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Appetizer

Quoted from the workshop webpage:

1. How general is holography?

To what extent do (previous) lessons rely on the particular constructions
used to date? Are they tied to stringy effects and to string theory in
particular, or are they general lessons for quantum gravity?

Historically: holography intimately related to/derived from unitarity
(’t Hooft ’93, Susskind ’94)

Specific question addressed in this talk:

Does holography apply only to unitary theories?
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Focus on very special but generic phenomenon
Leitmotif: critical points

Basic idea (generic):

(i
d

dt
− ω1)(i

d

dt
− ω2)ψ = 0

ω1,2 determined by parameters/coupling constants of theory
Two branches of solutions: ψ1,2 ∝ e−iω1,2 t

Critical point through infinite fine tuning (very special): ω2 → ω1

Branches degenerate and “logarithmic” branch emerges:

ψlog ∝ lim
ω2→ω1

ψ2 − ψ1

ω2 − ω1
∝ te−iω1 t + αψ1

Hamiltonian H = i d
dt acquires Jordan-block structure

H

(
ψlog

ψ1

)
=

(
ω1 1
0 ω1

) (
ψlog

ψ1

)

Holographic version of critical points?
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Outline

Gravity in three dimensions

Logarithmic CFTs

AdS3/LCFT2 correspondence

Generalizations
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Motivations for studying gravity in 3 dimensions

I Quantum gravity
I Address conceptual issues of quantum gravity
I Black hole evaporation, information loss, black hole microstate

counting, virtual black hole production, ...
I Integrable models: powerful tools in physics (Coulomb problem,

Hydrogen atom, harmonic oscillator, ...)
I Models should be as simple as possible, but not simpler

I Gauge/gravity duality
I Deeper understanding of black hole holography
I AdS3/CFT2 correspondence best understood
I Quantum gravity via AdS/CFT? (Witten ’07, Li, Song, Strominger ’08)
I Applications to 2D condensed matter systems?
I Gauge gravity duality beyond standard AdS/CFT: warped AdS,

asymptotic Schrödinger/Lifshitz, non-relativistic CFTs, flat space
holography, higher spin holography, logarithmic CFTs, ...

I Physics
I Cosmic strings (Deser, Jackiw, ’t Hooft ’84, ’92)
I Black hole analog systems in condensed matter physics (graphene,

BEC, fluids, ...)
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Topologically massive gravity
Deser, Jackiw & Templeton ’82

ITMG =
1

16πG

∫
d3x
√
−g
[
R+

2

`2
+

1

2µ
ελµν Γρλσ

(
∂µΓσνρ +

2

3
ΓσµτΓτ νρ

)]
Properties:

I Parity odd gravitational Chern–Simons term with coupling µ

I Asymptotic AdS, warped AdS, Schrödinger/Lifshitz, AdS2×S1, flat, ?
I Interesting scaling limits (µ→∞, µ→ 0, µ`→ 1, `→∞, ...)
I Black hole solutions, massive gravitons

Equations of motion:

Rµν −
1

2
gµνR−

1

`2
gµν +

1

µ
Cµν = 0

Cotton tensor

Cµν =
1

2
εµ
αβ∇αRβν + (µ↔ ν)
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Outline

Gravity in three dimensions

Logarithmic CFTs

AdS3/LCFT2 correspondence

Generalizations
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Conformal field theories in two dimensions

I Any CFT has conserved traceless energy momentum tensor (EMT)

Tzz̄ = 0 Tzz = OL(z) Tz̄z̄ = OR(z̄)

I 2- and 3-point correlators fixed by conformal Ward identities

〈OL(z)OL(0)〉 =
cL
2z4

〈OR(z̄)OR(0)〉 =
cR
2z̄4

Central charges cL/R determine key properties of CFT
I Minimal models:

c(p,q) = 1− 6
(p− q)2

pq
⇒ c(3,2) = 0

Kac table only one entry: identity — only trivial c = 0 CFTs?
I Concrete c = 0 model exist where partition function is not trivial:

percolation, self-avoiding polymers, O(n) model in n→ 0 limit,
systems with quenched disorder, ...

