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The regulatory design 
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grand goals

Dissecting all signaling pathways
�

predict TF state from
conditions

Deciphering cis-regulatory logic 
�

how the logic function
is defined by sequence motifs

Understanding the fundamental constraints and design 
principles of signaling pathways and cis-regulatory logic

Define a transcription module: 

1. A transcription factor;
2. The binding sites of the transcription factor
3. Genes that are directly regulated by this transcription factor.



Reconstructing the Transcription Networks of a Cell Using Computational Genomics

Dr. Hao Li, KITP & UCSF (KITP Bio Networks 2/27/03) 4
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Modest Goals: 

1. Determine the structures of transcription modules (TF, 
binding site and target genes);

2. Identify conditions under which a module is activated;

3. Infer module interactions (overlaps, combinatorial control 
etc).
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data

Genome sequence + gene annotation

Gene expression data (array) under different conditions

Expression profile of mutants (deletion or over expression)

CHIP-on-CHIP

Step 1. Construct transcription module:
A. Identify the DNA regulatory motif recognized by 
a particular transcription factor using REDUCE;

Step 1. Construct transcription module:
B. Identify genes that are regulated by this transcription 
factor using the MODEM algorithm

Step2. Identify activation of transcription modules using  correlation
between motif weighted expression

Step 3. Infer interactions between co-activated 
transcription modules by examining genes shared by these 
modules
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Step 1. Construct transcription module:
A. Identify the DNA regulatory motif recognized by 
a particular transcription factor using REDUCE;

Step 1. Construct transcription module:
B. Identify genes that are regulated by this transcription 
factor using the weighted profile method.

Step2. Identify activation of transcription modules using its X value pattern

Step 3. Infer interactions between co-activated 
transcription modules by examining genes shared by these 
modules

REDUCER
Regulatory Elements Detection Using 

Correlation with gene Expression
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How does REDUCER reduce?
An iterative scheme to identify independent motifs

Regression + model selection

Iteration:
suppose N-1 motifs found
fit expression data with the N-1 motifs � residual of the fit
find motif with strongest correlation with the residual

based on p value of Pearson correlation 
take it as Nth motif
iterate

Features of REDUCE:

A. It does not depend on clustering of genes;
B. combinatorial motifs can be identified in each experiments;
C. The sign of the fitting coefficient can tell whether the factor 

induce or repress expression
D. Identify the conserved core of the binding sites
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Analyzing microarray data systematically

Data:
• ~300 gene deletion experiments;
• 174 environmental stress response time course;
• 9 sporulation time course;
• 8 phosphate metabolism;
• 22 cell cycle time course.

stress response

Gasch et al.
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Many known motifs are identified as very significant (p-
value < 10-20) under the right conditions;

DNA motif Experimentb (Site name/TF name)

aaatttt/aaaattt ES

agggg/cccct ES (STRE)

acccc HS

acgcgt CC (MCB)

cacaaaa/tttgtg SPO (MSE)

cacgtgg PHO (Pho4p site)

cgatgag ES

taaggg HS; DS

cgcgaaa CC (SCB)

tgaaaaa HS; Diamide; YPD 

Combinatorial motifs 
are identified;

One example: 
in amino acid 
starvation 
time course

DNA motif p-value (-log10)

aaaattt/aaatttt 64

aaggg 23

acggtgt 3

agggg/cccct 27

ataag 6

atataaa 6

atgac 9

atgagc 17

cacgtga 7

ccacagt 6

ccgtaca 6

cgatgag 38

ctcatc 14

cttatc 8

gagtca 4

gataa 5

gataag 8

gtggc 6

tatataa 8

tcatc 6

tccgtac 7

tgaaaaa 19

tgactc 12

tgagatg 21

msn2/4

met4/met31

gcn4
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Transcription Factor Perturbation Experiment (TFPE):

deletion/mutation/ 
over-expression 
of a TF

wild type

The most significant motif identified in TFPE 
is typically the regulatory motif recognized by 

the TF or its cofactor(s)
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TF Motif 
(p-value)

