The Finite Element Discrete Variable Method for the Solution of theTime Dependent Schroedinger Equation

> B. I. Schneider Physics Division National Science Foundation

Collaborators Lee Collins and Suxing Hu Theoretical Division Los Alamos National Laboratory

Attosecond Spectroscopy Workshop Kavli Institute for Theoretical Physics Santa Barbara, California August 30, 2006

Basic Equation

 $i\hbar \frac{\partial}{\partial t} |\Psi(\mathbf{r},t)\rangle - H(\mathbf{r},t) |\Psi(\mathbf{r},t)\rangle = 0$

Where $Possibly Non-Local or Non-Linear H(\mathbf{r}, t) = -\frac{\hbar^2}{2} \sum_{i} \frac{\nabla_i^2}{m_i} + V(\mathbf{r}, t)$

- Flexible Basis (grid) capability to represent dynamics on small and large scale
- Good scaling properties O(n)
- Matrix elements easily computed
- Time propagation stable and unitary
- "Transparent" parallelization
 Enchling Technolog

Outline

Spatial Representations

- Grids / Finite Differences
- Spectral Methods Discrete Variable

Representation (D)

- Finite Elements
- Finite Element DVR

• Time Propagation

- General Integrators
- Lanczos-Arnoldi
- Real Space Product Formula

• Examples

Can we avoid matrix element quadrature, maintain locality and keep global convergence ?

Properties of Classica Orthogonal Functions

•Orthonormality w.r.t. some positive weight function.

$$\langle \chi_{n} | \chi_{m} \rangle = \int_{a}^{b} dx w(x) \chi_{n}(x) \chi_{m}(x) = \delta_{n,m}$$

• The functions satisfy a three term recursion relationship of the form;

$$\beta_n \chi_n(x) = (x - \alpha_{n-1}) \chi_{n-1}(x) - \beta_{n-1} \chi_{n-2}(x)$$

- * The recursion coefficients may be computed using the Lanczos procedure
- A set of Gauss quadrature points, x_i and weights, w_i may be found which exactly integrate any polynomial integrand of order (2n 1) or less with respect to the weight function.
- The points and weights may be found by diagonalizing the tridiagonal matrix made up of the α and β coefficients.
- Completeness

$$\sum_{n} \chi_{n}(\mathbf{x}) \chi_{n}(\mathbf{x}') = \delta(\mathbf{x} - \mathbf{x}');$$

More Properties

- •A discrete orthonormality relationship
 - Note that the orthonormality integral can be performed exactly by p point Gauss quadratures for $all \varphi_q$ where $q \le p$

$$\langle \chi_n | \chi_m \rangle = \sum_{i=1}^p W_i \chi_n(x_i) \chi_m(x_i) = \delta_{n,m}$$

This is true because the integrand is a polynomial which can be integrated exactly by the quadrature.

• Corollary

Given an expansion,

$$\Psi(\mathbf{x}) = \sum_{q=1}^{p} c_q \chi_q(\mathbf{x})$$
$$c_q = \int_{a}^{b} d\mathbf{x} \ w(\mathbf{x}) \chi_q(\mathbf{x}) \Psi(\mathbf{x}) = \sum_{i=1}^{p} \chi_q(\mathbf{x}_i) w_i \Psi(\mathbf{x}_i)$$

Matrix Elements

Consider, a matrix element of the potential,

$$V_{q,q'} = \left\langle \varphi_q \left| V(x) \right| \varphi_{q'} \right\rangle$$

Conceptually, this matrix element may be evaluated if we know the matrix representation of the position operator. Then,

$$\mathbf{V} = V(\mathbf{x})$$

as long as the basis set is complete. This remains quite useful even for finite basis sets and suggests that an excellent approximation to the matrix is obtained,

$$V_{q,q'} = \sum_{i} T_{q,i} V(x_i) T_{q',i}$$

where \mathbf{T} is the transformation from the original representation to one which diagonalizes x. Note, that this looks like a quadrature formula.