I Cannot be described by minimal (unitary) models
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The c = 0 catastrophe

Primary field OM with conformal weights (h, h̄):

〈OM (z , z̄)OM (0 , 0)〉 =
A

2z2hz̄2h̄

OPE:

OM (z , z̄)OM (0 , 0) ∼ A

2z2hz̄2h̄

(
1 +

2h

cL
z2OL(0) + . . .

)
Problem: divergence for cL → 0

Possible resolutions in limit cL → 0:

I weight vanishes h→ 0

I normalization vanishes A→ 0

I other operator(s) arise with h→ 2, which cancel divergence

Focus on last possibility
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Correlators in logarithmic conformal field theories (LCFTs)
Aghamohammadi, Khorrami & Rahimi Tabar ’97; Kogan & Nichols ’01; Rasmussen ’04

Suppose now that primary has conformal weights (2 + ε , ε):

〈OM (z, z̄)OM (0, 0)〉 =
A

2z4+2εz̄2ε

Suppose that limits exist:

bL := − lim
cL→0

cL
ε
6= 0 A = −cL +O(c2

L)

Define log operator:

Olog = lim
ε→0

OM −OL

ε
Obtain 2-point correlators:

〈OL(z)OL(0, 0)〉 = 0

〈OL(z)Olog(0, 0)〉 =
bL
2z4

〈Olog(z, z̄)Olog(0, 0)〉 = −bL ln(m2|z|2)

z4
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Critical points and Jordan cells

In terms of leitmotif example:

OL ∼ ψ1 OM ∼ ψ2 Olog ∼ ψlog

Log partner Olog of EMT has same conformal weights as EMT

If EMT acquires log partner Hamiltonian cannot be diagonalized

H

(
Olog

OL
)

=

(
2 1
0 2

)(
Olog

OL
)

Appearance of Jordan cell = defining feature of LCFTs

Note: Jordan cell can be higher rank than 2, but consider only rank 2 case here

LCFTs: Gurarie ’93 Reviews on LCFTs: Flohr ’01; Gaberdiel ’01
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LCFT summary

I c→ 0 limit in CFT intriguing (“c = 0 catastrophe”)

I EMT can acquire log partner
I Correlators acquire logarithms
I Hamiltonian acquires Jordan cell structure
I (Jordan cells in quantum mechanics: Berry phases!)

Is there a gravity side of the LCFT story?

D. Grumiller — Critical points in holography Logarithmic CFTs 13/28



LCFT summary

I c→ 0 limit in CFT intriguing (“c = 0 catastrophe”)
I EMT can acquire log partner

I Correlators acquire logarithms
I Hamiltonian acquires Jordan cell structure
I (Jordan cells in quantum mechanics: Berry phases!)

Is there a gravity side of the LCFT story?

D. Grumiller — Critical points in holography Logarithmic CFTs 13/28



LCFT summary

I c→ 0 limit in CFT intriguing (“c = 0 catastrophe”)
I EMT can acquire log partner
I Correlators acquire logarithms

I Hamiltonian acquires Jordan cell structure
I (Jordan cells in quantum mechanics: Berry phases!)

Is there a gravity side of the LCFT story?

D. Grumiller — Critical points in holography Logarithmic CFTs 13/28



LCFT summary

I c→ 0 limit in CFT intriguing (“c = 0 catastrophe”)
I EMT can acquire log partner
I Correlators acquire logarithms
I Hamiltonian acquires Jordan cell structure
I (Jordan cells in quantum mechanics: Berry phases!)

Is there a gravity side of the LCFT story?

D. Grumiller — Critical points in holography Logarithmic CFTs 13/28



LCFT summary

I c→ 0 limit in CFT intriguing (“c = 0 catastrophe”)
I EMT can acquire log partner
I Correlators acquire logarithms
I Hamiltonian acquires Jordan cell structure
I (Jordan cells in quantum mechanics: Berry phases!)

