New MHD Simulations of radiation-dominated accretion

Jim Stone, Yanfei Jiang (Princeton)
Shane Davis (CITA)

In collaboration with O. Blaes, S. Hirose, & J. Krolik

Numerical Methods

- Compute closure relation **P**=**f**E directly
 - Variable Eddington tensor (VET) f calculated from "snapshot" solution of time-independent transfer equation using short characteristics.
- Source terms can be very stiff
 - Use modified Godunov method for stability
- Wide range of timescales associated with v, C_s, c
 - Requires fully implicit (backward Euler) differencing of radiation moment equations

Each of these three ingredients are implemented in a new radiation module in the Athena MHD code. Davis, Stone, & Jiang 2012

Jiang, Stone, & Davis 2012

We solve equations of radiation MHD

Euler equations + Maxwell's equations + moment equations.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v} + P + B^2/2 - \mathbf{B} \mathbf{B}) = -\mathbb{P} \mathbf{S}_{\mathbf{M}}$$

$$\frac{\partial E}{\partial t} + \nabla \cdot [(E + P)\mathbf{v} + (B^2/2)\mathbf{v} - \mathbf{B}(\mathbf{B} \cdot \mathbf{v})] = -\mathbb{P} \mathbb{C} S_E$$

$$\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) = 0$$

$$\frac{\partial E_r}{\partial t} + \mathbb{C} \nabla \cdot \mathbf{F}_r = \mathbb{C} S_E$$

$$\frac{\partial \mathbf{F}_r}{\partial t} + \mathbb{C} \nabla \cdot \mathbf{P}_r = \mathbb{C} \mathbf{S}_{\mathbf{M}}$$

 E_r , F_r , P_r are radiation energy density, flux, pressure in Eulerian frame. Source terms are O(v/c) expansion of material-radiation interaction terms in fluid frame (Lowrie et al 1999).

Local shearing-box simulations of radiation dominated accretion disks

Parameters Turner 2004; Hirose et al 2009

Radiation pressure dominated regime

Table 1:: Location A

Parameters	Value	Comment
M	$6.62 M_{\odot}$	Mass of Central Black Hole
r	$30 (GM/c^2)$	Radius
$ ho_0$	$5.66 \times 10^{-2} \; \mathrm{g \; cm^{-3}}$	Initial Mid-plane density
T_0	$2.45 \times 10^7 \text{ K}$	Initial Mid-plane temperature
au	3.514×10^{4}	Total Electron Scattering Optical Depth

Gas pressure dominated regime

Table 2:: Location B

Parameters	Value	Comment
M	$6.62 M_{\odot}$	Mass of Central Black Hole
r	$300 (GM/c^2)$	Radius
$ ho_0$	$1.12 \times 10^{-2} \mathrm{\ g\ cm^{-3}}$	Initial Mid-plane density
T_0	$2.89 \times 10^6 \text{ K}$	Initial Mid-plane temperature
au	1.06×10^{4}	Total Electron Scattering Optical Depth

Lower surface density (P_{rad}/P_{gas}=206) Space-time diagram 0.1 t/Orbits Calculation with VET: Thermal runaway; disk collapses Calculation with FLD in Athena: Thermal runaway; disk collapses Must stop both calculations when disk is too thin to be resolved.

Why do our results differ from those of Hirose et al. (2006; 2009) computed using FLD?

There seems to be two differences:

(1) Radiative transfer algorithm does matter.

Is this the SS76 thermal instability?

- None of the assumptions in the SS76 model apply
 - Disk is turbulent: linear analysis cannot be applied
 - No exponential runaway
 - Stress not directly proportional to midplane pressure
 - Vertical distribution of dissipation not proportional to density
 - Advective flux of radiation non-negligible in many cases

Physics of runaway is different than SS76 model.

Why do our results differ from those of Hirose et al. (2006; 2009) computed using FLD?

There seems to be two differences:

(2) Small domains make evolution with FLD stable.

FLD in large domain (H x 4H x 16H): collapse

FLD in small domain (H/2 x 2H x 16H): stable

Accretion disk coronae

With MRI turbulence, dissipation decreases more slowly with vertical height than density.

• Dissipation can occur above the photosphere, leading to hot corona

Summary

- Developed a new algorithm for radiation MHD that does not adopt an arbitrary closure, but instead is based on a formal solution of the transfer equation.
- We find radiation dominated disks always undergo thermal runaway.
- Physics of runaway is different than SS76.
- Global simulations are *absolutely essential* to understand outcome of runaway.

Vertical profiles: hot coronae

