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grand goals

Dissecting all signaling pathways—> predict TF state from
conditions

Deciphering cis-regulatory logic = how the logic function
is defined by sequence motifs

Understanding the fundamental constraints and design
principles of signaling pathways and cis-regulatory logic

1. A transcription factor;
2. Thebinding sites of the transcription factor
3. Genesthat aredirectly regulated by thistranscription factor.

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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d N

1. Determinethe structuresof transcription modules (TF,
binding site and target genes);

2. ldentify conditionsunder which amoduleisactivated,;

3. Infer moduleinteractions (overlaps, combinatorial control
etc).

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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data

Genome sequence + gene annotation
Gene expression data (array) under different conditions
Expression profile of mutants (deletion or over expression)

CHIP-on-CHIP

Construct transcription module:
Identify the DNA regulatory motif recognized by
aparticular transcription factor using REDUCE;

l

Construct transcription module:
I dentify genesthat areregulated by thistranscription
factor using the M ODEM algorithm

A

I dentify activation of transcription modules using correlation
between motif weighted expression

Infer inter actions between co-activated
transcription modules by examining genes shared by these
modules

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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Construct transcription module:
Identify the DNA regulatory motif recognized by
aparticular transcription factor using REDUCE;

l

Construct transcription module:
I dentify genesthat areregulated by thistranscription
factor using the weighted profile method.

A

I dentify activation of transcription modules using its X value pattern
Infer inter actions between co-activated

transcription modules by examining genes shared by these
modules

109(Eg) = T FuNug

w

REDUCER

Regulatory Elements Detection Using
Correlation with gene Expression

focus on binding site W which correlate
with genome-wide gene expression data

N,,  Number of occurrences of win g's promoter

Ftw How strong sitew correlate with expresgon in experiment t

X=3 ﬁog(ag)—; FMNWQE

tg
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How does REDUCER reduce?
An iterative scheme to identify independent motifs

Regression + model selection

Iteration:
suppose N-1 motifs found
fit expression data with the N-1 motifs = residual of the fit
find motif with strongest correlation with the residual
based on p value of Pearson correlation
take it as Nth motif
iterate

A. It does not depend on clustering of genes;

B. combinatorial motifs can be identified in each experiments;

C. Thedgn of thefitting coefficient can tell whether the factor
induce or repress expression

D. Identify the conserved core of the binding sites

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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Analyzing microarray data systematically

» ~300 gene deletion experiments;

e 174 environmental stress response time cour seg;
e 9 gporulation time cour se;

* 8 phosphate metabolism;

o 22 cdl cycletime course.

stressresponse

Figure 1.

Gasch et 4.
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Many known motifs are identified asvery significant (p-
value < 10-%0) under theright conditions;
DNA motif Experimentb (Site name/TF name)
aaatttt/aaaattt
agggg/ccect ES(STRE)
acccc HS
acgegt CC (MCB)
cacaaaaltttgtg SPO (M SE)
cacgtgg PHO (Pho4p site)
cgatgag
taaggy HS;, DS
cgcgaaa CC (sCB)
tgaaaaa HS; Diamide; YPD
DNA motif p-value (-log10)
Combinatorial motifs Z:Ig“’m‘“ o
a.reldmtlflaj, acggtgt 3
msn2/4 | aggggiccect 27
ataag 6
One example: atatasa 6
in amino acid e 2
. atgage 17
starvation met4/met31 | cacotga 7
time course s X
ccgtaca 6
cgatgag 38
ctcatc 14
cttatc 8
gagtca 4
gataa 5
gataag 8
gtgge 6
tatataa 8
tcatc 6
teegtac 7
tgaaaaa 19
gcnd tgacte 12
tgagatg 21

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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Transcription Factor Perturbation Experiment (TFPE):

deletion/mutation/
i ., over-expression
wild type I L X

/ ofaTF
¥ Y
mRNA &-{5@ 2\"{?&%—;/

\

a2 /‘\ . -~
\,_"-\: TEPF,-@@J:Q%E
1.~ %

cDNA

The most significant motif identified in TFPE
istypically the regulatory motif recognized by
the TF or its cofactor (s)

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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TF Motif Known binding Biological process?
(p-value) site2

