Dynamics of living liquid crystals: Bacteria in Lyotropic Chromonic Liquid Crystals

Oleg D. Lavrentovich

Shuang Zhou

Israel Lazo

Taras Turiv

Young-Ki Kim

(graduate students)

Sergei Shiyanovskii

Liquid Crystal Institute, Kent State

Igor Aranson (Argonne)

Andrey Sokolov (Argonne)

Vasyl Nazarenko (Kyiv, Ukraine)

Sam Sprunt (Physics, Kent State)

Support: NSF DMR

Active Processes in Living and Nonliving Matter, Feb 10-14, 2014

Examples of active fluids

Narayan, Ramaswamy, Menon, *Science* (2007): Active granular rods with disclinations and giant number fluctuations

Sanchez, Dogic et al, *Nature* (2012): Active microtubules with flows and disclinations

Review: Marchetti et al RMP (2013)

This work: Living Liquid Crystal (LLC), dispersion of rod-like self-propelling bacteria in lyotropic (water-based) chromonic liquid crystal

Motivation: The system allows one to control orientational order and activity separately

- Orientational order modifies bacterial behavior
- Bacterial activity modifies orientational order

Living Liquid Crystals: Content

- ☐ Chromonics (inactive): Basic properties
 - Phase diagram
 - Viscoelasticity
- ☐ Living liquid crystals=*Chromonics+B. Subtilis*
 - Behavior of individual bacteria in a chromonic
 - Collective effects: activity-controlled transition from equilibrium uniformity to topological turbulence

Chromonics

☐ Chromonics are formed by rigid polyaromatic molecules that assemble face-to-face into elongated aggregates in water

- As the concentration increases, the aggregates form a nematic
- ☐ Similar to the Onsager mechanism, but not exactly, since the system is also "thermal": The aggregates are kept together by weak non-covalent interactions $E\sim10~k_{\rm B}T$, which makes their length strongly temperature dependent and concentration dependent:

$$\overline{L}_{iso} \approx L_0 \sqrt{\phi} \exp\left(\frac{E}{2k_B T}\right)$$

Inactive chromonics as "living polymers"

Onsager systems (TMV):
The same rods, athermal, aligned at high c

Thermotropic LC (in your displays):
The same molecules, c=const, aligned at low T

Chromonics (close to "living polymers" and "worm-like micelles"): phase diagram is controlled by both c and T

Chromonics: c and T dependent phases

Director field of real samples, reconstructed by LC PolScope (no simulations)

T, c dependent elastic constants

S. Zhou et al., PRL (2012): Magnetic field reorientation; Dynamic light scattering, in preparation

T, c dependent viscosities

LCI KENT STATE

S. Zhou et al., Dynamic light scattering, in preparation

Chemistry and biocompatibility of chromonics

☐ Chromonics are different from the surfactant based lyotropics: molecules have no aliphatic tails, thus chromonics are friendly to biological systems

This work: DSCG, a.k.a. cromolyn, anti-asthma drug, concentration 14-17 wt%

Approved by FDA for intake by humans:

Living Liquid Crystals

- ☐ Chromonics (inactive): Basic properties
 - Phase diagram
 - Viscoelasticity
- ☐ Living liquid crystals=Chromonics+B. Subtilis
 - Behavior of individual bacteria in a chromonic
 - Collective effects: activity-controlled transition from equilibrium uniformity to topological turbulence

Chromonics

Bacillus subtilis

Living LC: Individual bacteria follow $\hat{\mathbf{n}} = const$

Low concentration of bacteria (c<10⁸ /cm³)

 $\frac{P}{A}$

Rate 1/4

Isolated bacteria follow the uniform director, similar to observations by T. Galstian et al, Mol. Cryst. Liq. Cryst (2013) and N. Abbott et al, Soft Matter (2014)

