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What does it mean for a gene to be ‘on?

s(t)
A Stimulus (e.g. chemical)

> {
r(t)
A Response (RNA production)
[ |

(Subjective choice of scale; coarse-grained)

What are the characteristics of the transcriptional time-series?

Golding and Cox, Curr. Bio/ (2006)



Following transcription in real-time

(RNA-tagging protein;
in excess in the cell) ’

MS2-GFP

Gene of interest:

/

IPTG, arabinose

RNA target

RFP protein
©
®

Golding et al., Cell (2005) following R. Singer



Measuring mRNA & protein numbers

MRNA o« number of bound MS2-GFPs

o« photon flux from localized green fluorescence

Protein «« number of RFPs

o« photon flux from whole-cell red fluorescence

Histogram of
RNA copy humber:
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RNA production occurs in bursts
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Gene activity can be described as a 2-state process:

K

Off k_<—’ On RNA — O

off

Coarse-grained, phenomenological
(Molecular nature of 'on' and 'off' states in unknown...)

Peccoud & Ycart (1995)
Golding and Cox (2006)

Raj et al (2006)
Shahrezaei & Swain (2008)



Bursty gene activity is a universal feature

. TranscripTion bursts in £. CO//.(Golding et al., Cell 2005)
 Transcription bursts in
mammalian cells (Raj et al, PLoS Biology 2006)
Yeast (zenkiusen et al, Nsm8 2008)
D/'cfyos telium (Chubb et al,, Curr Biol 2006)
D/"O.S'O,Dh//d (Pare et al., Curr Biol 2009), ...

» Bursty protein production

(Yu, Xiao, et al., Science 2006; Cai et al., Nature 2006)



Bottom line:

Gene activity is often not Poissonian;
It is pulsatile/bursty/intermittent

Can be described using 2-state model

At this stage only phenomenology...



Modulation of the transcriptional time-series

Lok-hang (Tommy) So  Chenghang Zong Leonardo Sepulveda



Different features of the transcriptional time-series
can be modulated to vary gene expression

Dose Response

mRNA per cell

Time-series modulation is refl
burst size b= 62/n

L.h. So et a/, Nature Genetics (2011)



What modulation schemes are found in the cell?

Are different genes modulated differently?



RNA Detection using single-molecule FISH

# mRNA spots
D E. coli (fixed)

A
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N

MRNA copy-number estimated based on
total intensity of fluorescent foci

Following Raj et a/., Nature Methods (2008)



Characterizing gene activity using smFISH
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Next:

examine different genes...
different expression levels...
different stimuli...

different regulatory mechanisms..



Burstiness exhibits gene-independent behavior

(20 promoters, ~150 experiments)
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Data is consistent with modulation of A, alone

L.h. So et al, Nature Genetics (2011)



Conclusion:

‘on'/'of f' kinetics do not represent
gene-specific features



Universality across organisms?
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Why should we care about the time-series?

Consequences of transactional bursting:

» Information representation by the cell

So et al, Nature Genetics (2011)

« Stability of an "epigenetic” state
Zong et al., Mol. Sys. Bio. (2010)
* Decision-making by individual viruses

Zeng et al., Cell (2010)



Information representation by the cell

Noisy input — Transcriptional — Noisy output
(e.g. sugar level) times-series (protein level)

Estimate mutual information between input and output

Ronen Segev & Ananda Ghosh

See also: Tkacik e al (2008, 2009) Collaborators at Ben Gurion University, Israel



Time-series optimizes mutual information
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Consequences of transactional bursting:

Stability of an epigenetic state

ike Bednarz Leonardo Sepulveda

Zong et al., Mol. Sys. Bio. (2010)



Phage A: Model system for cell-fate determination

Phage
lambda

Infection
@‘9

.. '.' {ﬂLysis <ol Lysogeqy

|

’. T zjuction @

Lysogen
I. Golding, Annu. Rev. Biophys. (2011)

Common features with higher systems:
"noisy” decision; epigenetic maintenance by self-regulating TF; high stability / reprogramming



Lysis/lysogeny switch is governed by competition between CI and Cro

| Repression
+ Activation

I. Golding, Annu. Rev. Biophys. (2011)



A very simple model for lysogen stability

» CT is produced in discrete bursts
Occurrence of bursts follows Poisson statistics
+ Cell will switch if no CT is produced during ~1 generation

Therefore: S= exp(-R)

Where S = Switching probability [generation]
R = burst frequency from Py [generation!]

See also: Bialek (2000); Roma et a/, PRE (2005); Mehta et al/, Phys. Biol. (2008).



Theory works!
A Simple relationship between switching rate and burst frequency
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Zong et al., Mol. Sys. Bio. (2010)

S - Spontaneous lysis rate (RecA- strain and Py, mutants gift of J. Little)

R: from FISH



Post-infection decision
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Post-infection decision

What creates cell-fate heterogeneity:
Stochasticity or "hidden variables”?

. J J

| + collaborators:
M. Feiss, J. Sippy
University of Towa

“a

_ | N Zeng et al., Cell (2010)
Lanying Zeng Sam Skinner



Following cell fate
at single-phage/single-cell resolution
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Time-lapse movie




What we found:
* Each phage makes an independent, stochastic decision

based on total viral concentration, f,(m/l)

* Only unanimous vote by infecting phages yields cell lysogeny

Zeng, Skinner et a/, Cell (2010)



Single-phage lysogenization probability f,(m/I)
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Theoretical reconstruction of the "coarse-grained” data:

Single phage.
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"Noise" arises in transition from single-phage to single-cell,
Not single-cell to bulk.



Decision-making at the sub-cellular

level

Input parameter:
Viral concentration (m//)

Cell lysogenization
probability

fimi)

e

A. Old picture: Single noisy decision at the whole-cell level

Cell
lysis/lysogeny

W 4

>
»

How does decision-making at the single-genome level occur?



Decision Making in Living
Cells: Lessons from
a Simple System

Ido Golding
Phage
lambda
Annu. Rev. Biophys. 2011. 40:63-80 Infection 2

ST

herichia coli
’ -. b Lysis Escherichia coli Lyseny
" 4 h

o
,".

Q ‘ wction 0@

Lysogen




RNA iigiif,',;‘g Quantitative
FISH out immunofluorescence

! /
e ;| 1 Leonardo sam
Eli \ . Sriram )¢ infection
decision
Transcription
reporters
Mike
Patrlck
‘ - Chenghang /
Bacterial i — = A Lanying : ' _ Post-
swimming ) ) | - 'gzgif:
| Lysogen
stability

Celher for the Physics
SEER 255 AR ISR SN
| Welch

IHI
of Living Cells
FOUNDATION



http://physwebdev.physics.uiuc.edu/cplc/
http://www.welch1.org/

] I L L I N O I S Cea‘erforthePhysics

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN of Living Cells

PHYSICS OF LIVING CELLS SUMMER SCHOOL
July 18 - 23, 2011

http://lwww.cplc.illinois.edu/summerschool2011/
Apply by April 4, 2011


http://www.cplc.illinois.edu/