GCN4 tgactca tga[c/g]tca transcriptional activator of amino acid
(10%) biosynthetic genes
tgagtca

MBP1 g\%dca MCB site DNA replication; cell cycle control
(10%) acgeg|t/a]

MSN2 agggg agggg Stress response
(10%)

MSN4 agggy agggy Stress response
(10%)

PHO4 cacgtgg cacgtg Phosphate metabolism
(10%)

RTG1 ggtcacg ggtcac inter organelle communication
(10%)

STE12 tgaaac PRE site Invasive growth; pheromoneinduction;
(1014) tgaaac[g/a] pseudohyphal growth

YAPL1 tgactca tgactca Regulation of certain oxygen
(10%) detoxification enzymes

MAC1 tgcacce N/A Cu/Fe utilization, stress resistance
(10%)

SIN3 cgegege N/A transcription
(102

TUP1 aggcac N/A Glucoserepression
(10®)

Construct transcription module:
Identify the DNA regulatory motif recognized by
aparticular transcription factor using REDUCER;

l

Construct transcription module:
Identify genesthat areregulated by thistranscription
factor using the MODEM algorithm.

A

I dentify activation of transcription modules using motif weighted
expression l

Infer inter actions between co-activated
transcription modules by examining genes shared by these
modules

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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1. Using core motif alone @an not accurately identify target
genes,
137 genes containing CACGTGG in yeast
only ~15genesaretruetargets of Pho4p.

2. Target genes may have different versions (mismatches) of
the @re motif.
Pho4p target VTC1 only has CACGTGC
~2000genes have CACGTGG with 1 mismatch

3. Additional information can be obtained from

A. flanking sequences of the @re motif;

B. gene epression.

1. The @re and flanking sequences S={S(1),5(2),...S(N)};
2. Geneexpression (logratio) E={E(1),E(2)...E(N)}.

agggcacgt ggcgt t 2.
ccttcacgtggctga 4.
cgttcacgt gggt ga 1.

2

5
6
2
cgttcacgt ggcgga 0

1. Calculatethe probability of each gene being a target;

2. Classfy each geneinto thetarget or non-target category.

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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MODEM

M odule construction using gene Expression and sequence Motif
is

A joint probability model for
gene expression and sequence motif

A Gaussian distribution for the gene expression
p(E) : .
(log ratio) of targets;

A Gaussian distribution for the gene expression
P, (E) : .
(log ratio) of non-targets (the entire genome,

fixed). o genes

"_\\

/I—\
.

0 expression (log ratio)
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A position specific scoring matrix (PSSM) for
10 sequences belonging to targets,

fig A PSSM for sequences belonging to non-targets,

A PSSM:
» reflects how often a specific nucleotide appears at a position
of the motif;

» if given a sequence, can be used to calculate the probability
of observing such a sequence and thus scoreiit.

Position 1 2 3 4 5

A 0.80 0.10 0.01 0.05 0.02

C 0.02 0.85 0.20 0.90 0.01 :(:,A(‘ggggg;)
G 0.10 0.02 0.78 0.03 0.88

T 0.08 0.03 0.01 0.02 0.09

A prior percentage of targets among the genes
containing the core motif;

Without any sequence or expression information,
A isan estimation of target percentage among the
genes containing the core motif.

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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The values of the parameters 0 in the MODEM are
determined iteratively

to maximize the posterior probability P(@|S,E)

hidden variable

The value of the hidden variablereflects:
The extended motif belongsto target or non-tar get

P(@|S,E)= 5 P(0,hidden|S,E)
hididen

1. Sequences (extended moatifs) S(k), k=1, ... N, areindependent from
each other;

2. Given the value of the hidden variable and the parameters, the
distributions of sequence and expression ar e independent;

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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Target term

l /—'—\
~

POISE)=]] if.a(k)ﬁo(Ek)A}%wf.a(k) o(E E

e

Non-target term

Product of
all sequences
Expression distribution
target PSSM of targets
parameters .
Prior percentage
of targets
N M M 0
P(01S.E) = n HHA fior0 Fb( Ek@“” f( E)- N
non-target PSSM Expression distribution

parameters of non-targets (fixed)

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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1. Probability of being atarget.

