Velocity Distributions in Granular and Active Suspensions

Annette Zippelius1,2, Andrea Fiege1, Benjamin Vollmayr-Lee3

1Institute for Theoretical Physics, University of Göttingen and
2Max-Planck Institute for Dynamics and Self-organization, Göttingen
3Dept. of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837

January 29, 2014
Wealth of Applications

technical

food processing

random close packing
Chaikin et al. 2004

and in nature

ring of Saturn
nonequilibrium model system

- grain of sand (diameter d) at room temperature: $\frac{k_B T}{mgd} \sim 10^{-12}$

 T defined by heatbath (environment) is completely irrelevant thermodynamics and equil. statistical mechanics not applicable
... of Fundamental Interest

nonequilibrium model system

- T defined by heatbath (environment) is completely irrelevant
- interactions between macroscopic bodies are dissipative
 energy is lost in collision of two grains
nonequilibrium model system

- T defined by heatbath (environment) is completely irrelevant
- interactions between macroscopic bodies are dissipative
- decay of an initially agitated state: $E_{kin} = \frac{m}{2} \sum_{i=1}^{N} v_i^2$

How does the granular fluid cool down?

of particular interest for dilute systems → structure formation
nonequilibrium model system

- T defined by heatbath (environment) is completely irrelevant
- interactions between macroscopic bodies are dissipative
- decay of an initially agitated state: $E_{\text{kin}} = \frac{m}{2} \sum_{i=1}^{N} v_i^2$
 \rightarrow spontaneous structure formation
- Grains left to themselves settle into static packing
 How dense can grains be packed?
 Jamming transition as a function of packing fraction
nonequilibrium model system

- T defined by heatbath (environment) is completely irrelevant
- interactions between macroscopic bodies are dissipative
- decay of an initially agitated state: $E_{kin} = \frac{m}{2} \sum_{i=1}^{N} v_i^2$ → spontaneous structure formation
- Grains left to themselves settle into static packing → jamming
- Dynamics due to driving shear: rheology of granular particles with and without friction gravity, e.g. flow on an inclined plane, out of a hopper ... fluidized beds: pumping air or fluid through a granular bed
- stationary state; no detailed balance, no fluctuation dissipation theorem,...
Experiments on Fluidized Beds

binary mixture of spherical particles in a sieve; driven by uniform upflow of air

Abate and Durian Phys.Rev. E74,031308, 2006

mean square displacement: development of a plateau as volume fraction increases
Velocity Distributions in Experiment

vibrated granular medium
van Zon, Swinney et al. PRE 2004

swimming bacteria
(bacillus subtilis)
Sokolov, Aranson et al. PNAS 2010
in vitro cells

Czirok, Vicsek et al. PRL 1998
Simple Model

hard spheres in a fluid with viscous drag γ:

\[
\partial_t v_i = -\gamma v_i + \frac{\Delta v_i}{\Delta t} \bigg|_{\text{coll}} + \frac{\Delta v_i}{\Delta t} \bigg|_{\text{Dr}}
\]

collisions: $(v_i - v_j)n = -\epsilon(v'_i - v'_j)n$

elastic collisions $\epsilon = 1$
incomplete normal restitution: $\epsilon < 1$

discrete kicks: u with frequency f_{Dr}
crude approximation to run-and-tumble behavior of bacteria; in time interval $\Delta t = 1/f_{Dr}$ particle is accelerated, subsequently randomized by surrounding fluid and interactions with other particles

stationary state: $2m\gamma < v^2 > = m < u^2 > f_{Dr}$ elastic case

3 parameters: γ, f_{Dr} and volume fraction Φ
Event Driven Simulations

Ballistic motion
idea: in between collision (or kicks) particles move freely

\[r_i(t) - r_j(t) \equiv r_{i,j}(t) = r_{i,j}(t_0) + v_{i,j}(t_0)(t - t_0) \] (1)

compute time \(t_{coll} \) for next collision to happen \(R_i + R_j = |r_{i,j}(t_{coll})| \)

including viscous drag

\[r_{i,j}(t) = r_{i,j}(t_0) + v_{i,j}(t_0) \frac{1 - e^{-\gamma(t-t_0)}}{\gamma} \] (2)

collision time known from ballistic simulation, replace:

\[(t_{coll} - t_0) \rightarrow (1 - e^{-\gamma(t_{coll}-t_0)})/\gamma \] (3)

allows to simulate several millions of particles
important parameter $\beta := \gamma / f_{Dr}; \Phi = 0.35$
Velocity Distributions in Stationary State

\[\beta := \gamma / f_{Dr}; \; \Phi = 0.35 \]

- Gaussian only in the limit \(\beta \to 0 \)
- overpopulated at small \(\nu \), velocities decay with rate \(\gamma \) singularity for \(\beta \to \infty \)
- overpopulated at large \(\nu \) due to kicks
- independent of volume fraction \(0.05 \leq \Phi \leq 0.4 \)
- depends only on ratio \(\beta := \gamma / f_{Dr} \)
Single-Particle-Model

\[f(v) = \int_{-\infty}^{\infty} dx \ p_k(v - x) \ f(xe^\beta) \ e^\beta \]

\[\beta = \gamma/f_{Dr} \rightarrow 0: \text{recover Maxwell-Boltzmann distribution} \]
\[\beta \gg 1: \text{nontrivial distribution} \]
solve by iteration; fast convergence
good agreement with simulations
Single-Particle-Model

\[f(v) = \int_{-\infty}^{\infty} dx \ p_k(v - x) \ f(x e^\beta) \ e^{\beta} \]

\(\beta \gg 1: \)

\[f(v) \approx \begin{cases}
\frac{e^\beta - 1}{2 \sqrt{\pi} \beta^3} & |v| \ll e^{-\beta} \\
\frac{1}{2\beta|v|} & e^{-\beta} \ll \frac{|v|}{\sqrt{2\beta}} \ll 1 \\
\frac{1}{\sqrt{\pi|\beta|}} \frac{1}{v^2} e^{-v^2/4\beta} & \frac{|v|}{\sqrt{2\beta}} \gg 1
\end{cases} \]

\(\beta = 5 \) (lower), \(\beta = 10 \) (upper),
\(\Phi = 0.35 \)
Conclusion and Generalisations

Largely universal velocity distributions depending only on $\beta = \gamma / f_{Dr}$, independent of volume fraction, particle interactions

$\beta \to 0$: Maxwell- Boltzmann is recovered

$\beta \gg 1$: Distribution is divergent for small ν, falls off as $1/\nu$ for intermediate ν and is Gaussian for the largest ν

- distribution of kick amplitudes and waiting times in between kicks
- particles with orientation, include rotational degrees of freedom
- anisotropic particles, simplest case: needles