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Numerical Methods

* Compute closure relation P=fE directly
— Variable Eddington tensor (VET) f calculated from “snap-
shot” solution of time-independent transfer equation using
short characteristics.
* Source terms can be very stiff
— Use modified Godunov method for stability
* Wide range of timescales associated with v, C, ¢

— Requires fully implicit (backward Euler) differencing of
radiation moment equations

Each of these three ingredients are implemented in a new radiation

module in the Athena MHD code. Davis, Stone, & Jiang 2012
Jiang, Stone, & Davis 2012

We solve equations of radiation MHD

Euler equations + Maxwell’s equations + moment equations.
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E,, F,, P, are radiation energy density, flux, pressure in Eulerian frame.
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Source terms are O(v/c) expansion of material-radiation interaction
terms in fluid frame (Lowrie et al 1999).

Local shearing-box simulations of
radiation dominated accretion disks
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Box size: Hx4Hx16H
Resolution: 32/H — 64/H
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Parameters Turner 2004; Hirose et al 2009
Radiation pressure dominated regime

Table 1:: Location A

Parameters Value Comment
M 6.62M, Mass of Central Black Hole
r 30 (GM/c?) Radius
Do 5.66 x 1072 g cm ™3 Initial Mid-plane density
To 2.45 x 10" K Initial Mid-plane temperature
T 3.514 x 10* Total Electron Scattering Optical Depth

Gas pressure dominated regime
Table 2:: Location B

Parameters Value Comment
M 6.62M, Mass of Central Black Hole
r 300 (GM/c?) Radius
o 1.12x 1072 g cm™ Initial Mid-plane density
To 2.89 x 10¢ K Initial Mid-plane temperature
T 1.06 x 10* Total Electron Scattering Optical Depth

B: radiation dominated case (P,,4/P,,, = 4.13)

Space-time diagram
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Thermal runaway: energy
increases with time.

Stop calculation when photosphere hits boundary.
Restart with taller box and energy continues to increase...

A: gas pressure dominated case

Space-time diagram
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Stable solution

Heating and Cooling Rates

Instability criterion:

dlogQ* >610gQ'
dlogP, |, dlogh, |,

Q" & Q”

Instability criterion satisfied,
however the exact scaling
differs from standard o. model.
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Lower surface density (P,,4/P,,=206)
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Calculation with VET: t/Orbits
Thermal runaway; disk collapses  Calculation with FLD in Athena:
Thermal runaway; disk collapses

Must stop both calculations when disk is too thin to be resolved.

Why do our results differ from those of Hirose et al.
(2006; 2009) computed using FLD?

There seems to be two differences:

(1)Radiative transfer algorithm does matter.
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Get different profiles for
Eddington tensor using
FLD versus VET

Is this the SS76 thermal instability?

* None of the assumptions in the SS76 model apply
— Disk is turbulent: linear analysis cannot be applied

— No exponential runaway

— Stress not directly proportional to midplane pressure

— Vertical distribution of dissipation not proportional to density
— Advective flux of radiation non-negligible in many cases

Physics of runaway is different than SS76 model.

Why do our results differ from those of Hirose et al.
(2006; 2009) computed using FLD?

There seems to be two differences:
(2) Small domains make evolution with FLD stable.
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FLD in large domain FLD in small domain
(H x 4H x 16H): collapse (H/2 x 2H x 16H): stable



Accretion disk coronae Vertical profiles: hot coronae

With MRI turbulence, dissipation decreases more slowly with vertical
height than density.
* Dissipation can occur above the photosphere, leading to hot corona
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Pressure

Low surface density, gas
pressure dominated disk.

Total optical depth = 286
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See also Blaes et al. (2006); Hirose et al. (2009)

Summary

* Developed a new algorithm for radiation MHD
that does not adopt an arbitrary closure, but
instead is based on a formal solution of the
transfer equation.

* We find radiation dominated disks always
undergo thermal runaway.

* Physics of runaway is different than SS76.

* Global simulations are absolutely essential to
understand outcome of runaway.