] o [PEIAE
%ﬁ fiai(k) %(Ek)/\ S’*’ %ﬁ figi(k) %O(Ek)(l_/\)g

P(target) =

2. Classify genesusing a optimal Bayesian classifier:

P(target) |
21
P(non — target) kth sequenceisatarget

otherwise kth sequenceisa non-target

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03) 17
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Target genes of Pho4p identified using the core motif CACGTGG
and allowing 1 mismatch.

Ran Gene/ORF Probability Extended motif Expression Ogawa? Carroll2
1 PHOB89 1.000 ATGGCACAACGTGGGGATGAC 5.262 v v
1 SPL2 1.000 TGTCGGTCACGTGAGCAAAAA 4.605 v
1 PHOB4 1.000 TCCGCCCCACGTGCTGGAAAT 5.491 v v
1 PHO11 1.000 ATGCGAAAACGTGGTAATTTA 4.287 v v
1 PHO12 1.000 TTAAACCCACGTGTGAACGCC 4159 v v
1 VTC3 1.000 AGGCAGAAACGTGGAAACATA 4297 v v
1 vVTC4 1.000 GTGCAGCCACGTGCGGATGAA 3.29% v v
1 PHM6 1.000 CACCTCCCACGTGTCAGCGAA 2.998 v v
1 PHO5 1.000 GCACTCACACGTGGGACTAGC 2.816 v v
1 (@ vtc) 1.000 TCCGAGACACGTGCTAATATC 2.485 v v
1| VW 1.000 AGGCAGAGACGTGGCACTGGC 2233
12 CTF4 0.999 AGAATCTCACCTGGAGAATGG 2,625
13 YLRA402W 0.998 GAGTTTGCAGGTGGGACTAAT 2223
14 CTF19 0.998 GAGGGCCCACGTGGCTTAATA 1.864 v v
15 PHM5 0.998 GGCCGCACAGGTGGGCAGATC 1.757 v v
16 REC107 0.99 CTAATCTTACGTGGTTCTTAT 2.310
17 PHO8 0.991 GTCGGGCCACGTGCAGCGATC 1546 v v
18 NUP85 0.987 AAGAGGGCACTTGGTCACAAC 1.926
19 YJIRO39W 0.980 GTCTTGACACGTAGGCGTTGC 1.876
20 CDA1 0.974 TCTCATGCACTTGGAAGCAGC 1.852
21 YML089C 0.965 GCAATTATACGTGGCAAGGAA 1.937
22 KRE2 0.927 GTCGGGCCACGTGCAGCGATC 1.233
23 vVTC2 0.902 AAAAACCCACGTGCTGCTTGG 1599 v v
24 YAR069C 0.887 GTTCACACTCGTGGGGCCCAC 1.438

a. Genes identified as targets of Phodp experimentally by Ogawaet. al.® or Carroll et. al.10 are marked with checks.

Gcend module (from deletion experiment)

amino acid metabolism:

p-value 6.28E-39

31 out of 53 genes, 58.4%
138 out of 6906 annotated genes, 1.9%

amino acid biosynthesis:

p-value 6.63E-37

27 out of 53 genes, 50.9%
89 out of 6906 annotated genes, 1.2%

Completely consistent with the function of Gendp:
amaster regulator of biosynthesis.

1. Genesinvolved in biosynthesis and metabolism are greatly
enriched.

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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Gene
TMT1

ADH5
STR3

ALDS

M olecular function

Trans-aconitate 3-
methyltransferase

Alcohol dehydrogenase
Cystathionine beta-lyase

Aldehyde dehydrogenase

Gendp

2. 39 (74%) were shown by experimentsthat their expressions
wer e induced/repressed by Gendp;
10 are ORFswhose functions are unknown.
4 geneswith annotated functions:

Biological process

unknown

Alcohol metabolism

M ethionine
biosynthesis

metabolism

1. 14 new target genes,

2. The 10 ORFswhose function are unknown may play rolesin
biosynthesis or metabolism.

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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28 transcription modules have been constructed
Based on TFPE experiments

Predicted new binding sites and target genes.

