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Objectives

Flexible Basis (grid) – capability to 
represent dynamics on small and large 
scale
Good scaling properties – O(n)

Time propagation stable and unitary

”Transparent” parallelization 

Matrix elements easily computed



Outline
• Spatial Representations

• Grids / Finite Differences
• Spectral Methods - Discrete Variable

Representation (DVR)
• Finite Elements
• Finite Element – DVR

• Time Propagation
• General Integrators
• Lanczos-Arnoldi
• Real Space Product Formula

• Examples



Discretizations & 
Representations

Grids are simple -
converge poorly
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Can we avoid matrix element quadrature, maintain 
locality and keep global convergence ?
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Global or Spectral 
Basis Sets –
exponential
convergence but 
can require 
complex matrix 
element evaluation



Properties of Classical 
Orthogonal Functions

•Orthonormality w.r.t. some positive weight function.
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• The functions satisfy a three term recursion relationship of the form;
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         ∗  The recursion coefficients may be computed using the Lanczos  procedure

• A set of Gauss quadrature points,  x
i
 and weights,  w

i
 may be found which 

  exactly integrate any polynomial integrand of order (2n -  1) or less

  with respect to the weight function.

• The points and weights may be found by diagonalizing

   the tridiagonal matrix made up of the α and β coefficients.

• Completeness
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More Properties
•A discrete orthonormality relationship

   Note that the orthonormality integral can be performed exactly by

   p - point Gauss quadratures for allϕ
q

 where q ≤ p
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This is true because the integrand is a polynomial which can be integrated

exactly by the quadrature.

• Corollary

     Given an expansion,
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Matrix Elements
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Properties of Discrete Variable 
Representation
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More Properties
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Boundary Conditions, Singular 
Potentials and Lobatto 
Quadrature

Physical conditions require 
wavefuntion to behave regularly

Function and/or derivative non-singular 
at left and right boundary
Boundary conditions may be imposed 
using constrained quadrature rules 
(Radau/Lobatto) – end points in 
quadrature rule

Consequence
All matrix elements, even for singular 
potentials are well defined
ONE quadrature for all angular momenta
No transformations of Hamiltonian 
required



The Finite-Element DVR
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• The FEDVR takes these ideas one step further by 
combining the finite-element method with the DVR:
• For any dimensional coordinate space is divided into many 

elements:

• Within each element a DVR basis of arbitrary order can be 
used:

• The continuity on the DVR basis in adjacent elements is 
satisfied by defining a “bridge” function (Gauss-Lobatto
quadrature rule will be used):

• Sparse Representation
N Scaling

• Close to Spectral 
Accuracy



The FEDVR matrix form
• The Hamiltonian matrix that results from the 

FEDVR can be quite sparse. An example 
having four finite elements with a (4/3/3/2) 
basis set looks like:
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Multidimensional Problems
Tensor Product Basis

Consequences
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Multidimensional Problems
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Time Propagation Methods
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• Hamiltonian Explicitly Time-
Dependent
• General Initial Value Solvers

• Runge-Kutta
• Adams-Bashforth-Moulton
• Bulirisch-Stoer
• TDVR

Good for general and/or rapidly
varying time dependencies.

• Short TimePropagation via 
Exponential



Time Propagation Methods
• A Cayley Form - Crank-Nicholson
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Note matrix inversion
Linear System Solve



Time Propagation Methods
Short Iterative Lanczos

Lanczos diagonalization  over short time 
periods to represent time propagator –
Limited only by time variation of 
Hamiltonian
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Time Propagation Methods
• Lie-Trotter-Suzuki
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Time Propagation 
Methods
FEDVR Propagation

)
2

Hexp(-i )
2

Hexp(-i )Hexp(-i )
2

Hexp(-i )
2

Hexp(-i

                                     

)
2

Hexp(-i ))H (Hexp(-i )
2

Hexp(-i  )(U

matrices. goverlappin diagonal,
  are H and H and dependence time

 theof all contains and diagonal  theis H where
H  H  H  H

into,matrix n Hamiltonia  theDecompose

dabad

dbad
2

ba

d

bad

τττττ

ττττ

=

+
=

++=

block



The RSP formalism
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• The kinetic-energy matrices can be further 
divided into “odd” and “even” blocks:

• The exponential operator of kinetic-energy 
matrices can be split as follows:
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MPI-Parallelization of RSP-
FEDVR

• The implementation with MPI is done by “domain 
decomposition”. Example is a 1D-decomposition; One 
can do 2D or even 3D decompositions!
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Eigenvalues of Hydrogen Atom
(40 Legendre/Lobatto DVR Functions)

-.01388889-.009910126p

-.02000000-.01966509-.01817594-.012210975p

-.03125000-.03124870-.03121650-.030709894p

-.03125000-.03124815-.03120434-.030551824s

-.05555555-.05555555-.055554773p

-.05555555-.05555555-.055554233s

-.12500000-.125000002p

-.12500000-.125000002s

-.50000000-.500000001s

ExactR=60.0R=50.0R=40.0State
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Imaginary Time Propagation

