Active Soft Matter or the physics of flocking, swarming, crawling, swirling, crowding, and more What are the physical principles that govern the organization of individually driven entities in coordinated motion and function? # **States of Matter** Collectives of interacting, self-propelling entities: bacteria, cells, synthetic swimmers, birds,... - → Can we think of them as a new kind of `Active Matter'? - ☐ What new states are possible and what are their properties? - ☐ What do we tune to change from one state to another? # Bacteria One speed $\sim 10 \mu m/sec$ Berg Lab, Harvard U. also complex patterns Many: "turbulent" fluid # Layer of rods on a vertically vibrated surface 2820 rods L=5mm Narayan et al Science 2007, IISc Bangalore, India # Cells #### Individual cell chick fibroblasts (2h) Small Lab Vienna ## Tissue: liquid or solid? Endothelial cells v=35µm/h Czirok, 2010 U. Kansas # Starlings in a flock move in unison like a fluid STARFLAG Collaboration, Rome 200-50,000 starlings # How can physics help understand this complex organization? #### Three examples: - Vicsek model of flocking - ☐ Inside the cell: active liquid crystals - ☐ The peculiar properties of an active gas # Vicsek Model of Flocking T. Vicsek et al, 1995; C. Reynolds, SIGGRAPH '87 Conference Proc. Bird modeled as a ``magnet'' flying at speed v₀ > What are the interaction rules? ☐ At every step, each bird aligns with neighbors contained within a circle of fixed radius ■ Birds make mistakes → noise like a ``temperature" large mistakes/noise disordered state small mistakes/noise ordered state http://www.stthomas.edu/physics/research/Computation/vicsek.html # Flocks of Starlings → a surprise Rome-based STARFLAG collaboration collected 3-dim data on flocks of 200-50,000 starlings. Challenge: track birds from one frame to the next → optimization problem Each bird interacts not with birds at a fixed distance, but with 6-7 closest neighbors Interaction with fixed # neighbors matters when the density changes, e.g. under attack. → Provides robustness to the flock Next slide: video by Iain Couzin, Princeton # Inside the cell: Active Liquid Crystals # Liquid Crystals A liquid or rod-like molecules that order upon increasing density or decreasing temperature Isotropic liquid Liquid Crystal # Order is never perfect Kemi River, Finland, 1949 Topological defects # An Active Liquid Crystal built from polymer and proteins extracted from living cells #### Microtubules - + motor proteins - + chemical ``fuel" Motor proteins are molecular machines that transform chemical energy into mechanical work to remodel the polymer network 45µm Sanchez et al 2012 Dogic Lab, Brandeis U # Active Liquid Crystal confined to the surface of a vesicle Keber et al, 2014 Bausch(TU Munich) & Dogic (Brandeis) Labs We can describe the complex self-sustained flows seen in active liquid crystals using equations of fluid dynamics, augmented by new terms that model the energy input by the motor proteins Towards a quantitative understanding of *in vitro* systems that mimic some functions of living systems # Bacteria do not know thermodynamics or The peculiar properties of an active gas # A gas fills the container regardless of the shape of the opening #### E. Coli concentrates on one side of the container # Bacteria power microgears Sokolov et al, 2010, Argonne Nat Lab gears diameter 380µm, 6 x real time ## Brownian motion vs Active motion Robert Brown, 1827: incessant random motion of pollen grains in water Run-and-tumble of E. coli #### Light-activated colloids Palacci et al, 2013 NYU $$D = 600nm$$ $$\mathbf{v}_0 = 15\,\mu m \,/\, s$$ "Self-Propelled" billiard balls that travel in a straight line for some time before changing direction are "attracted" to walls ## Questions - ☐ How does nature organize individual active units to create coherent motion and function at the large scale? - ☐ Can we use these organizing principles to make novel biomimetic materials and micromachines? - What can we learn from synthetic active systems? What can this knowledge teach us about how living systems work?