Toy Models and Fast Scrambling (I)

Patrick Hayden with Nima Lashkari, Douglas Stanford, Tobias Osborne and Matt Hastings

Scrambling

- Minimum time for "localized" information to become inaccessible without measuring fraction $\mathrm{O}(1)$ of the whole system
- Normal systems: geometrical locality

- Sc
- $1 t^{\star} \sim \log >$ (estimate based on charge spreading)
- Conjecture: this is correct, and no system can scramble its degrees of freedom faster [Sekino-Susskind'o8, susskind'11]
- Motivation: black hole complementarity principle

Scrambling and quantum error correction

Scrambling and quantum error correction

Scrambling time controls information release. Faster than log S leads to problems for black hole complementarity.

Sending arbitrary states from M to ER is equivalent to establishing entanglement between N and ER

Establishing entanglement between N and R is equivalent to eliminating all correlations between N and B^{\prime}

$$
\begin{gathered}
\operatorname{Tr}_{E R} \sigma_{N B^{\prime} R}=\mathrm{T}_{\mathrm{N}} \quad \xi_{\mathrm{B}^{\prime}} \\
\\
\Rightarrow \\
\left|\sigma_{N B^{\prime} E R}\right\rangle=\left(\mathrm{id}_{\mathrm{NB}} \quad\right. \\
\left.\mathrm{U}_{\mathrm{ER}}\right)\left|\phi_{\mathrm{NR} 1}\right\rangle\left|\psi_{\mathrm{B}^{\prime} R 2}\right\rangle
\end{gathered}
$$

If U scrambles systems of size $\left|B^{\prime}\right|$, then the message M can be decoded from ER. (Ao-cloning requires $|\mathrm{R}|>\left|\mathrm{B}^{\prime}\right|$.)

Big picture versus toy examples

String theory descriptions of black holes couple degrees of freedom nonlocally.
e.g. BFSS Matrix theory: $\quad L=\sum_{a} \operatorname{tr} \dot{M}^{a} \dot{M}^{a}-\sum_{a b} \operatorname{tr}\left[M^{a}, M^{b}\right]^{2}$

Every pair of matrix entries appears together in at least one term

Would like to show by direct analys a e system that it is a fast scrambler

Goal of this hour is more modest:

1) Find examples of toy systems that scramble quickly Want time independent, 2-body interactions, unengineered Should scramble a whole subspace of initial states
2) Prove general lower bounds on scrambling times

Related work

- Asplund, Berenstein, Trancanelli
- Numerical simulation of BMN matrix model (classical)
- Bar

- Edá................, .-....a<a, valua
- Use AdS/CFT to study thermalization in strongly coupled noncommutative gauge theories

Outline

- Part I
- Scrambling and quantum error correction
- Definitions and calibration
- Brownian quantum circuits
- Part II (Douglas Stanford)
- Ising interaction on random graphs
- Lieb-Robinson bounds for nonlocal interactions
- Comments on AdS/CFT

Some formality

Scrambling n subsystems: any $n / 3$ should be independent of ψ

In our toy models, we will simply compare $\operatorname{tr}_{\mathrm{R}} \sigma(\psi)$ to the unique maximum entropy state on B^{\prime}.

The computer scientist's cop-out

Determining whether a noisy quantum evolution is correctable is QSZK-complete
[with Brian Swingle]

Brownian circuits

G_{i} random pairwise interaction

> Location
> $G_{i}=\sum_{<j, k>\alpha_{j}, \alpha_{k}} \sigma \sigma_{\alpha_{j}}^{(j)} \otimes \sigma_{\alpha_{k}}^{(k)} g_{i j k \alpha_{j} \alpha_{k}}$
> i.i.d. Gaussian $N(0, \varepsilon)$

Limit of infinitesimal ε :

$$
\sigma_{0}=I \sigma_{1}=\sigma_{x} \sigma_{2}=\sigma_{y} \sigma_{3}=\sigma_{z}
$$

Subsystem entropies

State $\Psi(\mathrm{t})$. Density operator for S subset of $\{1,2, \ldots, n\}: \Psi_{\mathrm{s}}(\mathrm{t})=\operatorname{tr}_{[n] \backslash S} \psi(\mathrm{t})$.
Interested in purity $\mathrm{h}_{\mathrm{s}}(\mathrm{t})=\operatorname{tr} \psi_{\mathrm{s}}(\mathrm{t})^{2}$

Smooth out fluctuations by averaging over trajectories: < $h_{\text {s }}(\mathrm{t})>$

> Simplify by choosing product pure input state $\left|\psi(0)>=\left|\psi_{1}>\left|\psi_{2}>\ldots\right| \psi_{n}\right\rangle\right.$

$$
\text { Gives }\left\langle h_{s}(t)\right\rangle=\left\langle h_{|s|}(t)\right\rangle=\left\langle h_{k}(t)\right\rangle
$$

Small miracle: system of linear ODE closes and is (almost) solvable

$$
\frac{d\left\langle h_{k}\right\rangle}{d t}=k(n-k)\left[2\left\langle h_{k-1}\right\rangle-5\left\langle h_{k}\right\rangle+2\left\langle h_{k+1}\right\rangle\right]
$$

Analysis of ODE

$$
|\psi(0)\rangle=\left|\psi_{1}\right\rangle\left|\psi_{2}\right\rangle \ldots\left|\psi_{n}\right\rangle
$$

$$
\text { Purity } \mathrm{h}_{\mathrm{k}}(\mathrm{t})=\operatorname{tr} \psi_{|\mathrm{s}|=\mathrm{k}}(\mathrm{t})^{2}
$$

$$
\frac{d\left\langle h_{k}\right\rangle}{d t}=k(n-k)\left[2\left\langle h_{k-1}\right\rangle-5\left\langle h_{k}\right\rangle+2\left\langle h_{k+1}\right\rangle\right]
$$

Quick and dirty analysis

Let t_{k} be time at which $\left\langle h_{k}(t)\right\rangle=(1+\delta) 2^{-k}$

$$
\begin{aligned}
\frac{d\left\langle h_{k}\right\rangle}{d t} & \sim \leq k n\left[2 \frac{1+\delta}{2^{k-1}}-5\left\langle h_{k}\right\rangle+2\left\langle h_{k+1}\right\rangle\right] \\
& \leq k n\left[2 \frac{1+\delta}{2^{k-1}}-3\left\langle h_{k}\right\rangle\right]
\end{aligned}
$$

Exponential decay with rate proportional to k .

$$
\text { So } t_{k}-t_{k-1} \leq O(1 / k)
$$

$$
t_{k} \sim \sum_{j=1}^{k} \frac{1}{j} \sim \log (k)
$$

Careful analysis

Solve using Gauss hypergeometric functions

$$
\left\langle h_{k}(t)\right\rangle \sim \sum_{j=1}^{n} \alpha_{j k} e^{-3 j t} n 2^{-n-1+2 j}{ }_{2} F_{1}\left(n+1,1-m ; 2 ; \frac{3}{4}\right)
$$

Brownian circuits: take-home

- Scramble very effectively: subsystems of size smaller than half become almost maximally mixed
- Scramble quickly: $\mathrm{t}^{*} / \mathrm{t}_{1}=\mathrm{O}(\log \mathrm{n})$
- But:
- Time-dependent
- Not very physical
- Lots of randomness