Known binding
sitea

Biological processb

GCN4 tgactca 
(10-80)
tgagtca
(10-26)

tga[c/g]tca transcriptional activator of amino acid 
biosynthetic genes 

MBP1 acgcgt 
(10-27)

MCB site
acgcg[t/a]

DNA replication; cell cycle control

MSN2 agggg 
(10-26)

agggg Stress response

MSN4 agggg 
(10-33)

agggg Stress response

PHO4 cacgtgg 
(10-30)

cacgtg Phosphate metabolism

RTG1 ggtcacg 
(10-5) 

ggtcac interorganelle communication 

STE12 tgaaac 
(10-14)

PRE site
tgaaac[g/a]

Invasive growth; pheromone induction;
pseudohyphal growth

YAP1 tgactca 
(10-8)

tgactca Regulation of certain oxygen 
detoxification enzymes

MAC1 tgcaccc 
(10-80)

N/A Cu/Fe utilization, stress resistance

SIN3 cgcgcgc 
(10-24)

N/A transcription

TUP1 aggcac 
(10-25)

N/A Glucose repression

Step 1. Construct transcription module:
A. Identify the DNA regulatory motif recognized by 
a particular transcription factor using REDUCER;

Step 1. Construct transcription module:
B. Identify genes that are regulated by this transcription 
factor using the MODEM algorithm.

Step2. Identify activation of transcription modules using motif weighted 
expression 

Step 3. Infer interactions between co-activated 
transcription modules by examining genes shared by these 
modules
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Identifying the target genes of a factor: Why MODEM?

1. Using core motif alone can not accurately identify target 
genes;
137genes containing CACGTGG in yeast
only ~15genes are true targets of Pho4p.

2. Target genes may have different versions (mismatches) of 
the core motif.
Pho4p target VTC1 only has CACGTGC
~2000 genes have CACGTGG with 1 mismatch

3. Additional information can be obtained from

A. flanking sequences of the core motif;

B. gene expression.

Inputs to MODEM:

1. The core and flanking sequences S={S(1),S(2),…S(N)};
2. Gene expression (log ratio) E={E(1),E(2)…E(N)}.

agggcacgtggcgtt 2.5
ccttcacgtggctga 4.6
cgttcacgtgggtga 1.2
cgttcacgtggcgga 2.0

Outputs of MODEM:

1. Calculate the probability of each gene being a target;

2. Classify each gene into the target or non-target category.
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MODEM
Module construction using gene Expression and sequence Motif

is

A joint probability model for 
gene expression and sequence motif

The 5 components in MODEM:

)( kEρ A Gaussian distribution for the gene expression 
(log ratio) of targets;

)(0 kEρ A Gaussian distribution for the gene expression 
(log ratio) of non-targets (the entire genome, 
fixed).

)( kEρ
)(0 kEρ

# of genes

expression (log ratio)0
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The 5 components in MODEM:

σif
A position specific scoring matrix (PSSM) for 
sequences belonging to targets;

0
σif A PSSM for sequences belonging to non-targets;

Position 1 2 3 4 5
A 0.80 0.10 0.01 0.05 0.02
C 0.02 0.85 0.20 0.90 0.01
G 0.10 0.02 0.78 0.03 0.88
T 0.08 0.03 0.01 0.02 0.09

A PSSM: 
• reflects how often a specific nucleotide appears at a position 

of the motif;
• if given a sequence, can be used to calculate the probability 

of observing such a sequence and thus score it.

