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x-ray beam

Objective:

• Many critical questions
important to scientific and
technological progress can
be addressed using
ultrafast coherent short
wavelength sources

• Nanoscale electron
dynamics (e.g. heat
transport)

• Nano imaging

• Control and manipulation
of atoms and electrons in
molecules

• Barrier to overcome -
increasing the flux and
wavelength range



Coherent x-ray generation using HHG

• Coherent EUV is generated by focusing an intense laser into a gas

• Origin of HHG work: 3HG, 5HG, FWM work using nanosecond lasers

• S.E. Harris et al, J. Reintjes

• P(3!)" #(3) EEE etc.

• Nonperturbative nature of HHG

using ps, fs pulses was a discovery

• L’Huillier

• Rhodes

• CO2 laser HHG

Frequency



The birth of Nonlinear Optics

• P.A. Franken et al, Physical Review Letters 7, p. 118 (1961)
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NLO Crystal

NLO technology has seen widespread use

• Second Harmonic generation

• Need phase-matching for good

efficiency

•  vphase (!) = vphase (2!)

• Problem in case of HHG: crystal based phase-matching does not apply

• Neither do methods based on resonant dispersion!



Waveguides for high harmonic generation

Rundquist et al, Science 280, 1412, 1998

Durfee et al, PRL 83, 2187, 1999  
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• Use structure surrounding NLO medium to control phase matching!
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NeutralsWaveguide Plasma

E field

ionization

Limitation: HHG is coupled to ionization

• Since higher harmonics are
generated at higher laser
intensities and ionization
levels, impossible to phase
match above #c ! 0.5 - 5% or
E < 100eV



5fs, 10fs, 20fs, 30fs

Beating ionization using shorter pulses

•  Impossible to phase match above 150eV

•  Need phase corrective technique to compensate for ionization
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The quantum phase--

• HHG depends on phase of

recolliding electron

• A non-instantaneous, but still

purely electronic, NLO

response!!!

• M. Lewenstein, et al., Physical Review A 49 (3), 2117 (1994).

• Z. Chang et al., Physical Review A 58 (1), R30 (1998).



Experimental evidence of quantum phase

• Propagation, “spatial” gradients

• P. Saliéres et al PRL 74, 3776 (1995)

• P. Balcou et al, PRA 55, 3204 (1997)

• Chirp dependence of spectrum

• Single atom, time-domain

• Z. Chang, et al., PRA 58 (1), R30 (1998)



time

laser

Electron wavefunction

Physics Today, Kapteyn et al. March 2005

Quantum picture (2D) of electron in strong field

• Phase shift $~1 rad / harmonic order
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“EUV photonics” : Quasi Phase matching

• Modulate the driving field by modulating a waveguide

• HHG is modulated because it is sensitive to phase and amplitude of
driving laser



straight

fiber

modulated

fiber
(0.25mm)

carbon K-edge
Nature 421, 51 (2003)

Science 302, 95 (2003)

QPM using modulated waveguides

• First quasi phase matching technique to work in highly-ionized gas

• Pathway for more efficient higher harmonics (up to keV)

• BUT:

• Limited (~10-100x) enhancement because of varying coherence length

• To design the modulation, need to know coherence length

• Periodicity limited to ~diameter

• Plasma and waveguide help with quasi random QPM



coherent zones

EUV beam

waveguide

Ti: Sapphire laser beam

counter propagating laser beam

Counterpropagating pulses

• Counterpropagating beam can probe

coherence

•  Pulse train can implement QPM



Counterpropagating beams in a gas cell

• Presence of counterpropagating field disrupts HHG

• Observe suppression of HHG
• Peatross et al. PRL 84, 2370 (2000); Opt. Exp. 12, 4430 (2004)

• Should work better in hollow waveguide

•  long, uniform, interaction length

• pressure-controlled phase matching



EUV beam

waveguide

Driving pulse

counter propagating pulse

coherent zones

Single counterpropagating pulse in waveguide

• Use low pressure, non-phase matched regime

• “standard” phase matching in waveguide is ~30 torr for H23-31

• General method for mapping coherence

• coherence length corresponds to 1/2 fringe period



Single counterpropagating pulse in waveguide

• Use low pressure, non-phase matched regime

• “standard” phase matching in waveguide is ~30 torr for H23-31

• General method for mapping coherence

• coherence length corresponds to 1/2 fringe period

Ar gas inlet

(5 torr)

0.65mJ

25fs
0.6mJ

1.6ps



Single counterpropagating pulse
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Colliding pulses



1.5

1.0

0.5

C
o
h
e
re

n
c
e
 L

e
n
g
th

 [
m

m
]

454035302520

Harmonic Order

 Experimental data
 Calculated, ! = 0.18
 Calculated, ! = 0.22
 Calculated, ! = 0.26