Properties of Discrete Variab Representation

• Define a new set of "coordinate" functions,

$$u_i(x) = \sqrt{w_i} \sum_{q=1}^p \chi_q(x) \chi_q(x_i)$$

with the property that,

$$u_i(x_j) = \frac{\delta_{i,j}}{\sqrt{W_i}}$$

and

$$\langle \mathbf{u}_{i} | \mathbf{x} | \mathbf{u}_{j} \rangle = \mathbf{x}_{i} \delta_{i,j}$$

• Consider the matrix element

$$\mathbf{F}_{i,j} = \left\langle \mathbf{u}_i \middle| \mathbf{F}(\mathbf{x}) \middle| \mathbf{u}_j \right\rangle$$

In general this will not be equal to

$$F_{i,j} = F(x_i) \,\delta_{i,j}$$

unless the basis/or quadrature is complete. (Think power series expansion and matrix mutiply) In the DVR, its is assumed that this is true. In practice it appears to be an excellent approximation.

More Properties

• A simple representation

$$u_{i}(x) = \frac{1}{\sqrt{W_{i}}} \prod_{j \neq i} \frac{(x - x_{j})}{(x_{i} - x_{j})}$$

where x_i are the Gauss quadrature points.

Matrix elements of the derivative operators may be evaluated using the quadrature rule, but its **trivial**. For Cartesian coordinates :

$$\left\langle u_{i} \left| \frac{d^{2}}{dx^{2}} \right| u_{j} \right\rangle = w_{i} u_{i} (x_{i}) \left[\frac{d^{2}}{dx^{2}} u_{j} \right]_{x = x_{i}}$$

Boundary Conditions, Singular Potentials and Lobatto Quadrature

- Physical conditions require wavefunction to behave regularly
 *Function and/or derivative non-singular at left and right boundary
 - Soundary conditions may be imposed using constrained quadrature rules (Radau/Lobatto) – end points in quadrature rule
- Consequence
 - All matrix elements, even for singular potentials are well defined
 - ***ONE quadrature for all angular momenta**
 - No transformations of Hamiltonian required

The Finite-Element DVR

- The FEDVR takes these ideas one step further by combining the finite-element method with the DVR:
 - For any dimensional coordinate space is divided into many elements:
 - Within each element a DVR basis of arbitrary order can be used:

 - The continuity on the DVR basis in adjacent elements is satisfied by defining a "bridge" function (Gauss-Lobatto quadrature rule will be used):

$$\mathcal{U}_{N}^{i}(x) = \frac{\mathcal{U}_{N}^{i}(x) + \mathcal{U}_{1}^{i+1}(x)}{\sqrt{\sum_{k=1}^{i} + W_{1}^{i+1}}}$$
• Sparse Representation
N Scaling
• Close to Spectral
Accuracy

The FEDVR matrix form

• The Hamiltonian matrix that results from the FEDVR can be quite sparse. An example having four finite elements with a (4/3/3/2) basis set looks like:

(H_{11})	H_{12}	H_{13}	H_{14}	0	0	0	0	0
H_{21}	$H_{\scriptscriptstyle 22}$	$H_{\scriptscriptstyle 23}$	H_{24}	0	0	0	0	0
H_{31}	$H_{\scriptscriptstyle 32}$	$H_{\scriptscriptstyle 33}$	\dot{H}_{34}	0	0	0	0	0
H -41	H_{42}	H_{43}	H_{44}	H_{45}	H_{46}	0	0	0
0	0	0	H_{54}	H_{55}	$H_{\rm 56}$	0	0	0
0	0	0	<i>H</i> - ₆₄ .	<i>H</i> -65	H.66	H_{67}	H_{68}	0
0	0	0	0	0	H_{76}	$H_{\rm 77}$	$\dot{H}_{ m 78}$	0
0	0	0	0	0	H_{86}	H_{87}	··H 88	H_{89}
0	0	0	0	0	0	0	H_{98}	H_{99}

