
Active materials are a new class of soft material maintained out of 
equilibrium by internal energy sources. There are many example 
in biological contexts, including bacterial colonies, purified 
extracts of cystoskeletal filaments and motor proteins and the cell 
cytoskeleton. The key property that distinguishes active matter 
from more familiar non-equilibrium systems, such as fluid under 
shear, is that the energy input that maintains the system out of 
equilibrium comes from each constituent, rather than from the 
boundaries. Each active particle consumes and dissipates energy 
going through a cycle that fuels internal changes, generally (but 
not necessarily) leading to collective motion.  

Active suspensions can exist in various liquid crystalline states. 
Apolar particles are fore-aft symmetric and can form nematic 
phases, characterized by a macroscopic axis of mean orientation 
identified by a unit vector     (the director field) and the global 
symmetry                   . 

Active filaments are modeled as rigid rods crosslinked by two-
headed motor clusters that can exert forces on the filaments by 
converting the chemical energy of the ATP hydrolysis into 
mechanical work. Their dynamics is investigated in the framework 
of a phenomenological hydrodynamic theory. The theory is 
constructed to account for:

Macroscopic density variations.

Non-homogeneous orientational order.

Hydrodynamic coupling between local orientations and flow.

Hydrodynamic variables

Filaments concentration:  

Flow velocity: 

Nematic tensor: 

Strain-rate and vorticity:

Spontaneous and Oscillatory Flow in quasi-1D

Active nematic fluid in an infinitely long 2D channel with no-
slipping walls. At large active stresses the system undergoes a 
transition to a state of non-uniform orientation and spontaneous 
flow.
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Motivations

This work is motivated by the experimental work currently carried 
on in the Dogic Lab on active suspensions of microtubules and 
kinesin.

Microtubules are one of the essential building block of the 
cytoskeleton of eukaryotic cells.  Being the most rigid filaments in 
the cytoskeleton, they are responsible for the elasticity and the 
structural integrity of the whole cell. Microtubules are polymers 
composed of α- and β-tubulin dimers. These dimers polymerize in 
protofilaments which then bundle in hollow cylindrical filaments of 
25 nm in diameters and 100 nm to 10 μm in length.

Kinesin is a molecular motor. It is powered by the ATP hydrolysis 
and can “walk” along the external wall of a microtubule and serve 
in a variety of cellular functions, including mitosis and the 
transport of cargos inside the cell. As other motor proteins, 
kinesin is composed of a motor-head, where the ATP cycle takes 
place, and a long tail that bind to cargos or other kinesins. The 
head has two binding-sites: one for the microtubule and the other 
for ATP. ATP binding and hydrolysis as well as the release of 
ADP produces a conformational change of the microtubule-
binding domain that results in a motion of the kinesin. 

Qij = S(ninj − 1
2δij)

c
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Density Equation

We consider a concentration c of active particles in a solvent. The 
fluid is incompressible, thus the total density is constant:

Concentration equation:                                         

Like diffusive currents are driven by spatial variations in the 
concentration, active currents in a nematic fluid are driven by 
variations in the alignment.

[∂t + v ·∇]c = ∇ · [(D1δ + D2Q)∇c + α1c∇ · Q]

advection

anisotropic diffusion

active currents

jactive

jactive ∼ c∇ · Q

[∂t + v ·∇]Qij = λuij + Qikωkj − ωikQkj + γ−1Hij

advection

coupling 
orientation/flow

relaxational 
dynamics

uij = 1
2 (∂ivj + ∂jvi) ωij = 1

2 (∂ivj − ∂jvi)

Molecular tensor:

isotropic/nematic transition 
(Landau-de Gennes)

Frank elasticity

Hij = − δF

δQij
= −[A(c) + 1

2B(c)S2]Qij + L∇2Qij

ρ[∂t + v ·∇]v = η∇2v −∇p +∇ · (σelastic + σactive)

Navier-Stokes active forces

liquid crystalline 
elasticity

Flow-velocity equation

Active stress:

Each active particle exerts a force on 
the solvent with a resulting tensile/
contractile stress:

σactive ∼ α2Q

Elastic stress:

σelastic = −λH + QH−HQ

factive

−factive

Intermittency and Chaos in 2D

At low activities the fluid is homogeneous. The nematic order 
parameter is constant throughout the system and the director 
field uniform.

Upon raising the activity the system undergoes a transition to 
a chaotic regime. The route to chaos appears to take place via 
an “on-off” intermittency. 

Concentration of the active nematogens in the intermittent regime. The colors green/red denotes region 
of high/low concentration. The system consists of a square box with periodic boundary.  The 
hydrodynamic equations are integrated numerically through a finite-difference scheme.

Concentration of the active nematogens in the center of the box. For intermediate values of the activity 
parameter α = α1 = α2 (left), the fluid exhibit an “on-off ” intermittent dynamics consisting of periods of 
laminar flow separated by chaotic “bursts”. Upon increasing the activity (right) the dynamics becomes 
completely chaotic.

Nematic order parameter (left) and longitudinal velocity (right) across the channel. For intermediate 
values of the activity parameter α = α1 = α2 , the system undergoes a transition from a stationary 
homogeneous state, to a state of non-uniform nematic order and flow.

Nematic order parameter (left) and longitudinal velocity (right) as a function of time in the oscillatory 
regime.

At even larger activities, the former state becomes unstable to an 
oscillatory flow.

ρ = ρsolvent + Mc = constant

The dynamics of the nematic tensor consists of two processes: a 
relaxation toward the equilibrium configuration and the coupling 
with the macroscopic flow. The later is associated with the fact 
that, due to their elongated shape, particles can rotate in a shear-
flow.
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Confined solution of length-stabilized microtubles and kinesin. (a) The system appears isotropic, but the different 
shades of grey reveal small concentration gradients. (b) In this snapshot the fluid is rapidly moving. There is a net 
vorticity in the system with a current that rotates clockwise (here highlited with a white arrow). (c) After the 
motion the fluid recovers a temporary state of rest.  Courtesy of Tim Sanchez (Dogic Lab).


