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We show that the time profile of the harmonics emitted by a single atom exposed to a strong electromagnetic
field may be obtained through a wavelet or a Gabor analysis of the acceleration of the atomic dipole. This
analysis is extremely sensitive to the details of the dynamics and sheds some light on the competition between
the atomic excitation or ionization processes and photon emission. For illustration we study the interaction of

atomic hydrogen with an intense laser pulse.

PACS number(s): 32.80.Rm, 42.50.Hz

It is now well established that an atom exposed to an
intense laser pulse can emit high order harmonics of the driv-
ing force. At high field intensity and for a wide range of
frequencies, all harmonic spectra share the same qualitative
behavior characterized by the existence of a plateau. Until
now, the main effort has focused on the study of the overall
behavior of the harmonics spectra at high intensity and low
frequency, where most of the experiments have been per-
formed. It has been surmised by means of a semiclassical
model that in this regime, the highest harmonics of the pla-
teau are produced by electrons which, after tunneling out,
return to the vicinity of the ion with a very high kinetic

energy [1].

3
i = W(r,t)=[Hy+A(t) p]¥(r,1), (1)

where H, is the atomic Hamiltonian and A(7) the vector
potential associated with the field:

A(1)=Aof(t)sin(wt)e; ; )

A, is the amplitude of the potential, e, is the unit vector
along the z axis, w is the frequency of the laser field, and
f(¢) is a slowly varying envelope assumed here to be Gauss-
ian. The numerical procedure is the following: we first ex-
pand the wave function W (r,t) of the system in a basis of
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FIG. 2. Time profile [given by the coefficient a(a,B)] of the
odd harmonics (1-9) for the same cases as in Fig. 1. (a)
I,=2%10" W/cm? and (b) Iy=2 % 10" W/cm?.
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FIG. 4. (a) Time profile of the third harmonic emitted by atomic
hydrogen initially in its 2s state and exposed to a Gaussian pulse of
I,=2%10"“ W/cm?, FWHM=20 optical cycles, and laser fre-
quency w=0.118 a.u. (b) 1s population (i.e., the projection of the
full wave function on the bare 1s state of atomic hydrogen) as a
function of time in atomic units for the same case as in (a). The
thick line represents the time average of the 1s population.
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Abstract

We report a calculation of the harmonic emission from a one-electron
heteronuclear nonsymmetric molecule (HeH?") interacting with a few-cycle
laser pulse linearly polarized along the molecular axis. We find that a 180°
rotation of the molecule (or equivalently a 180° change in the carrier-envelope
phase) leads to substantial changes in the harmonic emission of the molecule.
Phase-dependent plateaux and cutoffs appear in the harmonic spectrum as
a consequence of the phase-dependent clectric field of few-cycle pulses.
Asymmetries in the intensity of harmonics result from the phase dependence of
ionization rates in nonsymmetric molecules, and from the fact that depending
on the molecular orientation, the ionized electron wavepacket can be Coulomb
focused as it visits the proton twice before the recollision leading to harmonic
generation.

When driven by intense laser fields, atomic and molecular systems emit radiation at frequencies
multiple of that of the driving field. This nonlinear process, known as harmonic generation
(HG), has widely been studied theoretically and experimentally [1, 2]. High-order harmonic
generation (HOHG) agrees with a semiclassical interpretation (the so-called *three step model”)
that the electron first tunnels through a potential barrier, is accelerated by the laser field and
then driven back for a recollision with the core, upon which harmonic radiation is emitted
[3, 4]. A typical harmonic spectrum from an atom consists of odd harmonics only, with
rapidly decreasing intensities for the first few harmonics, followed by a region of almost
constant harmonic intensities (the plateau), and ends with a cutoff which determines the
maximum harmonic in the spectrum [3-5]. The spectrum from symmetric (homonuclear)
molecules is similar to that of atoms, except that depending on their orientation with respect
to the laser polarization, extrema may appear, due to destructive or constructive interferences
of contributions originating from each nucleus [6-10]. T

The vector potential of @ Tifiearly polarized laser pulse can be written in the dipole
approximation as

A(t, @) = Ao f (1) sin(wpt + @)e,, (1)
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Figure 2. (a) The electric field E(1, ¢) = %A(r}. for absolute phases ¢ = Oand ¢ = m. (b) Time
profile (arb. units) of the 59-th harmonic of HeH?* for the absolute phases ¢ = 0 and ¢ = .
(c) Same as (b) for the 89-th harmonic. (d) Classical kinetic energy of the electron at its first retumn
to the molecular core versus its return time. The internuclear distance and laser parameters are the
same as in figure 1.

the time 7,(59). This means that for both ¢ = 0 and ¢ = m, high-order harmonics below
the first cutoff are emitted predominantly at time #,(59). The profile of the 89-th harmonic
in figure 2(c) also shows a single prominent peak, which is centred at time 1,(89) = 0.177.
Here again, increasing the FWHM of the window function and placing its centre at the local
maxima between the two cutoffs still leads to a prominent peak at time ,(89). Thus, harmonics
between the first and second cutoffs are predominantly emitted at about time 1, (89).

