Modelling cells as contractile matter

Ulrich Schwarz

University of Heidelberg
Institute for Theoretical Physics and BioQuant

Introduction

Soft matter models for cell adhesion

Cell adhesion is different because it is characterized by large contact area, tangential traction forces and localized adhesions

[Schwarz and Safran RMP 2013]

Active processes during cell adhesion

- > actin polymerization pushes out lamellipodia
- > contractile forces generated in stress fibers and actin networks
- > force is transmitted to substrate through focal adhesions

Overall force balance in the cell

Network polymerization: compressed spring

Motor contraction: tensed spring

Whole system: contraction force dipole

[Schwarz and Safran RMP 2013]

Both contraction and polymerization contribute to traction force

Motor contraction: tensed spring

Network polymerization: compressed spring

Whole system: contraction force dipole

Durotaxis of droplets versus cells

Droplets move to the positions of minimal effective stiffness

Cells move to positions of maximal effective stiffness (durotaxis)

[Style et al. PNAS 2013]

[Mathis Riehle]

Regulation of the actin cytoskeleton through small Rho-GTPases

Ridely and Hall and coworkers Cell 1992

Rac: spreading and migration

lamellipodia and focal complexes

Arp2/3

Rho: mature adhesion

stress fibers and focal adhesions

myosin II

Kinetic model for focal adhesions

Traction force microscopy

Traction force microscopy on soft elastic substrates

Pick up deformations by extracting movement of fiducial makers with image processing

Reconstruct cellular forces by solving the inverse problem of elasticity theory

Traction map single U2OS cell

Traction forces correlate strongly with the organization of the actin cytoskeleton and the adhesion structure

[Sabass et al. BPJ 2008, Stricker et al. JPCM 2010, Schwarz and Gardel JCS 2012]

Traction force imbalance method

Cell-cell forces can be calculated from force balance.

Traction forces of patterned cell monolayers

Geometry determines stress distribution Leader cells emerge from traction hotspots

[Rausch et al., Biointerphases 2014]

Modelling cell shape and forces

Different modelling approaches to contractile matter

- Mechanical (polymer) networks
- Active cable networks
- Contour models
- Active gels
- Active elasticity
- Cellular Potts Model
- Phase field or level set models

Active cable networks

Cell shape on micropatterns

Quantitative analysis of cell shape

Cell shape on spatially constrained ligand patches resembles a sequence of circular arcs.

[Bischofs et al. BPJ 2008]

Actively contracting cable networks

Actively contracting cable networks result in circular arc morphology

[Bischofs et al. BPJ 2008, Guthardt Torres et al. PRE 2012]

Robustness of arc feature in regard to adhesion geometry and network topology

Spring versus cable networks

Flat contour results from reference shape.

Active cable networks do not have a reference state.

[Guthardt Torres et al. PRE 2012]

Contour model

Tension-elasticity model

Line tension results from elastic deformation:

$$\lambda = EA \frac{L - L_0}{L_0}, \quad L_0 = \alpha d$$

geometry:
$$R = \frac{d}{2\sin\left(\frac{L}{2R}\right)}$$

$$\Rightarrow R = \frac{EA}{\sigma} \left(\frac{2R}{\alpha d} \arcsin \left(\frac{d}{2R} \right) - 1 \right)$$

self-consistent equation for $R(d,\sigma)$

[Bischofs et al. BPJ 2008, PRL 2009]

Modified Laplace law

Theoretical prediction by TEM-model:

$$R = 24^{-1/3} d^{2/3} \sigma^{-1/3}$$

Good agreement between computer simulations, TEMmodel and exps.

symbols – network simulations | solid – TEM numerical | dotted – TEM analytical

[Guthardt Torres et al. PRE 2012]

Active elasticity

Coupling cellular contractility to cell area

Until now: coupling to point-like adhesions

Now: coupling to adhesion area

A minimal model has to start from continuum mechanics

Simple model: contracting film on elastic foundation

Simplest assumption for traction force: T=ku

Plus appropriate zero-stress boundary conditions.

Note contraction analogy to thermal heating/cooling. Model can be implemented with FEM.

[Edwards and Schwarz PRL 2011]

[Banjeree and Marchetti: EPL 2011, PRL 2012]

One-dimensional case (contracting stripe)

force balance: F internal stress, u deformation

$$F(x)-F(x+dx)-ku(x+dx/2)=0 \Rightarrow \frac{dF}{dx} = ku$$

constitutive relation (E 1d modulus, P active stress):

$$F = E(\frac{du}{dx} + P)$$

P=const
$$\Rightarrow \frac{d^2u}{dx^2} - \frac{1}{l^2}u = 0$$

$$l = \sqrt{E/k}$$

 $l = \sqrt{E/k}$ localization length

zero stress boundary:
$$F(\pm l_0) = 0 \Rightarrow \frac{u}{l_0} = -P \frac{\sinh(\gamma x / l_0)}{\gamma \cosh(\gamma)}$$

 $\gamma = I_0/I$ localization parameter

Traction and stress for cell monolayer

[Trepat et al. Nature Physics 2009]

Traction forces of patterned cell monolayers

Geometry determines stress distribution as predicted by active elasticity

[Rausch et al., Biointerphases 2014]

Cellular Potts Model

Cellular Potts Model

ololololo)
)
01100)
0 1 1 1 0)
0 0 1 1 0)

$$E = \sigma A_{Cell} + J C_{Cell} + \sum_{\text{bundel } i} \frac{EA}{2L_{0,i}} (L_i - L_{0,i})^2 - \frac{W}{A_{ref} + A_{Ad}} A_{Ad}$$
surface simple line tension elastic line tension adhesive energy

- Cell is represented by an ensemble of spins on a lattice
- Metropolis dynamics
- Combines elements of contour model and active elasticity continuum model

Traction forces from CPM

- Contractile forces are balanced by adhesive substrate
- At adhesive boundaries

$$\vec{f} = [\sigma + J \kappa] \vec{n}$$
 \vec{n} normal κ curvature

At endpoints of edge bundles

$$\vec{F}_{arc} = \lambda_e \vec{t},$$

 \vec{t} tangent

Boundary Forces

Displacements

Reconstructed forces

Experiments (Tseng Lab Chip 2011)

Dynamic traction on patterns

crossbow

cross

Conclusions

Active cable networks	Circular arc morphology, modified Laplace law, represents polymer nature of cytoskeleton and constant pull by motors
Contour model	Represents bulk and contour tensions, easy to use, appropriate for strong contraction and point-like adhesions
Active elasticity	Continuum model, appropriate for coupling to adhesion area, can be implemented with FEM
Cellular Potts model	Dynamical, can be adapted to include elements of all the above models, includes the cell protrusion missing from the other models

Acknowledgments

- Margaret Gardel, Benedikt Sabass (TFM single cells)
- Sebastian Rausch, Jerome Soine, Heike Böhm, Joachim Spatz (cell monolayers)
- Ilka Bischofs-Pfeifer, Franziska Klein, Martin Bastmeyer (cell shape on dot patterns)
- Ilka Bischofs-Pfeifer, Philip Guthardt Torres (active cable networks, contour models)
- Carina Edwards-Dunlop (active elasticity)
- Philipp Albert (cellular Potts model)

Funding

Bundesministerium für Bildung und Forschung

www.thphys.uni-heidelberg.de/~biophys/