Apply REDUCE+MODEM
To analyzing CHIP-on-CHIP data

FromR. Young Lab

35 factors - significant core motif
module contains target genes
consistent with the regulatory
function of the factor

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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e Motif Sig Known motif i Function of TF

ABFL agtga 122

ACE2 coapa 25 accage Yes Gl-specific trans,

AROB0 gcogege 25 Yes 1 grijgugoel ovae

BASL tgactc 108 §Qd,Aro10 AR Fnesis

CcBFL cacgto@ o790 cacRtg o8 methionine synthesis

CINS ttacata 168 Vg syn. genes drug resistance

DAL8L tocegt 37 Jpsporters SRS

FHLL cegizca 580 (igp1. Bap3.) TRNA processing

FKHL taceca 78 RWasaYaW ytbosomal genes chromatinsilencing
T [

FKH2 qteeeca 193 RWaeaYaW Yes caleycle

GON4 tgectca 250 toacgltca (el ovelespo genes AA response

GLN3 ttgea 144 match HA SN genes Nitrogen utilization

HAP4 ccaca 10 WS UB Hap/ 34 site F&2 tarees Cabohydrate

HSFL ttctaga 8 Rnown genes

INo2 cagtga 53 Yes ip

INO4 geagl 15 (IRLPSDL) P

LEU3 [ 31 {agsphate genes biosyn

MACL gotegtt 27 (ggrbzievt)

MBPL acgegt 107 acgegt ket Cell cycle

McML aceeta 22

MET31 [ 24 Match met/31 Yes Met. Sy

Metd cactga 13 Complexsite Vg Sm genes Met syn.

NDDL qtaceca 67 Yes G2IM sexific

NRGL aggeeca 66 Yes Glucose meteb.

REBL cougta 128 coggiRR Trors, permerse

SKNT cggcacy 79 Yes Osmoticsiress

STBL acgogt 38 Some complex 2 Knowntarget GU/Stransition

STE12 tgeeeca 10 P Yes Pheromone

SUM1 ggteac 89 agnmgenes lon

Swia caogeea 201 Spo. genes

swis gotgget 23 KgoTgR Yes

SWI6 agegt 18 Some complex as ik

YAPL ttacta 28 R ik

YAPS coona 8 Matchpdr/3 site Drug resistence

Some statistics

Out of 106 factors = 70 overlap with YPD
total ~800 known sites

Target Overlap of Young with YPD: 154 - 39 factors
picked at least one known target

39 factors and 35 factors picked by our analysis
- 25 overlap

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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The MODEM algorithm

* ldentify target genesof a particular transcription factor
with high specificity and sensitivity;

* Predict new target genes,

* Help annotate gene functions.

Construct transcription module:
Identify the DNA regulatory motif recognized by
aparticular transcription factor using REDUCER;

l

Construct transcription module:
I dentify genesthat areregulated by thistranscription
factor using the weighted profile method.

I dentify activation of transcription modules using motif weighted
expression profile )

Infer inter actions between co-activated
transcription modules by examining genes shared by these
modules

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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1. TFPE;

2. TF location (CHIP-on-CHIP) data

3. Microarray experimentsunder different cellular
conditions

infer the state of TFs - Identify conditions under which a
particular moduleisactivated

Comparethe expression profile of the TFPE or CHIP-on-
CHIP and that of the interesting condition.

Gene 1 2 3......

PHO4 mutation 0.2 -010.3... N\..-0.2-1.10.6

Hypo-osmoatic

dock | -091.1-20..\.15261.83522,/..1.0 0.1 28

f

Pho4p target genes

We nedl to search “local” smilarity between the two profiles.

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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“local similarity” between global expression profiles
Isthe same TF module activated in both experiments?
focus on a subset of genes with the potentia binding site

E(g,t): logarithm base 2 of the expression ratio for genegin
the experiment t;
N(g,m): the number of occurrence of motif min the gene g.

Compare x values between a TF perturbation experiment and a
specific condition

TF Biological process Activation
conditions
GCN4 transcriptional activator of amino acid star vation,

amino acid biosynthetic genes nitr ogen depletion

MBP1 DNA replication; cell cycle cell cycle,
ntrol diauxic shift,
co nitrogen depletion,
heat shock
M SN2 Stressresponse environmental stresses,

phosphate metabolism

M SN4 Stressresponse environmental stresses

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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TF

PHO4

RTG1

STE12

YAP1

Biological process Activation
conditions
Phosphate metabolism phosphate metabolism,

hypo-osmotic shock

interorganelle ommunication | aminoacid starvation,

nitrogen depletion
Invasive growth; pheromone nitrogen depletion
induction; pseudohyphal growth

Regulation of certain oxygen a'“i?o acid dStaflgt?tion,
detoxification enzymes fitrogen depietion

Those modules may play rolesin cdl’s
adaptation to these cdlular conditions;

There probably exist unknown links
in the networks.