Living LC: Individual bacteria follow $\hat{\mathbf{n}}(\hat{\mathbf{r}})$

...bacteria follow distorted director of the chromonic around isotropic tactoids

Rate 1/4

 $\frac{P}{A}$

Living LC: Individual bacteria follow $\hat{\mathbf{n}}(\hat{\mathbf{r}})$

Both elastic and viscous effects favor swimming along the director lines

Diffusion of a 5 µm sphere is easier parallel to the director as compared to perpendicular direction

$$D_{\parallel} = 6.8 \times 10^{-17} \text{ m}^2 \text{s}^{-1}$$

$$D_{\perp} = 4.5 \times 10^{-17} \text{ m}^2 \text{s}^{-1}$$

← Δx F_{sub}

Living LC: Individual bacteria distort $\hat{\mathbf{n}}(\hat{\mathbf{r}})$

Flagella rotation: 16 Hz Body rotation: *f*=2.5 Hz

The rotation is fast enough to make the Ericksen number larger than 1

$$Er = \eta_{eff} frh / K \sim 10$$

implying that the director is distorted by moving flagella

Living LC: Individual bacteria melt LC

Moving bacterium can also change the scalar order parameter, melting the material and forming isotropic droplets-tactoids in its wake ("Wilson chamber")

Rate ½

Living LC: Collective effects, Bend stripes

No oxygen; equilibrium state of uniform director

Added oxygen; director undulations

Higher concentration of bacteria ($c_B \sim 10^9 / cm^3$)

Oxygen supplied from the left hand side

Living LC: Collective effects, Bend stripes

High concentration of bacteria, addition of oxygen: periodic undulations with a characteristic spatial scale that depends on c_B, amount of oxygen, etc.

Oxygen supplied from the left hand side, rate 100

Higher activity: Bend stripes replaced by disclination pairs

Nucleation of disclination pairs

Director within the pair realigned by 90° w.r.t. the original director

Bending vs disclination pairs: Elasticity and surface anchoring

Why the walls are replaced by disclination pairs?

Walls:
$$F_w \propto \frac{K}{\xi^2}$$
 Pairs: $F_w \propto \frac{K}{\xi_d^2} \ln \xi_d / r_c$

As activity increases, the uniform state (1) undergoes transition into periodic bend stripes, then (2) into the sea of nucleating and annihilating disclination pairs Similar 2 stage scenario is seen in numerical simulations: Thampi, Golestanyan, Yeomans, EPL (2014); poster at **BIOACTER**: M. Shelley et al, http://arxiv.org/pdf/1401.8059v1. pdf See also Shi, Ma, Nature Comm (2013)

High activity: Topological turbulence

Bending: Activity vs Elasticity

Spatial scale: balances viscous shear (bacterial) and elastic (LC) torques

h=50μmh=20μmh=20μm

$$\left. \begin{array}{l}
\Gamma_{shear} \sim \alpha c U_0 \theta \\
\Gamma_{elastic} \sim K \frac{\partial^2 \theta}{\partial r^2} \end{array} \right\} \Rightarrow \xi = \sqrt{\frac{K}{\alpha c U_0}}$$

400 (**H**)

600

Similar to Ramaswamy Ann. Rev. CMP (2010)

Cell thickness correction (mass conservation) $\alpha \rightarrow \alpha_0 l / h \Rightarrow \xi = \sqrt{\frac{\xi}{2}}$

$$\xi = \sqrt{\frac{Kh}{\alpha_0 lc U_0}}$$

Living Liquid Crystals: Summary

- □ Non-uniform director guides nonlinear trajectories of bacteria
- ☐ Birefringence-enhanced visualization of microflows generated by nanometers-thick flagella
- Bacteria produce local melting of chromonic LC
- ☐ Activity increase drives a transition from a uniformly ordered state to the topological turbulent state through two steps:
 - Formation of periodic bend, period $\xi = \sqrt{K/\alpha c U_0}$
 - Nucleation and proliferation of disclination pairs