$$\begin{split} \langle \mathbf{i}, \mathbf{j}, \mathbf{k} | \mathbf{H} | \mathbf{l}, \mathbf{m}, \mathbf{n} \rangle &= \langle \mathbf{i} | \mathbf{T} | \mathbf{l} \rangle \quad \delta_{\mathbf{j}, \mathbf{m}} \delta_{\mathbf{k}, \mathbf{n}} + \\ &\qquad \langle \mathbf{j} | \mathbf{T} | \mathbf{m} \rangle \quad \delta_{\mathbf{i}, \mathbf{l}} \delta_{\mathbf{k}, \mathbf{n}} + \\ &\qquad \langle \mathbf{k} | \mathbf{T} | \mathbf{n} \rangle \quad \delta_{\mathbf{i}, \mathbf{l}} \delta_{\mathbf{j}, \mathbf{m}} + \\ &\qquad \langle \mathbf{i}, \mathbf{j}, \mathbf{k} | \mathbf{V} | \mathbf{l}, \mathbf{m}, \mathbf{n} \rangle \\ \delta_{\mathbf{i}, \mathbf{l}} \delta_{\mathbf{j}, \mathbf{m}} \delta_{\mathbf{k}, \mathbf{n}} \end{split}$$

$$\begin{split} \textbf{Multidimensional Proble} & \left| V_{i,j,k}^{out} \right\rangle = \sum_{l,m,n} \langle i, j, k | H | l, m, n \rangle \left| V_{l,m,n}^{in} \right\rangle \\ & \quad \sum_{m,n} \sum_{l} \langle i | T | l \rangle \left| V_{l,m,n}^{in} \right\rangle \\ & \quad + \sum_{l,n} \sum_{m} \langle j | T | m \rangle \left| V_{l,m,n}^{in} \right\rangle \\ & \quad + \sum_{l,m} \sum_{n} \langle k | T | n \rangle \left| V_{l,m,n}^{in} \right\rangle \\ & \quad + \langle i, j, k | V | i, j, k \rangle \left| V_{i,j,k}^{in} \right\rangle \end{split}$$

Nested sums.

Time Propagation Metry

- Hamiltonian Explicitly Time-Dependent
 - General Initial Value Solvers
 - Runge-Kutta
 - Adams-Bashforth-Moulton
 - Bulirisch-Stoer
 - TDVR

Good for general and/or rapidly varying time dependencies.

 Short TimePropagation via Exponential

 $\Psi(\mathbf{r},\mathbf{t}+\Delta \mathbf{t}) = \exp(-i\frac{\mathbf{H}(\mathbf{t})\Delta \mathbf{t}}{\mathbf{I}})\Psi(\mathbf{r},\mathbf{t})$

Time Propagation Met
• A Cayley Form - Crank-Nicholson

$$exp(i\frac{\Delta t}{2}H)\Psi(r,t+\Delta t) = exp(-i\frac{\Delta t}{2}H)\Psi(r,t)$$
Expand exponentials to first order to get

$$\Psi(r,t+\Delta t) = \left[1+i\frac{\Delta t}{2}H\right]^{-1} \left[1-i\frac{\Delta t}{2}H\right]\Psi(r,t)$$

Note matrix inversion Linear System Solve

Time Propagation Methods

- Short Iterative Lanczos
 - Lanczos diagonalization over short time periods to represent time propagator – Limited only by time variation of Hamiltonian

$$\left\langle q \left| \exp(-iH(t_0)\delta t) \right| q' \right\rangle = \\ \sum_{i} \left\langle q \left| i \right\rangle \exp(-iE_i(t_0)\delta t) \left\langle i \left| q' \right\rangle \right. \right\}$$

Time Propagation Meth

Lie-Trotter-Suzuki

Let

 $U_1(\tau) = \exp(-i \tau H_1) \exp(-i \tau H_2)$

 $H = H_1 + H_2$, then to second order accuracy,

$$\Psi(\mathbf{r}, \mathbf{t} + \tau) = U_1(\frac{\tau}{2})U_1(\frac{\tau}{2})\Psi(\mathbf{r}, \mathbf{t}) =$$

$$\exp(-i\,\Delta t\frac{H_1}{2\hbar})\exp(-i\,\Delta t\frac{H_2}{\hbar})\exp(-i\,\Delta t\frac{H_1}{2\hbar})\Psi(r,t)$$

Note the breakup of the Hamiltonian is arbitrary but a judicious choice can enormously simplify the calculation To fourth order(Suzuki, J. Math. Phys.),