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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Expressions of Pho4p target genesin
the hypo-ostmotic shock experiments

hock - 15 min
hock - 30 min

Hypo-osmotic shock - 45 min
c shock - 60 min

c shock - 5 min

ic s
ic s
i

i

Hypo-osmot.
Hypo-osmot.
Hypo-osmot.

YDR452W PHM5 Phosphate metabolism: tramscrivtion is redulated by PHO system

YFRO62C HOR2 BRHR2 (GPP1) encodes another DL-alycerol-3-phosphatase

YFRO37TW PHM3 involved in nhosphate metabolism

_ YOL034W PHM? Hwnothetical ORF

YBR296C PHO89 Probable Wa+/fPi swmorter

YDR481C phod renressible alkaline nhosphatase

YBR093C PHO5 ficid phosphatase. renressible

YAROTIW wholl Aicid phosnhatase. secreted

¥YG6R233C phodl Positive reculatorv nrotein of nhosnhate nathwav

YPLO19C VIC3 Phosnhate metabolism: tramscrintion is rewulated by PHO svstem

YEROT2W VTC1 Hull mutant identified in different wenetic screens both by its ability to reverse the CdcdZp suppr
YHR215W phol? acid whosnhotase. nearly identical to Pholln

YFLOO4W VTC2 Phosnhate metabolism: transcrintion is regulated by PHO system

YML123C phod4 inoruanic whosphate transmorter. transmembrane protein

YPLO18W CTF19 Tmportant for chromosome searegation

YJL117TW PHO86 Mav collaborate with Pho3Tn and Pho84n in nhoswhate uptake

YER055C hisl involved in the first stem of histidine hiosvnthesis

YHR136C SPL2 Swnmressor of wlcl-delta. Isolated as a dosase suwmressor of the temperature-sensitive phenotype of
YDR2§1C PHMG Phosnhate metaboli tramscrintion is rewulated by PHO svstem
YJL012C VTC4 Phosphate metaholism: tramscription is regulated by PHD system

Rank Gene/ORF Probabili ty Extended motif Expression Ogawa? Carroll2
(log2ratio) et. al? et. al.10
1 SPL2 1.000 ATGTACGCACGTGGGCGAAAG 4.980 v
1 VTC3 1.000 ATTAAGCCACGTGGGCCCTCG 1.940 v v
1 VPS8 1.000 ATACAAGCACGTGGGCCCTCC 1.680
4 PHO12 0.999 GCGTTCACACGTGGGTTTAAA 1.500 v v
5 PHO84 0.994 TTTCCAGCACGTGGGGCGGAA 1.490 v v
6 PHO89 0.993 AATGCAGCACGTGGGAGACAA 1.220 v v
7 PHO5 0.991 GCACTCACACGTGGGACTAGC 0.640 v v
8 PHO11 0.988 GCGTTCACACGTGGGTTTAAA 1.030 v v
9 MNN1 0.976 TTAAAAGCACGTGGCACGAGA 1.210
10 PHM6 0.970 TCGCTGACACGTGGGAGGTGG 0.700 v v
11 NAB3 0.852 ACTCAATCACGTGGGATACCA 0.700

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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Bluecircles: TFs
Y ellow hexagons: conditions

MENADIONE

MHS \@

~300 single-gene deletion microarray experiments.

M apping the “ ativation” genes onto known signaling
pathways can provide useful insight.

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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Pathway pheromone (Cell Wall Inlegrity)
Sensor ShZiShZ] Weeli2/3 Mid2
Gpal(Ga) w»Sied/Se 10(GRIGY) “u 4
u Rhol
o2 Cded2 ¥
¥ Flel
Se20  Bnil n
MAPKKK st ¥ Bi“
v  Polasity
MAPKE SeT M]f‘m
MAPK Fusd -+ Fal Sz My
. 1
Digl?  ¢qcog
Transcription L L Swidis Rlml
Factors Cell
Cycle
Arrest

Additional genes/ORFs, if deleted, may activate or deactivate Stel2p:

HOG

High Osmolarity)

Sinl Shol |-
¥

Ypdl l
1
Skl Se20/Se50

+ ¥
Ssh222 Skl

Phs2

¥
Hogl ———---

.