P(ACGCG)
>P(CCGCG)

The 5 components in MODEM:

λ A prior percentage of targets among the genes 
containing the core motif;

Without any sequence or expression information, 
λλ is an estimation of target percentage among the 
genes containing the core motif.
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The values of the parameters θθ in the MODEM are

determined iteratively 

to maximize the posterior probability ),|( ESP �

Sum over all possible values of the hidden variable:

The value of the hidden variable reflects:
The extended motif belongs to target or non-target

∑=
hidden

EShiddenPESP ),|,(),|( ��

Assumptions:

1. Sequences (extended motifs) S(k), k=1, … N, are independent from 
each other;

2. Given the value of the hidden variable and the parameters, the 
distributions of sequence and expression are independent;
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Posterior probability:
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MODEM Outputs:

1. Probability of being a target.
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Target genes of Pho4p identified  using the core motif CACGTGG 
and allowing 1 mismatch.

a. Genes identified as targets of Pho4p experimentally by Ogawa et. al.9 or Carroll et. al.10 are marked with checks.

Ran
k

Gene/ORF Probability Extended motif Expression Ogawaa Carrolla

1 PHO89 1.000 ATGGCACAACGTGGGGATGAC 5.262 √√ √√
1 SPL2 1.000 TGTCGGTCACGTGAGCAAAAA 4.605 √√
1 PHO84 1.000 TCCGCCCCACGTGCTGGAAAT 5.491 √√ √√
1 PHO11 1.000 ATGCGAAAACGTGGTAATTTA 4.287 √√ √√
1 PHO12 1.000 TTAAACCCACGTGTGAACGCC 4.159 √√ √√
1 VTC3 1.000 AGGCAGAAACGTGGAAACATA 4.297 √√ √√
1 VTC4 1.000 GTGCAGCCACGTGCGGATGAA 3.296 √√ √√
1 PHM6 1.000 CACCTCCCACGTGTCAGCGAA 2.998 √√ √√
1 PHO5 1.000 GCACTCACACGTGGGACTAGC 2.816 √√ √√
1 VTC1 1.000 TCCGAGACACGTGCTAATATC 2.485 √√ √√
1 YAL011W 1.000 AGGCAGAGACGTGGCACTGGC 2.233
12 CTF4 0.999 AGAATCTCACCTGGAGAATGG 2.625

13 YLR402W 0.998 GAGTTTGCAGGTGGGACTAAT 2.223

14 CTF19 0.998 GAGGGCCCACGTGGCTTAATA 1.864 √√
√√

√√
√√15 PHM5 0.998 GGCCGCACAGGTGGGCAGATC 1.757

16 REC107 0.995 CTAATCTTACGTGGTTCTTAT 2.310
17 PHO8 0.991 GTCGGGCCACGTGCAGCGATC 1.546 √√ √√
18 NUP85 0.987 AAGAGGGCACTTGGTCACAAC 1.926
19 YJR039W 0.980 GTCTTGACACGTAGGCGTTGC 1.876

20 CDA1 0.974 TCTCATGCACTTGGAAGCAGC 1.852
21 YML089C 0.965 GCAATTATACGTGGCAAGGAA 1.937

22 KRE2 0.927 GTCGGGCCACGTGCAGCGATC 1.233

23 VTC2 0.902 AAAAACCCACGTGCTGCTTGG 1.599 √√ √√
24 YAR069C 0.887 GTTCACACTCGTGGGGCCCAC 1.438

53 genes in Gcn4 module (from deletion experiment)

1. Genes involved in biosynthesis and metabolism are greatly 
enriched.

amino acid metabolism: p-value 6.28E-39
31 out of 53 genes, 58.4%
138 out of 6906 annotated genes, 1.9%

amino acid biosynthesis: p-value 6.63E-37
27 out of 53 genes, 50.9%
89 out of 6906 annotated genes, 1.2%

Completely consistent with the function of Gcn4p:
a master regulator of biosynthesis.
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In the 53 genes predicted to be targets of Gcn4p:

2. 39 (74%) were shown by experiments that their expressions 
were induced/repressed by Gcn4p;

10 are ORFs whose functions are unknown.
4 genes with annotated functions:

Gene Molecular function Biological process

TMT1 Trans-aconitate 3-
methyltransferase

unknown

ADH5 Alcohol dehydrogenase Alcohol metabolism

STR3 Cystathionine beta-lyase Methionine
biosynthesis

ALD5 Aldehyde dehydrogenase metabolism

Predictions based on the Gcn4 module:

1. 14 new target genes;

2. The 10 ORFs whose function are unknown may play roles in 
biosynthesis or metabolism.
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28 transcription modules have been constructed
Based on TFPE experiments

Predicted new binding sites and target genes.