Is there a gravity side of the LCFT story?

D. Grumiller — Critical points in holography Logarithmic CFTs 13/28



Outline

Gravity in three dimensions

Logarithmic CFTs

AdS3/LCFT2 correspondence

Generalizations
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Ingredients for AdS3/LCFT2 correspondence

I There exists some bulk mode corresponding to the operator Olog

I Weights of Olog must degenerate with weights of OL
I Jordan cell structure of H ∼ L0 + L̄0 with respect to Olog, OL
I Central charges must be tunable to zero by some parameter
I Gravity theory should exhibit non-unitarity
I Conformal Ward identities must hold
I Partition function must not be trivial
I Quasi-normal mode spectrum should reflect appearance of Olog

I ...

Cannot be Einstein gravity!

2008-2010:

All items above work for TMG at critical point µ` = 1!
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Critical point in TMG

Central charges in TMG (Kraus & Larsen ’05):

cL =
3`

2G

(
1− 1

µ`

)
cR =

3`

2G

(
1 +

1

µ`

)
TMG at the critical point is TMG with the tuning

µ ` = 1

between the cosmological constant and the Chern–Simons coupling.
Why special? (Li, Song & Strominger ’08)

cL = 0 cR =
3`

G

Interesting possibilities:
I Dual CFT could be chiral (Li, Song & Strominger ’08)

I Dual CFT could be logarithmic (DG & Johansson ’08)
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Checks of LCFT conjecture
Jordan cell structure

Linearization around AdS background, g = gAdS + h leads to linearized
EOM that are third order PDE

G(1)
µν +

1

µ
C(1)
µν = (DRDLDMh)µν = 0 (1)

with three mutually commuting first order operators

(DL/R)µ
ν = δνµ ± ` εµαν∇̄α (DM )µ

ν = δνµ +
1

µ
εµ
αν∇̄α
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with three mutually commuting first order operators

(DL/R)µ
ν = δνµ ± ` εµαν∇̄α (DM )µ

ν = δνµ +
1

µ
εµ
αν∇̄α

Three linearly independent solutions to (1):(
DLhL

)
µν

= 0
(
DRhR

)
µν

= 0
(
DMhM

)
µν

= 0
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At critical point left (L) and massive (M) branches coincide!
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Linearization around AdS background, g = gAdS + h leads to linearized
EOM that are third order PDE

G(1)
µν +

1

µ
C(1)
µν = (DRDLDMh)µν = 0 (1)

with three mutually commuting first order operators

(DL/R)µ
ν = δνµ ± ` εµαν∇̄α (DM )µ

ν = δνµ +
1

µ
εµ
αν∇̄α

At critical point: get log solution (DG & Johansson ’08)

hlog
µν = lim

µ`→1

hMµν(µ`)− hLµν
µ`− 1

with property(
DLhlog

)
µν

=
(
DMhlog

)
µν
6= 0 ,

(
(DL)2hlog

)
µν

= 0
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Checks of LCFT conjecture
Jordan cell structure

Log mode exhibits interesting property (DG & Johansson ’08):

H

(
hlog

hL

)
=

(
2 1
0 2

)(
hlog

hL

)
Here H = L0 + L̄0 ∼ ∂t is the Hamilton operator.

Such a Jordan form of H is defining property of a logarithmic CFT!

Jordan-block structure was main motivation for LCFT conjecture
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Checks of LCFT conjecture
Finiteness

Properties of logarithmic mode:
I Perturbative solution of linearized EOM, but not pure gauge
I Energy of logarithmic mode is finite

Elog = −47/1152G`3

and negative → instability (DG & Johansson ’08)
I Logarithmic mode is asymptotically AdS

ds2 = dρ2 +
(
γ
(0)
ij e

2ρ/` + γ
(1)
ij ρ+ γ

(0)
ij + γ

(2)
ij e

−2ρ/` + . . .
)

dxi dxj

but violates Brown–Henneaux boundary conditions! (γ
(1)
ij

∣∣
BH

= 0)
I Consistent log boundary conditions replacing Brown–Henneaux (DG &

Johansson ’08, Martinez, Henneaux & Troncoso ’09)
I Brown–York stress tensor is finite, conserved and traceless, but not chiral

