Active Soft Matter

or

the physics of flocking, swarming, crawling, swirling, crowding, and more

What are the physical principles that govern the organization of individually driven entities in coordinated motion and function?

States of Matter

Collectives of interacting, self-propelling entities: bacteria, cells, synthetic swimmers, birds,...

- → Can we think of them as a new kind of `Active Matter'?
- ☐ What new states are possible and what are their properties?
- ☐ What do we tune to change from one state to another?

Bacteria

One

speed $\sim 10 \mu m/sec$

Berg Lab, Harvard U.

also complex patterns

Many: "turbulent" fluid

Layer of rods on a vertically vibrated surface

2820 rods L=5mm

Narayan et al Science 2007, IISc Bangalore, India

Cells

Individual cell

chick fibroblasts (2h)

Small Lab Vienna

Tissue: liquid or solid?

Endothelial cells v=35µm/h
Czirok, 2010
U. Kansas

Starlings in a flock move in unison like a fluid

STARFLAG Collaboration, Rome

200-50,000 starlings

How can physics help understand this complex organization?

Three examples:

- Vicsek model of flocking
- ☐ Inside the cell: active liquid crystals
- ☐ The peculiar properties of an active gas

Vicsek Model of Flocking

T. Vicsek et al, 1995; C. Reynolds, SIGGRAPH '87 Conference Proc.

Bird modeled as a ``magnet'' flying at speed v₀

> What are the interaction rules?

☐ At every step, each bird aligns with neighbors contained within a circle of fixed radius

■ Birds make mistakes → noise like a ``temperature"

large mistakes/noise disordered state

small mistakes/noise ordered state

http://www.stthomas.edu/physics/research/Computation/vicsek.html

Flocks of Starlings → a surprise

Rome-based STARFLAG collaboration collected 3-dim data on flocks of 200-50,000 starlings.

Challenge: track birds from one frame to the next → optimization problem

Each bird interacts not with birds at a fixed distance, but with 6-7 closest neighbors

Interaction with fixed # neighbors matters when the density changes, e.g. under attack.

→ Provides robustness to the flock

Next slide: video by Iain Couzin, Princeton

Inside the cell: Active Liquid Crystals

Liquid Crystals

A liquid or rod-like molecules that order upon increasing density or decreasing temperature

Isotropic liquid

Liquid Crystal

Order is never perfect

Kemi River, Finland, 1949

Topological defects

An Active Liquid Crystal

built from polymer and proteins extracted from living cells

Microtubules

- + motor proteins
- + chemical ``fuel"

Motor proteins are molecular machines that transform chemical energy into mechanical work to remodel the polymer network

45µm Sanchez et al 2012 Dogic Lab, Brandeis U

Active Liquid Crystal confined to the surface of a vesicle

Keber et al, 2014
Bausch(TU Munich) & Dogic (Brandeis) Labs

We can describe the complex self-sustained flows seen in active liquid crystals using equations of fluid dynamics, augmented by new terms that model the energy input by the motor proteins

Towards a quantitative understanding of *in vitro* systems that mimic some functions of living systems

Bacteria do not know thermodynamics or The peculiar properties of an active gas

A gas fills the container regardless of the shape of the opening

E. Coli concentrates on one side of the container

Bacteria power microgears

Sokolov et al, 2010, Argonne Nat Lab gears diameter 380µm, 6 x real time

Brownian motion vs Active motion

Robert Brown, 1827: incessant random motion of pollen

grains in water

Run-and-tumble of E. coli

Light-activated colloids

Palacci et al, 2013 NYU

$$D = 600nm$$

$$\mathbf{v}_0 = 15\,\mu m \,/\, s$$

"Self-Propelled" billiard balls that travel in a straight line for some time before changing direction are "attracted" to walls

Questions

- ☐ How does nature organize individual active units to create coherent motion and function at the large scale?
- ☐ Can we use these organizing principles to make novel biomimetic materials and micromachines?
- What can we learn from synthetic active systems? What can this knowledge teach us about how living systems work?