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The Question: How does a protein fold?
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universal principles



Folding is heterogeneous with many microscopic
pathways connecting the folded and unfolded states

[
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The distribution of microscopic pathways is predicted
by theory and simulations, what about experiments?

SINGLE MOLECULES!



Motivations for current experiments

Determining folding heterogeneity requires
observing transition paths (a uniquely single
molecule property), which is challenging and
not yet observed for any system.

For an experimentalist that can be funl!
(if it works)



Forster resonance energy transfer (FRET)
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Photon trajectory for "two-state” protein
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FRET efficiency trajectory for "two-state” protein
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All mechanistic information contained in the * jumps™:
The transition path: a property unique to single molecules

Goal for single molecule experiments: observe transition paths

Transition paths can be obtained from MD simulations for
ultrafast (< 100 us) folders, or from clever theoretical methods
for slower folding proteins (e.g. H. Orland), but have never been

observed experimentally for any system

MAJOR EXPERIMENTAL CHALLENGE
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Wolynes Energy Landscape Theory
(Socci, Onuchic, and Wolynes, JCP 1996)

reaction coordinate, x

Definition of transition path time (TPT):

Trajectories that cross x, and reach x,
without ever recrossing X,



The well-studied two-state protein
B6-residue protein G labeled with donor and acceptor dyes

Alexa 59{1 ﬁ% Alexa 488
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Explained almost every one of 2,000 trajectories in detail

Representative (65%) folding/unfolding trajectories
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Almost every trajectory explained in detail.

65% folding/unfolding

217%  “blinking"

5%  dye sticking to surface or linker
8%  shifted donor dye spectrum

initially puzzling trajectory

FRET |
efficiency

time (s)

folding intermediates????



Almost every trajectory explained

in detail. Nloxa 488
Alexa 488%

65% folding/unfolding
21% “blinking" \\m
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# of Trnasitions

Comparison of Kinetics

Waiting times are
exponentially distributed
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All mechanistic information contained
in " jumps” (fransition paths)

time (seconds)

What can we say about transition path times?



20 ms bins
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TPT < 200 ps (>10,000x shorter than folding time)
(Chung, Louis, & Eaton, PNAS 2009)

Can we measure a transition path time?

YES, but we will have to

more intense excitation to increase photons
(shortens bleaching time)

observe a very large number of transitions
(automate data acquisition, faster folding protein)

analyze these transitions collectively
(maximum likelihood method)



Chung et al., J Phys Chem A 2011
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Gopich/Szabo Maximum Likelihood Function
(J Phys Chem B, 2009)

Given a model, the method yields the most likely
model parameters consistent with the photon trajectories
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Gopich/Szabo Maximum Likelihood Function
for Two-State Model
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photon-by-photon analysis to obtain k, k;, &, &,
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0 2 4 6 8 10 12 14 16 18 20
time (ms)
GdmCI (M) & &, k (ms™) PE
1.5 0.94 0.64 2.64 (+0.23) 0.92
2 0.93 0.64 .29 (£0.05) 0.67 (+0.01)
2.25 0.93 0.61 0.99 (10.04) 0.43 (0.01)
2.5 0.93 0.62 [.06 (0.04) 0.32
3 0.92 0.56 .22 (+0.08) 0.05

Are the results accurate?



Compare with the donor-acceptor cross-correlation function decay
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Strategy

Apply Viterbi algorithm to produce most probable
state trajectory to locate transition region

time (ms)

and only analyze the trajectory in the vicinity of
the transition



David E. Shaw et al.: Scrence October 15, 2010 issue,
fully atomistic MD simulation of ultrafast folder using

"Anton”, hard-wired computer for MD calculations
- 35 residue WW domain

RMSD to native (A)

simulation: 7; = 10 + 3 ps, experiment: ;= 14 + 2 pus
<TPT> = 2 us at 20°C (after viscosity correction)



We now have a good estimate of the average
transition path time for an ultrafast (10
microsecond)-folding protein

What can we say about our 2 second-folding
protein G - inaccessible even to "Anton.”