For the internuclear distance R = 15 au, more than 99% of the electron cloud in the
ground state of HeH?* is localized on the He?* nucleus (i.e., the wavefunction is negligible in
the vicinity of the proton H*), so that in the perspective of the ‘three step model” of HOHG the
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FIG. 10. (Color) Time profiles (in arb. units)
for harmonic orders in the vicinity of interference
minima in the spectra of Hj (see Fig. 8) for the
peak intensity /=5 10" W/cm?. The following
are plotted for orientation angles y shown: the
scaled electric field (magenta dots), the time pro-

0.0008 f — Full spectrum
— Nucleus 1
0.0008 f —— Nucleus 2

files of the full harmonic spectrum of H3 with
interferences included (black lines), the time pro-
files of harmonic spectra originating from the
nucleus 1 (blue lines) and from the nucleus 2
(red lines). The instants #; (j=1-7) are the clas-
sical times of first electron return as described in
Fig. 9.
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However, photon emission for harmonics at the interfer-
ence minima for other orientation angles [see Figs.
10(a)-10(c)] show the occurrence of harmonic emission at
times that do not correspond to short trajectories. The semi-
classical recollision model predicts that at lower energies,
i.e., lower harmonics, two recollision trajectories should
dominate, coalescing into one single trajectory at the maxi-
mum cutoff energy [46,47]. Thus, at lower energies, one ex-
tra trajectory, called the long trajectory, is expected to return
to the molecular core at the peak of the electric field. This
extra trajectory has been recently characterized [45]). Figure
10 illustrates quantitatively this semiclassical prediction, as
the profiles indicate harmonic emission (recollisions) occur-
ring near the maxima (minima) and the zeros of the electric
field for harmonics well below the cutoff [see Figs.

10(a)-10(c)]. Note that for double trajectories (low-order
harmonics) and single trajectories (high-order harmonics),
efficient destructive interference is seen to occur, reflecting
the fact that photon emission amplitudes at each nucleus are
out of phase with each other. Next, we examine the theoret-
ical formulations that allow to elucidate these multicenter
interference phenomena, which occur only in molecules and
which have already been predicted to occur in molecular ATI
spectra [12].

VII. ACCELERATION VERSUS DIPOLE
PHOTON EMISSION

It has been shown that the correct evaluation of the har-
monic spectrum is to proceed via the Fourier transform A(w)

053407-13



Intramolecular relaxation rates

statistical theories ( RRKM theory ) : assumption of uniformity of phase space

predicted relaxation rate: |; - L 017 ps
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observed relaxation rate: |t > 10 ps

Reference: D. Carter, et al, J. Chem. Phys, 77, 4208, (1982)



planar carbonyl sulfide (OCS) ‘ V/\'

> 3 modes: OC stretch, CS stretch, OCS bend 1 2

H=T(B, B, P, R, R,,0)+ 3V, (R)+ AP(R R, R)[ [Vi(R)
i=l A 4 i=1 w
1 | |

Kinetic energy Morse quartic polynomial  Sorbie-Murrell potential

i p2  Hp p2 2 My
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0. \2
Vm(Ri) :Di(l_e_ﬁi(Ri_Ri ))
V,(R,)=1-tanhly,(R, - R,))
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Analysis of trajectories of Hamiltonian systems H(p,q;t)

q,(t)
dt oq
4 dq OH = {p(t)’q(t)}te[OT] C> {p(ti)’q(ti)}i=1,...,N
dt  op

> chaotic (?)

> Lyapunov exponent
d(t)
0/) x:nmimﬂ A=0 regulér
) ==t d(0) A >0 chaotic

Questions:

> regular or chaotic ?

> extent of chaoticity: strong or weak chaos

> intermittency: resonance trappings, transitions...

> type of chaos: slow chaos, stable chaos,...
Who cares ?
celestial mechanics, atomics physics
chemical physics, particle accelerators
plasma physics, ...



