc >> 10 GeV
- Delayed onset of high energy emission
 - Internal shocks with varying physical conditions?
 - Somewhat ad hoc
 - $\gamma \gamma$ attenuation due to compactness?
 - No evidence for spectral cutoff in bursts seen with LAT
 - Proton synchrotron or photo-meson cascade?
 - Requires a very high energy budget

Current Problems (continued)

Long lived high energy emission

- Angle dependent scattering effects?
- Synchrotron self-Compton from the forward shock?
- Photo-meson cascade?
- Extra spectral component at high energies
 - Synchrotron self-Compton emission
 - Hard to produce delay unless microphysical parameters vary rapidly
 - Hadronic component (proton synchrotron or photo-meson processes)?
 - Proton synchrotron requires much higher energy budget!

Current Problems (continued)

- Extra spectral component at high & low energies
 - Cannot be synchrotron self-Compton emission
 - Proton synchrotron or photo-meson with secondary pairs at low energies
 - Taxing the overall energy budget of the system!
 - Photospheric model (thermal & non-thermal emission)
 - Fits show no improvement over Band + Power Law
- Evidence for spectral cutoffs in some GBM only bursts
 - Lower end of the Lorentz distribution?
 - Is the Lorentz distribution continuous, bimodal?

Conclusions

- 291 GBM detections, 11 LAT detections
- Power law index to GeV energies with no evidence of SSC in at least one burst
- Very high Lorentz factors in all LAT detected bursts
- Strong limits on the effects of quantum gravity in several burst
- Delayed onset of high energy emission in some bursts while not in others
- Long lived high energy emission in most LAT burst
- Extra spectral component at high & low energies in 1 burst
- Evidence for spectral cutoff on some GBM only events
- Lots of interesting problems in need of clever ideas!