 $\Psi(\mathbf{r},\mathbf{t}+\tau) = \mathbf{U}_2(\mathbf{p}\tau)\mathbf{U}_2(\mathbf{p}\tau)\mathbf{U}_2((1-4\mathbf{p})\tau)\mathbf{U}_2(\mathbf{p}\tau)\mathbf{U}_2(\mathbf{p}\tau)\Psi(\mathbf{r},\mathbf{t})$

$$p = \frac{1}{4 - 4^{1/3}}$$

h_{12}	h_{13}	h_{14}			
h_{22}	h 23	h 24			
h 32	h 33	h ₃₄			
$h_{_{42}}$	h_{43}	$h_{_{44}}$	$h_{_{45}}$	$h_{_{46}}$	
		h ₅₄	h 55	h_{56}	
		h_{64}	h 65	h_{66}	
				h_{76}	

Time Propagation Methods • FEDVR Propagation

Decompose the Hamiltonian matrix into,

$$H = H_d + H_a + H_b$$

where H_d is the diagonal and contains all of the time dependence and H_a and H_b are **block** diagonal, overlapping matrices.

$$U_{2}(\tau) = \exp(-i\frac{H_{d}\tau}{2\hbar}) \exp(-i\frac{(H_{a} + H_{b})\tau}{\hbar}) \exp(-i\frac{H_{d}\tau}{2\hbar})$$

$$=$$

$$\exp(-i\frac{H_{d}\tau}{2\hbar}) \exp(-i\frac{H_{a}\tau}{2\hbar}) \exp(-i\frac{H_{b}\tau}{\hbar}) \exp(-i\frac{H_{a}\tau}{2\hbar}) \exp(-i\frac{H_{d}\tau}{2\hbar})$$

The RSP formalism

 The kinetic-energy matrices can be further divided into "odd" and "even" blocks:

$\left(\right]$	7 11	T_{12}	T_{13}	T ₁₄	0	0	0	0	0)		T_{11}	T_{12}	T_{13}	T_{14}	0	0	0	0	0	(()	0	0	0	0	0	0	0	0
2	T ₂₁	T_{22}	T_{23}	1 24	0	0	0	0	0		\mathbf{T}_{21}	T_{22}	T_{23}	T_{24}	0	0	0	0	0	()	0	0	0	0	0	0	0	0
2	7 31	T_{32}	T_{33}	1 34	0	0	0	0	0		\overline{T}_{31}	T_{32}	T_{33}	T_{34}	0	0	0	0	0	()	0	0	0	0	0	0	0	0
2	T 41	T 42	T ₄₃	T_{44}	T_{45}	T_{46}	0	0	0		T ₄₁	.T ₄₂	T 43	$T_{44}/2$	0	0	0	0	0	() (0	0	T ₄ /2	T 45	T 46	0	0	0
	0	0	0	T_{54}	T_{55}	T_{56}	0	0	0	=	0	0	0	0	0	0	0	0	0 +	- () (0	0	T_{54}	T_{55}	T_{56}	0	0	0
	0	0	0	$T_{_{64}}$	T 65	7 66	T_{67}	T 68	0		0	0	0	0	0	$T_{66}^{/2}$	T_{67}	T_{68}	0	()	0	0	T ₆₄	T 65	$T_{66}^{/2}$	0	0	0
	0	0	0	0	0	T_{76}	T_{77}	T_{78}	0		0	0	0	0	0	7 76	T_{77}	\overline{T}_{78}	0	()	0	0	0	0	0	0	0	0
	0	0	0	0	0	T_{86}	T_{87}	T 88	T 89		0	0	0	0	0	7 86	T_{87}	$T_{s}/2$	0	()	0	0	0	0	0	0	$T_{88}^{/2}$	T 89
	0	0	0	0	0	0	0	T_{98}	T ,		0	0	0	0	0	0	0	0	0)	0	0	0	0	0	0	$T_{\circ 8}$	T ,,/
																			ŕ	``									~ ~