Apply REDUCE+MODEM

To analyzing CHIP-on-CHIP data

From R. Young Lab

35 factors � significant core motif
module contains target genes
consistent with the regulatory 
function of the factor
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TF Motif Sig. Known motif Sensible targets Function of TF

ABF1 agtgat 12.2

ACE2 ccagcaa 2.5 accagc Yes G1-specific trans.
In mitotic cell cycle

ARO80 gcggagc 2.5 Yes
Aro9, Aro10

reg. due to
aromatic aa

BAS1 tgactc 10.8 Yes
Ade2-8

adenine synthesis

CBF1 cacgtg(a) 97.9 cacRtg Yes
Met.syn. genes

methionine synthesis

CIN5 ttacata 16.8 Yes
Transporters

drug resistance
Cisplatin resistance

DAL81 tgccgt 3.7 Yes
(Agp1, Bap3..)

nitrogen utilization

FHL1 ccgtaca 58.0 Yes
(ribosomal genes

rRNA processing

FKH1 gtaaaca 7.8 RWaaaYaW ? chromatin silencing
cell cycle

FKH2 gtaaaca 19.3 RWaaaYaW Yes
Cell cycle,spo genes

GCN4 tgactca 45.0 tga[c,g]tca Yes
AA syn. genes

AA response

GLN3 tttgaa 14.4 match
Ste12 sites

?
Ste12 targets

Nitrogen utilization

HAP4 ccaatca 10 Match ccaat Hap2/3/4 site Yes
Known genes

Carbohydrate
metabolism

HSF1 ttctaga 2.8 Known genes

INO2 cacgtga 5.3 Yes
(ITR1,PSD1,..)

phospholipid
biosyn.

INO4 gcatgtg 15 Yes
Phosphate genes

Phos.
biosyn

LEU3 gggaccg 3.1 Yes
(leu1,bap2,leu4)

MAC1 gctcgtt 2.7 Yes
Known target

MBP1 acgcgt 107 acgcgt Yes Cell cycle

MCM1 acaata 2.2 cccaaWWagg

MET31 tcacgtg 2.4 Match met4/31
Complex site

Yes
Met. Syn. genes

Met. Syn.

Met4 cacgtga 11.3 Yes Met syn.

NDD1 gtaaaca 6.7 Yes G2/M specific

NRG1 aggcaca 6.6 Yes
Hexose glucose
Trans., permease

Glucose metab.

REB1 cgggtaa 128 cgggtRR ?

SKN7 cggcccg 7.9 Yes
Known target

Osmotic stress

STB1 acgcgt 3.8 Some complex as
MBP1?

G1/S transition

STE12 tgaaaca 10 atgaaa Yes
Known genes

Pheromone
response

SUM1 gtgtcac 8.9 Yes
Spo. genes

sporulation

SWI4 cgcgaaa 20.1

SWI5 gctggct 2.3 KgcTgR Yes
Known targets

SWI6 acgcgt 18 Some complex as
MBP1?

Yes
Known targets

YAP1 ttactaa 2.8 ttaNtaa Yes

YAP6 ccgcgga 8 Match pdr1/3 site Drug resistance

Some statistics

Out of 106 factors � 70 overlap with YPD
total ~800 known sites

Target Overlap of Young with YPD: 154 � 39 factors
picked at least one known target

39 factors and 35 factors picked by our analysis
� 25 overlap
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The MODEM algorithm 

• Identify target genes of a particular transcription factor 
with high specificity and sensitivity;

• Predict new target genes;

• Help annotate gene functions.