Poincaré section (2 degrees of freedom) o s

individual trajectories «<—> phase space structures

pA

*n

—
-

V3

/
X X2
n+l ‘\_V/. L

quasiperiodic

:_—>periodic

> only 2 degrees of freedom
> qualitative information

H(p,x,t) =%p2 —&(cosx +cos(x—t))



Frequency Analysis

> Fourier analysis

x(t:%0)
lﬁ

v

> Frequency Analysis

Idea: decomposition of a trajectory known on a finite
interval [0,T] into the basis { eimf}
meR

2

1 T —1iot H . _
o) = ‘? jo z(t)e 'y (t)dt Main frequency for z(t): o, such that ¢(wm, )= max_ d(o)

1
without window : y(t) =1 A oc Tz
Hanning window : (t)—l—cosﬂ A oc i



Frequency Map Analysis (J. Laskar)

> Fourier analysis

A |
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3> |
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0 I T = >©
> Frequency Analysis Idea: decomposition of a trajectory known on a finite
interval [0,T] into the basis {e“”t} )
o, (x,) maximizes P;(«;x,)
P.(o,x )—i“Tx(t-x et (t)dt‘ 1 1
s\ Ao _T 0 140 X 80)~_4 - : : : .
T | / |
periodic v '
guasiperiodic v : ._//
ral
chaotic ? | -
> dynamical information, time varying frequency yd




The windowed Fourier transform of f(z) is given by

Sf(u.&)=] f(t)g(t—u)edt

The Gabor transform is obtained by choosing the Gaussian window
/252 2 1/4
glt)=e""" /(o)

The spectrogram is given by

Pf(.$)=18f(u.¢)

where

Sf(w,&)=e* [ f(t+u)g(t)e dt

2




Time-frequency resolution

The time spread around a point (u,¢) in the time-frequency plane is defined as

o, (,8)= [ (e—u)|g. ) d)
where
g,.(1)=g(t—u)e™

Is independent of u and ¢ For a Gaussian window g(t )
it is equal to o /~/2.

e (o'm)"”

The frequency spread around a point (1,¢) is defined as

1/2
1

0, W)= [ (0-¢)g. (o) do

Does not depend on u and ¢ since QM (0)) = Q(Ct) — f)ew(g_w) :

For a Gaussian window, it is equal to 1/5+/2.. We notice that the product of the time
spread with the frequency spread at a given point (u,¢) in the time-frequency plane is
constant and larger than 2 (Heisenberg uncertainty). It is minimum for a Gaussian
window.




Local Frequency Analysis

Observation: chaotic motion over long time scale appears regular over shorter time scales

1 : = intermittency
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Morlet-Grossman wavelet

Continuous Wavelet Transform Re(v)

Wf(u,s) = %f: f(t)‘P*(t_?ujdt

\P(’_”j with s> 1 ‘P(t_” with s <1

s S

low frequency high frequency

Scalogram: P, (u,s)= l\Wf(u,S)\2
s

Scale / frequency representation : for f(t)=e*", P, f(u,s)= oo (so-n)’

Fastalgorithm :  yyr(e s)=sf(&)P"(st) = LFFT+1IFFT

. 1
frequency resolution: Aw o« =

\ \V(t) _ einte—t2/202




Continuous wavelet transform

Time-scale representation of trajectory
I—u
Wf(u,s)= | f() dt
S
Morlet-Grossman wavelet

w(t)=e"e"* l(c’r)"

Center frequency of wavelet

n=, [ oy, (o) do
v, (t)=s"yw[(t-u)/s]

Normalized scalogram

ow(u,e? _ Zj _

E=
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Time-frequency Analysis

Over the Rainbow (Arlen/Harburg — Keith Jarrett)



For a chaotic trajectory, a ridge is a curve or a segment of curve&, () in the time-frequency
Which is at each time u a local maximum of the normalized scalogram, i.e.,

0 0’
— P f(u,&) =0, P, f(u,&) <0
a 5 &=E, (u) a f E=Ee (1)

Each ridge has a weight that is the value of the normalized scalogram on this ridge

(it varies continuously in time). We will refer to this value as the amplitude of the ridge.
We call the main ridge or main frequency ridge & (1) (or a set of ridges) where the
normalized scalogram is a maximum:

P, f (& ()= max P, f (u,&)



Instantaneous frequencies

Scalogram : P, (u,s) = 1Wf(“a5)2
s

0 o
o =t : — —P u,w =O, ——P u,w
O] attime t=u 5 w( )w:%(u) " 0 ( )a)=a)1 )
o o . d)
periodic trajectory A
for f(t) _ eimt’ PWf(u,s) — e—GZ(S(o—T])Z
w="T >
> !