70

60

50

40

30

20

T
h
re

sh
o
ld

 P
h
o
to

n
 E

n
e
rg

y
 (

e
V

)

-15 -10 -5 0 5 10 15

Time [fs]

0.4

0.3

0.2

0.1

0.0

Io
n
iz

a
tio

n
 F

ra
c
tio

n

 25th
 31st
 37th
 43rd

Coherence length vs order, position

• Lc decreases with increasing harmonic order

• At high ionization, near cutoff, Lc~1/q2

• ADK and Lc can be used to identify at which ionization levels
different harmonics are generated
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Cutoff region

Coherence length in waveguide

• Loss in waveguide decreases ionization, increases Lc toward exit

• Varying Lc limits number of fringes observed for fixed counterpropagating
pulse duration

• Evidence of mode beating?
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EXPT.

Quantum path control

• Observe HHG from long and short
trajectories

• Long trajectories strongly
modulated, while short trajectories
need higher energies
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QPM using a TWO pulse “train”

• N pulses give (N+1)2

enhancement (expect factor of 9)

• Glass plate in stretcher splits

pulse, allows independent control



EUV beam

waveguide

Ti: Sapphire laser

beam

counter propagating train
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0.55 mm
coherent zones

Modulation due to each pulse, separately

• Pulse sequence adjusted so each counter propagating pulse

causes modulation

• Can measure and adjust the pulse separation - in this case !

1.1mm
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High Harmonic Order

 Double pulse
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Single pulse

Double pulse

QPM using two pulses

• Use 1.1 mm pulse separation

• When Lc = 1/4 pulse separation, largest enhancement

• H43 is closest to QPM period => shows largest (x14) enhancement!!
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 Coherence length 
Single pulse

Double pulse

Higher-order QPM

• Pulse separation 2.2 mm

• m=2 QPM is obtained at

H43 with 7x enhancement
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Directly observe pressure-tuned phase matching

• H29  (in standard phase-matching regime!)

• For phase matching (~40 torr) Lc is longer than counterpulse

• For lower and higher pressures, observe finite coherence length



• Phase matching: signal
from all emitters adds in
phase

• & signal reflects single
atom dynamics

• 1st demonstration of
learning control on a very
high-order quantum
nonlinear system

• Learning algorithm
discovered new science!

Bartels et al., Nature 406,164 (2000)

Excellent p-m in WG reveals atto dynamics



Controlling interfering pathways

Christov et al, PRL 86, 5458 (2001)

Bartels et al. Chem. Phys. 267, 277 (2001)

Bartels et al. PRA 70, 112409 (2004)



Attosecond control

• Use algorithm to optimize

theory

• For optimized laser pulse, all

harmonics in phase within 25

attoseconds!

• Experiment feasible using few-

cycle pulses
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How far can we go?

• HHG in Helium in the water window

• 5 torr   Lc ~100 "m

• Absorption depth @ 300 eV:  10 meters

• Possible enhancement:

• Neon

• Lc~ 100 "m

• Abs depth ~0.5 meters

• Limitations: defocusing, waveguide propagation, group velocity slip
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Future plans for HHG sources

• Better quasi phase matching
techniques

• pre-formed, tailored and modulated
discharges

• counterpropagating pulsetrains

• chirped, tapered, waveguides

• 1-D waveguide to increase flexibility
of structures

• quasi phase matching using two-
color laser fields

• HHG from molecules

• More-extensive modeling to
understand laser propagation in
plasma-filled waveguides

• Multi kHz repetition rate lasers



Lensless

Imaging
Optics Lett. submitted

Attosecond solid

state dynamics
PRL Sept 2006Dynamic

Holography
APL 2006  

Ultrafast Coherent Spectroscopy and Imaging

 

High Order X-Ray Raman Probes of Molecules

PNAS Sept 2006

 

 

 

 



Quasi Phase

Matching using Light
Postdeadline, Ultrafast

Phenomena, Aug. 2006

HHG from ions (plasma

discharge) PRL, May 2006

Generating Bright Ultrafast X-Ray Pulses

 
High harmonic order

 

COLTRIMS - attosecond

reaction microscope
Bright, sub-cycle, EUV pulses
PRL submitted

 



Conclusion

• HHG does not simply “happen”-- it can be
manipulated and optimized in sophisticated
ways (!!)

• It involves the fastest coherent, controllable
dynamics yet encountered by man

• Complex, yet decipherable, spatial-spectral-
temporal couplings

• The attosecond quantum dynamics of
rescattering provides the basis for a new
technology of extreme nonlinear-optics, with
many possibilities

• Shaped pulse optimization

• Engineered waveguide structures

• Counterpropagating fields

• ???