 The exponential operator of kinetic-energy matrices can be split as follows:

$$\underbrace{\exp[-iT_{x}\Delta t]}_{U^{T}(\Delta t)} = \underbrace{\exp(-iT_{odd}\Delta t/2)}_{U^{odd}(\Delta t/2)} \underbrace{\exp[-iT_{even}\Delta t]}_{U^{even}(\Delta t)} \underbrace{\exp(-iT_{odd}\Delta t/2)}_{U^{odd}(\Delta t/2)} \underbrace{\exp(-iT_{odd}\Delta t/2)}_{U^{odd}(\Delta t/2)}$$

MPI-Parallelization of RSP-

FEDVR

 The implementation with MPI is done by "domain decomposition". Example is a 1D-decomposition; One can do 2D or even 3D decompositions!

Eigenvalues of Hydrogen Atom (40 Legendre/Lobatto DVR Fuge

State	R=40.0	R=50.0	R=60.0	Exact
1s	50000000		ηşι (I	350000000
2 s	12500000			12500000
2р	12500000			12500000
3 s	05555423	05555555		05555555
Зр	05555477	05555555		05555555
4 s	03055182	03120434	03124815	03125000
4p	03070989	03121650	03124870	03125000
5p	01221097	01817594	01966509	02000000
6р			00991012	01388889

Imaginary Time Propagation

Problem	Order	Δt	Matrix Size	Eigenvalue
Well	2	.005	20	5.2696
Well	4	.005	20	4.9377
Well	2	.001	20	4.9356
Well	4	.001	20	4.9348
Fourier	2	.003	80	49.9718
Fourier	4	.003	80	49.9687
Coulomb	2	.005	120	499998
Coulomb	4	.005	120	499999
Coulomb	4	.01	120	499997

Free Particle Propagation $i\hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t) = \left(-\frac{\hbar^2}{2m}\nabla^2\right)\psi(\mathbf{r}, t)$

Method	No. Regions	Points/ Region	Time (Alpha/21164)	< X >	< X ² >
3pt FD	1	1000	74.5s	1.9629	.7825
DVR	1	700	179.4s	1.9999	.7903
DVR	2	350	126.5s	1.9999	.7905
DVR	4	175	44.7s	1.9999	.7904
DVR	8	100	31.5s	1.9999	.7904
DVR	16	50	13s	1.9999	.7906
DVR	32	25	8 s	2.0000	.7906
DVR	32	20	5.6s	1.9999	.7906
DVR	64	7	4s	1.9999	.7906

Propagation of BEC on a 3D Lattice

Superscaling Observed: Due to Elongated Condensate

Propagation of BEC on a 3D Lattice

Almost linear speeding-up up to n=128 CPUs. It breaks down from n=128 to n=256 CPUs for this data set.

Ground State Energy of BEC in 3D Trap

Method	No. Regions(X Basis)	Points	Energy
RSP-FEDVR	20(x 3)	(41) ³	19.85562355
RSP-FEDVR	20 (x 4)	(61) ³	19.84855573
RSP-FEDVR	20 (x 6)	(101) ³	19.84925147
RSP-FEDVR	20 (x 8)	(141) ³	19.84925687
3D Diagonalization			19.847

Ground State Energy of 3D Harmonic Oscillator

Method	No. Regions(X Basis)	Points	Energy
RSP-FD	1	(104) ³	1.496524844
RSP-FD	1	(144) ³	1.498189365
RSP-FD	1	(200) ³	1.499061950
RSP-FD	1	(300) ³	1.499632781
RSP-FD	1	(500) ³	1.499907103
RSP-FEDVR	20(x 3)	(41) ³	1.497422285
RSP-FEDVR	20 (x 4)	(61) ³	1.499996307
RSP-FEDVR	20 (x 6)	(101) ³	1.50000028
RSP-FEDVR	20 (x 8)	(141) ³	1.50000001
Exact			1.50000000

Solution of TD Close Coupling Equations for He Ground State E=-2.903114138 (-2.903724377) 160 elements x 4 Basis