quasiperiodic trajectory

f(t) _ ZAkei(mkt'HPk)
k

v

a)l (O)=o.+ ZAk %(wk 0 )COS[((Dk — 0, )t + @y ] 6_02”2 (oo J*/20,°
k>1 1

Reference: C. Chandre and S. Wiggins and T. Uzer , Physica D (2003)

0



Time-frequency analysis based on wavelets

) _ ridge extraction
f(t)=cos(at +t~)+cos(pt +sint)

6)) A o,(t) =p+cost

B T e T Tt

> W

>t
®
> periodic I
f(t) — eimt
» L
> quasiperiodic
f(t) _ ZAkei(COk”(Pk)

k o

> 1

=0 szk %(wk — o, )cos((e, — @, )t +p e fr20?
>1 1

Reference: Chandre, Wiggins, Uzer, Physica D (2003)



Time-frequency resolution

o ()= [ (t-uYlw. ()

Mother wavelet : ¥/ (t ) =e"” g (f )
Gabor wavelet: . =on / \/55

tim

2a’t) :

Frequency spread around é: =7 /s

Gabor wavelet: O P 5 / on \/z

Heisenberg uncertainty is minimum for the Gabor wavelet



The wavelet algorithm

W (@,s)=~sf (@) (sw)



Wavelet decomposition for periodic trajectory

Poincare surface of section ——>  time-frequency plane (scalogram)
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for a periodic trajectory the maximum of scalogram is a constant curve
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for a chaotic trajectory the maximum of scalogram is time-dependent



Extraction of resonances from wavelet decomposition of a single trajectory
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Rydberg atoms in crossed fields

H(p,x,t)== ||p|| Ix ||+E(xcoswt+(xy8|nwt)+BL +—|| I @

a=0  linear polarization
a=1 circular polarization (2 d.o.f.)
a€|0,1] elliptic polarization

»
»

E(t)

»time %=~

> EPXB | ,
— Jlll_ .n._m_.._h_/\waulll'\f PR B
1 ‘ | 1 ] '
2| 4 e N | YW N, e,
2 s 3 S ! \"| \ Lyl ™ ¢
C / /’\J / i " V'\- ')‘J ’ v L. n ~ A=y !
| ~ V= WY HWN ¥ /\f\v o4 /\;\w \f? - ;
2’ oo . fi ? i & P g ' !
g }J;‘ v > = J:" & '\:J,: ~ V. ::’ : ; VAP0 '\,}"V_(. s
e o “W G MLV.,L\_________,:}___/-—" i
7 il . - :‘ﬁ - ~ - K" \ -
ERTT LT ey st B

v

time



-~ m\ﬁ“:'.ﬁnwa::---..-;.-,, 3 -

> 0 _
-1 e, FMM o / :
-1 -0.5 0 0.5 1
X
0.4 : . ; : i

: i ; - B
i \ 2 Al @,
0.2- . } i'\‘_

Fig. 8. Ridge plot of a chaotic orbit of Hamiltonian (9) for F = 0.015 and B = 0.3 in the maximum configuration obtained for initial conditions:
(x, y) = (—0.5,0.7). The upper part of the figure represents the Poincaré section of the trajectory.
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Time-frequency decomposition for strongly chaotic trajectory

transition from resonant zone

oo w,=1:2:1

to strongly chaotic zone
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Time-frequency decomposition for weakly chaotic trajectory

long-time trapping for t~20 ps o 0, 0,=2:4:1
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planar carbonyl sulfide (OCS) ‘ v/\'

> 3 modes: OC stretch, CS stretch, OCS bend 1 2

H=T(B, B, P, R, R,,0)+ 3V, (R)+ AP(R R, R)[ [Vi(R)
i=l A 4 i=1 w
1 | |

Kinetic energy Morse quartic polynomial  Sorbie-Murrell potential

i p2  Hp p2 2 My
T=—P +—=P, +u.,PP,coso+P +
5 1 5 2 Wa 5 15 a( R, R,

W, MzCosa | pyPP sina p,PP sina
2R’ 2R, RR,

0. \2
Vm(Ri) :Di(l_e_ﬁi(Ri_Ri ))
V,(R,)=1-tanhly,(R, - R,))

P(R,,R,,R;)=1+) ;R + > c;RR; + D ¢y RR;R. + > cjuRR,R.R,
i i.j

i,j.k i,j.kl

R, =|0S|=/R?+R,*~2R,R, cosa
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Carter, Brumer, J. Chem. Phys. 77 (1982), 4208
Foord, Smith, Whiffen, Mol. Phys. 29 (1975), 1685
Bunker, J. Chem. Phys. 37 (1962), 393




OCS potential
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Energy redistribution