Hoi Sung got ambitiousl!



Measured 46,932 trajectories for protein G, 7= 2 s
350 photons/ms; bleaching time ~ 10 ms
observed 151 transitions
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Simulate trajectories with model to answer question:

Given the current data (number of transitions, count
rate, FRET efficiencies, ), how short a transition
path time we can expect to be able to determine

with the current data ?

151 transitions, 350 photons/ms, & = 0.95 &, = 0.60



Simulations of trajectories for one-step model:
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Analyse simulated trajectories using Gopich/Szabo
function with and without transition path, and
compare likelihoods
(TPT is only variable parameter in likelihood function)

In L(TPT) —In L(0)
D

10

0

-10¢t

200 RPN
0.1 1 10 100




Analyse simulated trajectories using Gopich/Szabo
function with and without transition path, and
compare likelihoods
(TPT is only variable parameter in likelihood function)
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Experiment

111 unfolding transitions and 40 folding transitions
for Protein G with folding time of ~ 2 s

4_

In L(TPT) = In L(0)

TPT (us)

95% confidence

1 TPT upper bound

~ 10 us

TPT 200,000-fold < 2 s folding time
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WW domain (Shaw, Gruebele) |

e~ <TF >=25
R <TPT> <10 us |

Transition path times differ by less than 5-fold for
folding times that differ by 200,000-fold



Conclusion (with caveats)

A slow folder and an ultrafast folder take almost
the same time to fold when it actually happens!!



Transition path times differ by less than 5-fold for
folding times that differ by 200,000-fold

How do we explain this result?



Wolynes Energy Landscape Theory
(Socci, Onuchic, and Wolynes, JCP 1996)

reaction coordinate, x

Definition of transition path time (TPT):

Duration of trajectory that cross x, and reaches x;
without ever recrossing x,



Prediction from energy landscape theory

B=1lkgT
AG*: barrier height
«?. well curvature

(w*)%: barrier curvature
D: diffusion coefficient

Kramers
Uk = (5) = r,exp(BAG) =  —22—exp(AG])

D’ fow

For diffusive crossing of harmonic barrier from x, to x,
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TPT
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Transition path time is insensitive to barrier height



Experiment

TTPT)
_ ZO0,000 < >prote|nG < 5

<TPT >WW domain

TF, protein G

z-F, WW domain

Landscape Theory (same D, o, o*)
(%~ 1 ps)
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<TPT >WWdomain i In (Bln (TWWdomain /TO))



Caveats to theoretical estimate
1. High-lying free energy minima will slow TPT

VAN

2. Very different diffusion coefficients,
i.e. much rougher underlying energy landscape in
slow folders

Caveat to experiment
FRET may only monitor part of the transition path.



Caveats

Oversimplified model

TPT TPT
I S or ----- a ¥
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FRET may only monitor part of the transition path



Robert Best (U. Cambridge) Langevin simulations
of (Brooks, native interactions only) bead model

Calculated Q(t), R (1), rpa(t), E(1)

f- Alexa 488
Alexa 5_94 t?% ‘

(1) = fp ()4, (1) = 30, (1) dp (D)7, (D) 4, (D))
(K‘(t)) E(t) = K (1)
2(roa (@) ki (€) + ko

Kr () = ko Rg




Simulation at 1/500t" water friction

2 microsecond segment 20 ns segment
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Future Directions

Measure transition path time
for WW domain and protein G (?)

Distance versus time
measurements during
transition path for WW
domain (increase viscosity)

Label with > 2 fluorophores:
multiple simultaneous distances
versus time places major
constraints on possible

folding mechanisms

Looking forward to lots of
intferesting results |l



Coworkers in Laboratory of Chemical Physics, NIH, Bethesda

: Theory of single molecule expts.
HOl Sung Chung Attila Szabo and Irina Gopich
Protein engineering Automation Langvin simulations

John M. Louis Kevin McHale Robert Best, U. Cambridge