Msn2i4 1

Filamentows Growth
(Ivasive)

Shol Ras2
Cded2
¥
Sifl]
Siell
¥
SieT
¥
Essl

Digl2

Predict new cross-talk

AF G, BUDI4, DIAZ, ERG26, HIGH, MG, RADE SODI, STE24, YALO0H and ¥ILI07C

Predict new components of the known pathways

Construct transcription module:

Identify the DNA regulatory motif recognized by
aparticular transcription factor using REDUCER;

l

Construct transcription module:

factor using the weighted profile method.

I dentify genesthat areregulated by thistranscription

A

I dentify activation of transcription modulesusing its X value pattern

l

different transcription modules

Study overlaps between inter actions between

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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| dentify genes co-regulated by more than one transcription
factor and find combinatorial control between different
transcription factors.

One example

Overlap between SUM1 and NDT80

SUM1 module
Core motif gtgtcac
67 genes
from CHIP-on-CHIP

NDT80 module
core motif cacaaaa
88 genes
from NDT80 deletion

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03)
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YIR028W
YOR313C
YNL318C
YBR148W
YDR523C
YDRO042C
YGL170C
YBR180OW
YLR343W
YLR308W
YFRO23W
YGRO59W
YOR255W
YFR032C
YJLO37TW
YJLO38C
YHR184W
YHR124W

Overlap between module SUM1 and NDT80

dal4
SPS4
HXT14
YSW1
SPS1
YDRO042C
SPO74
DTR1
YLR343W
CDA2
PESA
SPR3
YOR255W
YFR032C
YJLO37TW
YJLO38C
SSP1
NDT80

CGCTTTGCTGTCACGTCGATA
TACATTGGTTTCACATAACAT
TGAATTTGTGTCATCATTAGA
CAGACGCGTGTCAGCAAAGGG
TTTTTATGTGTCATTTTTTTT
GGATTTTGTGTCATTAGCAAA
ATTTCTTGTGACACAAAAGAG
AGACATTCTGTCACCTGGTGA
AATCAGAGTGACACAAATTTT
TTGCGTTGCGTCACAAAATCA
AGAATCAGTATCACAAAAAAA
CTCTTTTGTGTCGCTAACAAA
AGCGATTGTGTCAGTAATGAA
AATGGAAGCGTCACAAATTAA
CGATTTAGTGTCATTTTTTTT
CGATTTAGTGTCATTTTTTTT
TGATTTTGTGTCGCCTGTTTG
TAAATAGGTGACACAAAATGG

allantoin transport

sporulation-specific protein

High-affinity hexose transporter

Spore-specific protein

involved in middle/l ate stage of meiosis, required for spore wall for.
Hypothetical ORF

Protein involved in sporulation

dityrosine transporter MFS-MDR
Hypothetical ORF

Required for proper formation of the ascospore wall

Suppressor of DNA polymerase epsilon mutation
sporulation-specific
Hypothetical ORF
Hypothetical ORF

Hypothetical ORF
Hypothetical ORF
Involved in the control of meiotic nuclear divisions & spore formation;
Meiosis-specific gene transcription

SUM1 site and NDT80 site overlap
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Reconstructing the Transcription Networks of a Cell Using Computational Genomics

1. Coreregulatory motifs (known and predicted) areidentified
systematically by REDUCE

2. Targetsgenesof atranscription factor areidentified with
high sensitivity and specificity usng M ODEM algorithm

3. Conditionsthat can activate a particular transcription
module can be identified by comparing motif weighted
profiles

4. examining co-activated TFsand their targets - suggest
combinatorial control by the TFs

Harman Busssemaker, Columbia
Eric Siggia, Rockefdler
Wei Wang, Stanford
David Botstein, Stanford
Mike Cherry, Stanford
Yigal Nochomovitz, UCSF biophysics

Randy Wu, UCSF biophysics

Reference: http://mobydick.ucsf.edu/~haoli
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