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Is there a radiative signature?



Magneto-brems., diffuse synchrotron, jitter...

Incoherent (single particle) radiation determined by trajectory

γ−1

(at t = T1/γ)

Fundamental concept: formation time T :

Classically: time for particle to lag ∼ 1 wavelength behind

wavefront

QM: time needed to create photon

Formation length can be large: T = 2γ2c/ω, for T < T1/γ



Idealized scatterer

Strength parameter: a = λeB/mc2 (δθ = 2a/γ)

B

x

2λ

Magnetized: a ∼ γ̄ Unmagnetized: a ∼ γ̄σ1/2



Spectrum: a ≫ 1

Fields constant over a formation length

Can define a local emissivity

‘Synchrotron’ radiation (independent of whether E or B is

responsible)

Integrated over angle, low frequency spectrum is ω1/3,

because:
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Fω

ω
ωcrit

ω0

ωcrit

ωcrit = γ2c/λ



Spectrum: a ≪ 1

δθ < γ−1, T < T1/γ, formation time T = 2γ2/ω

Fω

ω
ωcrit

ω0

ωcrit

ωcrit = γ2c/λ

Multiple scattering: LPM effect

ω1/2



Spectrum: a ≪ 1

δθ < γ−1, T < T1/γ, formation time T = 2γ2/ω

Fω

ω
ωcrit

ω0

ωcrit

ωcrit = γ2c/λ

Multiple scattering: LPM effect

ω1/2

ω < γωp RT effect



Spectrum: γ ≫ a > 1

Local, instantaneous emission for T < λ/c

Fω

ω
ωcritωcrit/a
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ωcrit

ωcrit = γ2eB/mc



Spectrum: a ≪ 1 coherent scatterers

T = 2γ2/ω For λwavetrain > cT > λ analogous to I.C. scattering
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Numerical approach

Instantaneous power (integrated over angles) (Schwinger 1949):

P(t) = −
e2ω

2πc2

∫

∞

−∞

dτ [1 − β(t + τ) · β(t)]
sin(ω|τ | − ω∆)

∆
+ . . .

∆ = |r(t + τ) − r(t)|/c,

δθ = 1/γ at τ = Tc

Tc log(T )

− log(ω)



Maximum energy, maximum frequency

Random small-angle deflections:

∆θ = 2a/γ (∝ B)

Number of scatterings needed to isotropize:

Nscatt ≈ (π/∆θ)2

Energy loss per scattering:

∆γ/γ = 2αfabγ/3 ∝ B2

(b = B/Bcrit = B/(4.4 × 1013 G))
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Maximum energy, maximum frequency

Acceleration/confinement, requires isotropization rate

faster than energy loss rate:

Nscatt∆γ/γ < 1

⇒ γ < 106
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(Cf. Bohm diffusion, a ≈ γ, ~ωmax ∼ 100 MeV)



Two kinds of scatterers?

Isotropization (large λ, small B) and radiation (small λ, large B)

by different scatterers?
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Summary

1st order Fermi requires scatterers with a ≪ 1

Associated synchrotron/jitter radiation is in optical/UV

independent of B (but νmax ∝ density1/6)

Low freq. spectrum Fν ∝ ν0 for uncorrelated, Fν ∝ ν1 for

correlated filaments/clumps, with LPM or Razin-Tsytovich

suppression.

In magnetized case, νmax increases ∝ a, low freq.

spectrum is synchrotron-like: ν1/3

Fν ∝ ν1 in X-rays requires two populations of scatterers,

one for acceleration/confinement, one for radiation (e.g.,

Inverse Compton on soft photons)