1
Question: time scale for energy transfer T= X ?

example: 2D coupled Morse oscillators, Henon-Heiles, cyclobutanone C,H,O

S 8- CO Stretch
2 ,h
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i 3 . 02
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2, time (ps)
=
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Reference: Davis, Wagner, ACS Symposium (1984)



collinear OCS (2 d.o.f.)
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Reference: Davis, Chem. Phys. Lett. (1984)



bottlenecks for collinear OCS
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Frequency analysis applied to planar OCS

Energy (cm')

> normal mode frequencies
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CO/b
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Hamiltonian of the planar carbonyl sulfide (OCS)

,
© CO stretch
o 3 modes:
L 9 1 CS stretch
R ©
RI la bend
3
Hamﬂl‘Ol’lldl’l H = T(R15R29R39P19P29P3) + z Vz(Rz) + VINT (R19R29R3)9
i=1
kinetic term Morse potential SorLie-Murrell term
r- 1 p2y | P22+1P1chosa+Pa2[ A Z—COSO’]
2u, 2u, H s 2R, 2u,R, MR\ R,
_ AP, sma B P, sina ,where p, are the reduced masses
HiR, MR,

Sorbie-Murrell interaction term:

: v AR,
Vise (R) = 4 P(ARlaARzaAR3)H {1 — tanh (ZZIH

i=1

AR, =R, - R.,R, = JRIZ + R} —2R,R, cos( @), P(AR,,AR,,AR,) is a quartic polynomial

l
P(s;,8,,8;) =1+ Zcisl. + ch.jsl.sj + ch.jksl.sjsk + ch.jklsl.sjsksl,
i i,j

iajak ia,j’kal

where s, = R, — R, R, are the equilibrium distances for the collinear case



OCS potential surface

E,

saddle-4!

0.2}

2 3 4
R CS
equilibrium saddle

R, = JRlz +R2 —2R,R, cos( )

3
E,=V(R, - ©,R,,R,) = ZDi(l — e AR >)Z =D, + Dy + D,(1- e /(0752
i=1

E,>D,+D,=0.1au.

OCS = OC +S atE =21900 cm ™t = 0.100 a.u.



Phase space bottlenecks to long-time energy relaxation

intramolecular energy relaxation M. J. Davis, J. Chem. Phys., 83, 1016, (1985)
are related to phase space structures
050 — d t=0 to t=24.6 psec i b t=24.6 to t=29.1 psec 7 - (\/g + 3)/2,
i — 25<y<3
il 050 2+7 cantorus
t/ ,\{ %
100 200 -100 © 0o 200 % ) : j
Q s Qe -025 " é( . {/*/ ":3<3:1
. . . . . -050 | ---T--—f-'-, Fa—— ‘
Barriers for diffusion of trajectories h - I
2-DOF system 3-DOF system
3D constant energy surface 5D constant energy surface
2D invariant tori 3D invariant tori

barrier to chaotic transport in 3-DOF system is 4D subspace: |F(w)=0

Reference: C. C. Martens, et al, Chem. Phys. Lett.,142, 519, (1987)



Periodic orbits and invariant tori
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Periodic
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Time-frequency analysis for hydrogen in EP fields

trajectory

F=0.015, B=0.3, ellipticity alpha=1
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Spectral data versus FLI results

weakly chaotic trajectory

F=0015, B=03, ellipticity alpha=0.8
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Spectral data versus FLI results

strongly chaotic trajectory

F=0.015, B=0.3, ellipticity alpha=0.8 Ridge plot for x coordinate
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Time-frequency planes for 3D hydrogen in crossed fields

weakly chaotic trajectory

F=0.06, B=0.4, E=-0.5, init. cond. n=1_4, qJ=—0_3

| I
1 I I
0.8 [ I
] ! | ,
0.4 - — —
0.2 | |
] | _ _ .
_ _ | |
= I |
I I
| |
I I
I |
0.4
| | | |
0.8 mmwmmwmmmuum
5] I |
I I
I I
e — s | A e
0.2 | - T e I — o~ -
0 1 2 3 4 5 6 7 8 9 10




Time-frequency planes for strongly chaotic trajectory

F=0.06, B=0.4 E=-0.5, nit. cond. n=1 4, qJ=0_2
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Time-frequency decomposition
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Grossmann - Morlet wavelet transform

A

Re( v (1)) 4 \V(t) _ einte—t2/262

v

~
|
<

t ‘P(t_uj, s>1 4 ), s<1
Ky A

WF (u,s) = % [~ f(t)‘{’*[t_Tu) dt

S
Scalogram : P, (u,s) = le(u,s)2
s

Reference: P. Goupillaud and A. Grossmann and J. Morlet , Geoexploration (1984 )