Step 1. Construct transcription module:
A. Identify the DNA regulatory motif recognized by 
a particular transcription factor using REDUCER;

Step 1. Construct transcription module:
B. Identify genes that are regulated by this transcription 
factor using the weighted profile method.

Step2. Identify activation of transcription modules using motif weighted 
expression profile

Step 3. Infer interactions between co-activated 
transcription modules by examining genes shared by these 
modules
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Available data (Inputs):
1. TFPE;
2.  TF location (CHIP-on-CHIP) data
3. Microarray experiments under different cellular 

conditions

Goal (Output): 
infer the state of TFs � � Identify conditions under which a 
particular module is activated 

Approach: 
Compare the expression profile of the TFPE or CHIP-on-
CHIP and that of the interesting condition.

“ Global” comparison between expression profiles is noisy.

PHO4 mutation 0.2  -0.1 0.3 ……1.5 2.6 1.8 3.5 2.2……-0.2 –1.1 0.6

Hypo-osmotic 
shock -0.9 1.1 -2.0 ……1.5 2.6 1.8 3.5 2.2……1.0  0.1  2.8

1     2     3 ……Gene

Pho4p target genes

We need to search “ local” similarity between the two profiles.
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Method: motif weighted profile comparison

“local similarity” between global expression profiles
Is the same TF module activated in both experiments? 
focus on a subset of genes with the potential binding site

define X value as: X(g,t,m) = E(g,t) * N(g,m)

E(g,t): logarithm base 2 of the expression ratio for gene g in 
the experiment t;

N(g,m): the number of occurrence of motif m in the gene g.

Compare x values between a TF perturbation experiment and a 
specific condition

TF Biological process Activation 
conditions

GCN4 transcriptional activator of 
amino acid biosynthetic genes

amino acid starvation,
nitrogen depletion

MBP1 DNA replication; cell cycle 
control

cell cycle,
diauxic shift,

nitrogen depletion,
heat shock

MSN2 Stress response environmental stresses,
phosphate metabolism

MSN4 Stress response environmental stresses

Predict activation conditions of TFs/modules
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Predict activation conditions of TFs/modules

TF Biological process Activation 
conditions

PHO4 Phosphate metabolism phosphate metabolism,
hypo-osmotic shock

RTG1 interorganelle communication amino acid starvation,
nitrogen depletion

STE12 Invasive growth; pheromone 
induction; pseudohyphal growth

nitrogen depletion

YAP1 Regulation of certain oxygen 
detoxification enzymes

amino acid starvation,
nitrogen depletion

Unexpected activations suggest: 

• Those modules may play roles in cell ’ s 
adaptation to these cellular conditions;

• There probably exist unknown links 
in the networks.
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Expressions of Pho4p target genes in 
the hypo-ostmotic shock experiments

Pho4’s activation under hypo-osmotic shock can not be 
identified by “global” comparison of expression profiles.

Target genes of Pho4p identified from the 45 minute time point of the hypo-
osmotic shock experiments using core motif CACGTGG.

Rank Gene/ORF Probabili ty Extended motif Expression
(log2 ratio)

Ogawaa

et. al.9
Carr olla

et. al.10

1 SPL2 1.000 ATGTACGCACGTGGGCGAAAG 4.980 √√

1 VTC3 1.000 ATTAAGCCACGTGGGCCCTCG 1.940 √√ √√

1 VPS8 1.000 ATACAAGCACGTGGGCCCTCC 1.680

4 PHO12 0.999 GCGTTCACACGTGGGTTTAAA 1.500 √√ √√

5 PHO84 0.994 TTTCCAGCACGTGGGGCGGAA 1.490 √√ √√

6 PHO89 0.993 AATGCAGCACGTGGGAGACAA 1.220 √√ √√

7 PHO5 0.991 GCACTCACACGTGGGACTAGC 0.640 √√ √√

8 PHO11 0.988 GCGTTCACACGTGGGTTTAAA 1.030 √√ √√

9 MNN1 0.976 TTAAA AGCACGTGGCACGAGA 1.210

10 PHM6 0.970 TCGCTGACACGTGGGAGGTGG 0.700 √√ √√

11 NAB3 0.852 ACTCAATCACGTGGGATACCA 0.700
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Blue circles: TFs
Yellow hexagons: conditions