He Probability Distribution

H Atom Exposed to a Circularly Polarized and Intense Few Cycle Pulse

Double Slit Interferometer: BEC

Potential

$$V(x, y, z, t) = .5 \left[\left(\frac{\omega_y^2}{\omega_x^2} \right) y^2 + z^2 \right]$$

$$\left(\frac{V_0}{\hbar\omega_z}\right)\left[\exp\left(-\left(\frac{\left(x-x_0(t)\right)^2}{2\sigma^2}\right) + \exp\left(-\left(\frac{\left(x+x_0(t)\right)^2}{2\sigma^2}\right)\right)\right]$$
$$x_0(t) = \alpha t + x_0$$

Initialize – Load in trap plus double well potential

Separate wells by ramping up the double well

Hold

Drop Trap - Ballistically expand

Role of Collective Excitations created during the splitting

Adiabaticity and time scales in experiment

Validity of GP equation

Double Slit Interferometer: Experiment

Y. Shin et. al. Phys. Rev. Lett. 92, 050405 (2004)

Interference Patterns

Collins et. al. Phys. Rev. A 71, 033628 (2005)

Interference Patterns

Observations

- Ramp Time
 - Short ramp times distort and dephase Condensate excitations
 - Radial modes increase with barrier height and maximize when frequency of radial modes equal to Josephson plasma oscillation.
 - Further well separation produces no change
 - Anharmonicity along x axis plays important role in destroying interference pattern
 - Interference pattern stabilizes with longer ramping times –

Observations

Hold Time

- Long hold times degrade interference pattern – Agrees with experiment
- Degradation saturates In contrast to experiment
- Distortion can be reduced with long ramps-In contrast to experiment
- Shape of interference pattern kinks and bends - In contrast to experiment

Conclusions

GP Mean Field Dynamics NOT Correct

Adiabaticity fails at long times

Quantum Phase Model – Two mode approximation

$$H = \frac{E_c}{4} (a_1^+ a_1^+ a_1 a_1 + a_2^+ a_2^+ a_2 a_2) - \frac{E_j}{N} (a_1^+ a_2 + a_2^+ a_1)$$

Beyond Mean Field

 $E_c =$ on site energy

 $E_j = E_j(0) \exp(-t/\tau) =$ time-dependent Josephson coupling

and

$$\tau = \frac{\Delta_R \hbar}{d\sqrt{2m(V_0 - \mu)}}$$

For $E_i \ll E_c$ where ϕ is the relative phase and

$$i\hbar\frac{\partial}{\partial t}\Psi(\phi,t) = \left[-\frac{E_C}{2}\frac{\partial^2}{\partial\phi^2} - E_j\cos(\phi)\right]\Psi(\phi,t)$$

$$\mid \Psi \rangle = \int_{-\pi}^{\pi} \frac{d\phi}{2\pi} \Psi(\phi, t) \mid \phi \rangle$$
$$\mid \phi \rangle = \sum_{-N/2}^{N/2} \mid n \rangle \frac{\exp(in\phi)\tau}{n!}$$

Perturbation: One well

fringe shift: δ

Double Slit Interferometer: BEC

Perturbation: Pattern Shift

Propagation from t=(.2,.275)

Propagation Time=.8

- Often only functions or low order derivatives continuous
- Ability to treat complicated geometry
- Matrix representations are sparse discontinuities of derivatives at element boundaries must be carefully handled
 - Matrix elements require quadrature

Finite Element Discrete Vari

Representation

- Properties
 - Space Divided into Elements Arbitrary size
 - "Low-Order" Lobatto DVR used in each element: first and last DVR point shared by adjoining elements

$$F_n^i(x) = \frac{(f_n^i(x) + f_1^{i+1}(x))}{\sqrt{w_n^i} + \sqrt{w_1^{i+1}}}$$

- Sparse Representations

 N Scaling
- Close to Spectral Accuracy

Elements joined at boundary – Functions continuous but not derivatives

 Matrix elements requires NO Quadrature

 Constructed from renormalized, single element, matrix elements

Finite Element DVR

 Structure of Matrix

 h_{11} h_{13} h_{14} h_{12} h_{21} h_{24} h_{22} h_{23} h_{31} h_{32} h_{33} h_{34} h_{41} h_{42} h_{43} h_{44} h_{45} h_{46} h_{54} h_{55} h_{56} h_{64} h_{65} h_{66} h_{67} h_{76} h_{77}