(Martinez, Henneaux & Troncoso ’09, Maloney, Song & Strominger ’09,
Ertl, DG & Johansson ’09)

I Log mode persists non-perturbatively, as shown by Hamilton analysis (DG,
Jackiw & Johansson ’08, Carlip ’08)
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Checks of LCFT conjecture
Correlators

If LCFT conjecture is correct then following procedure must work:
I Calculate non-normalizable modes for left, right and logarithmic

branches by solving linearized EOM on gravity side
I According to AdS3/LCFT2 dictionary these non-normalizable modes

are sources for corresponding operators in the dual CFT
I Calculate 2- and 3-point correlators on the gravity side, e.g. by

plugging non-normalizable modes into second and third variation of
the on-shell action

I These correlators must coinicde with the ones of a LCFT

Except for value of new anomaly bL no freedom in this procedure.
Either it works or it does not work.

I Works at level of 2-point correlators (Skenderis, Taylor & van Rees
’09, DG & Sachs ’09)

I Works at level of 3-point correlators (DG & Sachs ’09)
I Value of new anomaly: bL = −cR = −3`/G
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Checks of LCFT conjecture
1-loop partition function (Gaberdiel, DG & Vassilevich ’10)

Structure of low-lying states in
LCFT:

• •

•

�

@
@
@

@
@@I �

�
�
�

��	

OL Olog
(L0 − 2), L̄0

Ω

L−2 L2

Total partition function of Virasoro
descendants

Z0
LCFT = ZΩ + Zlog =
∞∏
n=2

1

|1− qn|2
(

1 +
q2

|1− q|2
)

Comparison with 1-loop calculation
in Euclidean path integral approach
to quantum gravity:
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1-loop partition function (Gaberdiel, DG & Vassilevich ’10)

Structure of low-lying states in
LCFT:

• •

•

�

@
@
@

@
@@I �

�
�
�

��	

OL Olog
(L0 − 2), L̄0

Ω

L−2 L2

Total partition function of Virasoro
descendants

Z0
LCFT = ZΩ + Zlog =
∞∏
n=2

1

|1− qn|2
(

1 +
q2

|1− q|2
)

Comparison with 1-loop calculation
in Euclidean path integral approach
to quantum gravity:

ZTMG = Z0
LCFT +

∑
h,h̄

Nh,h̄ q
hq̄h̄

∞∏
n=1

1

|1− qn|2

All multiplicity coefficients Nh,h̄ can be shown to be non-negative.
Fairly non-trivial test of the LCFT conjecture!
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Checks of LCFT conjecture
Quasi-normal modes (Solodukhin & Sachs ’08, Sachs ’08)

I Birmingham, Sachs, Solodukhin ’01:
One-to-one correspondence between poles of retarded propagator in
CFT and quasi-normal frequencies of linear perturbations of BTZ

I LCFT should have double pole instead of single pole due to
degeneration of operators at critical point

I Sachs ’08:
TMG at critical point has standard right-moving QNM, but no
left-moving QNM (pure gauge)

I Additional QNM from log modes

I Linear dependence in time of log modes produces the predicted
double pole

QNM spectrum compatible with LCFT conjecture:
Double poles in retarded correlators
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Outline

Gravity in three dimensions

Logarithmic CFTs

AdS3/LCFT2 correspondence

Generalizations
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Summary and generalizations

LCFTs have taught us a great deal about critical TMG!
AdS/LCFT decouples holography from unitarity issues

TMG at the critical point is very special, but to what extent is it generic?
I 3D: generic massive gravity theories (DG, Johansson, Zojer ’10)

I New massive gravity, generalized massive gravity, ...
I higher rank Jordan cells possible in some of these models
I qualitatively new LCFTs may arise: no log partner of EMT

I 4D (and higher D): critical gravity (Lü, Pope ’11, Deser et. al ’11)

2-point correlators match expectations from 3D LCFT (Johansson,

Naseh & Zojer ’12)

I Higher spin log gravity (Chen, Long & Wu ’11; Bagchi, Lal, Saha &

Sahoo ’11)

I String construction leading to critical gravity?
Perhaps possible in ABJM context in higgsed phase (Chu & Nilsson

’09, Chu, Nastase, Nilsson & Papageorgakis ’10)
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Thanks to my collaborators ...
... and thanks for your attention!

