The coevolution of galaxies and

black holes in the past 10Gyrs

TOMMASO TREU (UCSB)

Many thanks to:

- Matthew Auger (IoA)
- Aaron Barth (UCI)
- Vardha Bennert (CalPoly)
- Roger Blandford (Stanford)
- Brendon Brewer (Aukland)
- Chelsea Harris (Berkeley)

- Matthew Malkan (UCLA)
- Phil Marshall (Oxford)
- Anna Pancoast (UCSB)
 - Jonghak Woo (SNU)

How do black-holes and spheroids know about each other?

- The local MBH-sigma/M* relation are remarkable
- Black hole and galaxies evolve over cosmic time, in different ways. If you establish the correlations at one time they are not trivially preserved!!
- Probing its evolution is a key measurement to test bh formation scenarios as well as the role of AGN feeback in galaxy formation

Measuring velocity dispersion

Treu et al. 2004; Woo et al. 2006

Relative Flux

Evolution of the M_{BH} - σ relation

Treu et al. 2004; Woo et al. 2006, 2008, 2010, 2013

Evolution of the M-L/M* relation

Treu et al. 2007; Bennert et al 2010, 2011

The three possible explanations of every astronomical observation

- Something interesting is happening
- Selection effects
- Measurement errors

Something interesting

A scenario and a conjecture

- Co-evolution is mass dependent.
- For the more massive ellipticals $(M_*>10^{11} M_{sun})$:
 - Most of the mass is assembled by $z\sim1.5-2$
 - Black hole accretion is also completed early-on (z~2)
- At smaller masses (including bulges of spirals) process is delayed and significant activity lingers to z~0.5
- Slope of M_{BH} -M* and M_{BH} - σ should evolve with time

Shankar et al. 2013 Croton et al. 2006 Selection effects?

Evolution is not a selection effect

Measurement errors?

Measuring black hole masses at z>0

- Broad Hβ width measures the kinematics of the gas orbiting the black hole
- Size from L
- Overall uncertainty on BH mass ~0.4-0.5 dex

$$M_{\rm BH} = 10^{8.58} \left(\frac{\sigma_{\rm H\beta}}{3000 \rm km \, s^{-1}}\right)^2 \left(\frac{\lambda L_{5100}}{10^{44} \rm erg \, s^{-1}}\right)^{0.518}$$

Reverberation Mapping

Ring of gas with radius r

Gas along line of sight to observer will appear to respond with no delay

Gas that is furthest from observer will appear to have response delayed by 2r/c

Mean lag time is r/c

Blandford & McKee 1982

Example of traditional results

Table 13. Virial Products and Derived Black Hole Masses

Object	cτ _{cent} σ ² _{line} / G (10 ⁶ M _☉)	M _{BH} ^a (10 ⁶ M _☉)
Mrk 142	$0.40^{+0.12}_{-0.14}$	2.17 ^{+ 0.68} - 0.75
SBS1116+583A	$1.05^{+0.33}_{-0.29}$	5.80 ^{+ 1.84}
Arp 151	$1.22^{+0.16}_{-0.22}$	$6.72^{+0.89}_{-1.19}$
Mrk 1310	$0.41^{+0.12}_{-0.13}$	$2.24^{+0.68}_{-0.69}$
Mrk 202	$0.26^{+0.15}_{-0.10}$	$1.42^{+0.83}_{-0.56}$
NGC 4253	$0.32^{+0.21}_{-0.20}$	1.76 ^{+ 1.15} 1.11
NGC 4748	$0.47^{+0.16}_{-0.21}$	2.57 ^{+ 0.90} - 1.14
NGC 5548	14.9 ^{+ 3.4} 4.9	82 ^{+ 19} 27
NGC 6814	$3.36^{+0.54}_{-0.56}$	18.5 ^{+ 3.0} 3.1

^aAssuming f = 5.5.

Bentz et al. 2009

A new approach: Geometric and dynamical models

Pancoast, Brewer & Treu, 2011

Geometric and dynamical models: Application to Arp 151

Brewer, Treu, Pancoast et al 2011

Geometric and dynamical models: Application to Arp 151

Reverberation mapping

- At z~0, several objects have been studied with sufficient quality (LAMP08/11 and Peterson Group)
- At z>0, very hard with traditional telescopes (e.g. Woo et al. 2007). Large program under way with LCOGT robotic telescopes (PI: Sand).

Summary

- The correlations between host galaxy properties and black hole mass evolve with cosmic time
- Black holes growth predate galaxy assembly
- Much work is under way to improve mass determinations at high-z via reverberation mapping and improve local samples

The end