-.499997120.014Coulomb

-.499999120.0054Coulomb

-.499998120.0052Coulomb

49.968780.0034Fourier

49.971880.0032Fourier

4.934820.0014Well

4.935620.0012Well

4.937720.0054Well

5.269620.0052Well

EigenvalueMatrix SizeΔtOrderProblem
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Free Particle Propagation

.79061.99994s764DVR

.79061.99995.6s2032DVR

.79062.00008s2532DVR

.79061.999913s5016DVR

.79041.999931.5s1008DVR
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Propagation of BEC on a 3D Lattice

Superscaling Observed: Due to Elongated Condensate



Propagation of BEC on a 3D Lattice

Almost linear speeding-up up to n=128 CPUs.  It 
breaks down from n=128 to n=256 CPUs for this data 
set.  



Ground State Energy of BEC in 3D Trap

19.8473D Diagonalization

19.84925687(141)320 ( x 8)RSP-FEDVR

19.84925147(101)320 ( x 6)RSP-FEDVR

19.84855573(61)320 ( x 4)RSP-FEDVR

19.85562355(41)320( x 3)RSP-FEDVR

EnergyPointsNo. 
Regions(X 
Basis)

Method



Ground State Energy of 3D Harmonic Oscillator

1.500000000Exact

1.500000001(141)320 ( x 8)RSP-FEDVR

1.500000028(101)320 ( x 6)RSP-FEDVR

1.499996307(61)320 ( x 4)RSP-FEDVR

1.497422285(41)320( x 3)RSP-FEDVR

1.499907103(500)31RSP-FD

1.499632781(300)31RSP-FD

1.499061950(200)31RSP-FD

1.498189365(144)31RSP-FD

1.496524844(104)31RSP-FD
EnergyPointsNo. Regions(X Basis)Method



Solution of TD Close Coupling  Equations for He 
Ground State  E=-2.903114138 (-2.903724377) 
160 elements  x 4 Basis



He Probability Distribution



H Atom Exposed to a Circularly 
Polarized and Intense Few Cycle Pulse

5 fs Pulse, 800nm, I= 2*1014 W/cm2



Double Slit Interferometer: BEC

• Potential
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Steps

Initialize – Load in trap plus double 
well potential

Separate wells by ramping up the 
double well

Hold

Drop Trap - Ballistically expand



Questions

Role of Collective Excitations created 
during the splitting

Adiabaticity and time scales in 
experiment

Validity of GP equation



Double Slit Interferometer: 
Experiment

Y. Shin et. al. Phys. Rev. Lett. 92, 050405 (2004)



Interference Patterns

Experiment 3D Computation

Collins et. al. Phys. Rev. A 71, 033628 (2005)



Interference Patterns



Observations
• Ramp Time

• Short ramp times distort and dephase –
Condensate excitations

• Radial modes increase with barrier height 
and maximize when frequency of radial 
modes equal to Josephson plasma 
oscillation.

• Further well separation produces no change
• Anharmonicity along x axis plays important 

role in destroying  interference pattern
• Interference pattern stabilizes with longer 

ramping times –



Observations
• Hold Time

• Long hold times degrade interference 
pattern – Agrees with experiment

• Degradation saturates – In contrast to 
experiment

• Distortion can be reduced with long ramps-In 
contrast to experiment

• Shape of interference pattern – kinks and 
bends - In contrast to experiment

GP Mean Field Dynamics NOT Correct

Adiabaticity fails at long times 

Conclusions



Beyond Mean Field
Quantum Phase Model – Two 
mode approximation





Perturbation: One well

hν: τper

fringe shift: δ



Double Slit Interferometer: BEC



Perturbation: Pattern Shift



•Dynamics adiabatic when 
μ close to barrier height

•Breaks down at large 
separations(deep 
tunneling) when system 
cannot follow decreasing 
coupling
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Hat Functions

Often only functions or low order derivatives
continuous
Ability to treat complicated geometry
Matrix representations are sparse –
discontinuities of derivatives at element 
boundaries must be carefully handled

Matrix elements require quadrature

Discretizations & Representations
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Finite Element Methods - Basis 
functions have compact support –
they live only in  a restricted 

region of  space



Finite Element Discrete Variable
Representation
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• Properties
• Space Divided into Elements – Arbitrary 

size
• “Low-Order” Lobatto DVR used in each 

element: first and last DVR point shared
by adjoining elements

Elements joined at boundary – Functions 
continuous but not derivatives

• Matrix elements requires NO Quadrature 
– Constructed from renormalized, single 
element, matrix elements

• Sparse Representations
– N Scaling

• Close to Spectral 
Accuracy



Finite Element DVR
• Structure of 

Matrix
h11 h12 h13  h14

h 21 h 22 h 23  h 24

h 31 h 32 h 33  h 34

h 41 h 42 h 43  h 44

    

h 45 h 46

            h 54

        h 64    

 h 55 h 56

h 65 h 66 h 67

h 76 h 77