Consider genetic perturbations:

~300 single-gene deletion microarray experiments.

Mapping the “activation” genes onto known signaling 
pathways can provide useful insight.
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Predict new components of the known pathways

Predict new cross-talk

Identify “activation” genetic perturbations

Step 1. Construct transcription module:
A. Identify the DNA regulatory motif recognized by 
a particular transcription factor using REDUCER;

Step 1. Construct transcription module:
B. Identify genes that are regulated by this transcription 
factor using the weighted profile method.

Step2. Identify activation of transcription modules using its X value pattern

Step 3. Study overlaps between interactions between 
different  transcription modules
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Identify genes co-regulated by more than one transcription 
factor  and find combinatorial control between different 
transcription factors.

One example

Overlap between SUM1 and NDT80

SUM1 module 
Core motif gtgtcac
67 genes 
from CHIP-on-CHIP

NDT80 module
core motif cacaaaa
88 genes
from NDT80 deletion
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YIR028W dal4 CGCTTTGCTGTCACGTCGATA allantoin transport
YOR313C SPS4 TACATTGGTTTCACATAACAT sporulation-specific protein
YNL318C HXT14  TGAATTTGTGTCATCATTAGA High-affinity hexose transporter
YBR148W YSW1 CAGACGCGTGTCAGCAAAGGG Spore-specific protein
YDR523C SPS1 TTTTTATGTGTCATTTTTTTT involved in middle/late stage of meiosis, required for spore wall for.
YDR042C YDR042C GGATTTTGTGTCATTAGCAAA Hypothetical ORF
YGL170C SPO74 ATTTCTTGTGACACAAAAGAG  Protein involved in sporulation
YBR180W DTR1 AGACATTCTGTCACCTGGTGA dityrosine transporter MFS-MDR
YLR343W YLR343W AATCAGAGTGACACAAATTTT Hypothetical ORF
YLR308W CDA2 TTGCGTTGCGTCACAAAATCA Required for proper formation of the ascospore wall
YFR023W PES4 AGAATCAGTATCACAAAAAAA Suppressor of DNA polymerase epsilon mutation
YGR059W SPR3 CTCTTTTGTGTCGCTAACAAA sporulation-specific 
YOR255W YOR255W AGCGATTGTGTCAGTAATGAA Hypothetical ORF
YFR032C YFR032C       AATGGAAGCGTCACAAATTAA Hypothetical ORF
YJL037W YJL037W  CGATTTAGTGTCATTTTTTTT  Hypothetical ORF
YJL038C YJL038C CGATTTAGTGTCATTTTTTTT Hypothetical ORF
YHR184W SSP1 TGATTTTGTGTCGCCTGTTTG Involved in the control of meiotic nuclear divisions & spore formation; 
YHR124W NDT80 TAAATAGGTGACACAAAATGG Meiosis-specific gene transcription

Overlap between module SUM1 and NDT80

SUM1 site and NDT80 site overlap
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constructing transcription network by combining sequence 
information, gene expression data, gene function, and 
pathway information.

1. Core regulatory motifs (known and predicted) are identified 
systematically by REDUCE

2. Targets genes of a transcription factor are identified with 
high sensitivity and specificity using MODEM algorithm

3. Conditions that can activate a particular transcription 
module can be identified by comparing motif weighted 
profiles 

4. examining co-activated TFs and their targets � � suggest 
combinatorial control by the TFs
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