Vienna group, March 2012 KITP collaboration, May 2012

LCFT: N. Johansson, R. Jackiw, I. Sachs, O. Hohm, M. Gaberdiel, D. Vassilevich,
T. Zojer, S. Ertl, M. Bertin
conformal CS holography: H. Afshar, B. Cvetkovic, N. Johansson, S. Ertl
higher spin holography: M. Gary, R. Rashkov
flat space holography: A. Bagchi, S.Detournay

other holographic aspects: J. Aparicio, E. Lopez, I. Papadimitriou, S. Stricker
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Critical points and Jordan cells in quantum mechanics
See “Non-Hermitian quantum mechanics” by Nimrod Moiseyev

Consider the Hamiltonian

H =

(
1 λ
λ −1

)
with Eigenvalues E± = ±

√
1 + λ2

Non-hermitian critical points: λ→ ±i
Eigenvector c± = (±i, 1) self-orthogonal: c2

± = 0

Similarity trafo J = A−1HA:

J =

(
0 1
0 0

)
Simplest example of Jordan cell in non-
hermitian critical quantum mechanics!
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Berry phase

Physical significance of critical points?

I Critical points and Jordan cells require infinite fine-tuning

I Experimentally: can never infinitely fine-tune parameters

I Instead: vary parameters adiabatically in vicinity of critical points

Eigenvalue: λ = λc +Reiφ

I Energies on two branches:

E±(φ) = Ec ± α
√
Reiφ/2

I Wavefunctions on two branches:

|Ψ±〉 = A±e
−iφ/4(|Ψc〉 ±

√
Reiφ/2|χ〉

)
I Berry phase: rotate φ = 2πn, with n = 1, 2, 3, 4, . . .
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Eigenvalue: λ = λc +Reiφ

I Energies on two branches:

E±(φ) = Ec ± α
√
Reiφ/2

I Wavefunctions on two branches:

|Ψ±〉 = A±e
−iφ/4(|Ψc〉 ±

√
Reiφ/2|χ〉

)
I Berry phase: rotate φ = 2πn, with n = 1, 2, 3, 4, . . .
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Systems with quenched disorder

LCFTs arise in systems with quenched disorder.

I Quenched disorder: systems with random variable that does not
evolve in time

I Examples: spin glasses, quenched random magnets, dilute
self-avoiding polymers, percolation

I For sufficient amount of disorder perturbation theory breaks down —
random critical point

I Infamous denominator in correlators:

〈O(z)O(0)〉 =

∫
DV P [V ]

∫
Dφ exp

(
− I[φ]−

∫
d2z′V (z′)O(z′)

)
O(z)O(0)∫

Dφ exp
(
− I[φ]−

∫
d2z′V (z′)O(z′)

)
I Different ways to deal with denominator (replica trick, SUSY)
I Result: operators degenerate and correlators acquire logarithmic

behavior, exactly as in LCFT (Cardy ’99)
I Exploit LCFTs to compute correlators of quenched random systems
I Idea: Apply AdS3/LCFT2 to describe strongly coupled LCFTs!
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Some literature on condensed matter applications of LCFTs

I Cardy ’99 Logarithmic correlations in Quenched Random Magnets
and Polymers

I Gurarie & Ludwig ’99 Conformal algebras of 2D disordered systems
I Rahimi Tabar ’00 Quenched Averaged Correlation Functions of the

Random Magnets
I Reviews: Flohr ’01 and Gaberdiel ’01

More applications awaiting to be discovered!
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