Biology: what’s the problem?
The Levels Perspective

Tony Bell
Redwood Center for Theoretical Neuroscience
University of California at Berkeley
The Levels Ansatz

This is the idea that there is *no fundamental level in biology*.

1. Learn about the rungs

2. Learn to walk up and down

Because that is what the biological information is itself doing.

CLAIM: The adaptive power of biology comes from the inter-level information flows, not from the computation at any given level.
State vectors in machines and nature

Computer

bits

electrons

law

t to t+1

Biology

eg: spikes

eg: proteins

b.c.

emergence

t to t+1
Unsupervised Learning (density estimation)

Complete:
ICA and extensions

Overcomplete:
Sparse coding

Undercomplete:
??

Multilayer:
Deep Belief Nets ?

Temporal:
Kalman, HMM, Dynamic Bayes

Sensorimotor:
???
Sensorimotor density estimation

for \[\begin{align*}
p(x): & \quad \text{data distribution} \\
q(x): & \quad \text{model distribution} \\
D[p \mid q]: & \quad \text{divergence of model from data} \\
w: & \quad \text{a synaptic weight}
\end{align*} \]

the learning gradient is:

\[\partial_w D[p \mid q] = \left(\left(1 + \log \frac{p}{q} \right) \partial_w \log p - \partial_w \log q \right)_p \]

the motor problem
change world to fit model

the sensory problem
change model to fit world
Unsupervised learning from natural images

RESULTS:
- simple cells
- complex cells
- V1-type topography (‘orientation column’)

Density estimate
16x16 image patches with assumptions:

1. ‘Independence’ or sparseness
2. 2D topography

Olshausen & Field 97
Bell & Sejnowski 97
Hyvarinen & Hoyer 01
(this result: Osindero et al 06)
Spikelihood (unsupervised learning with spikes)

Sensitivity matrix (Jacobian) of all output timings w.r.t. input timings:

\[T = \frac{\partial t'}{\partial t^T} \]

gives the most complicated unsupervised learning rule ever derived:

\[
\Delta W_{i,j} \propto \frac{T_{kl}}{W_{ij}} \left([T^T\#]_{kl} - [TT^T\#]_{kk} \right) - f(r_i)r_j
\]

Bell & Parra NIPS 04, Parra, Beck & Bell, Neur. Comp. 08
What went wrong?

Neurons map into an overcomplete, more microscopic, space (synapses)

Dendrites are not feedforward:

But feedback (through back-propagating action potential):

This is an inter-level mapping:

Neurons

Synapses & axon hillock ie: protein complexes

Neurons map into an overcomplete, more microscopic, space (synapses)
and there are lots of these protein complexes in dendrites:

Figure: A hippocampal neuron with synapses stained for postsynaptic proteins Shank and Homer (white puncta). Overexpression of dominant negative form of Homer (Homer1a) causes loss of dendritic spines and suppression of postsynaptic responses.

Picture by Carlo Sala.
Synapses also map into an overcomplete, more microscopic, space (macromolecules)

ie: protein complexes

ie: V- & Ca-dependent ion channels and PSD proteins
The synapse is itself a network, communicating through calcium. (calcium is the “voltage” of the PSD.)

We could go deeper down (into the cytoplasm), but what about the brain?
Human Electro-corticogram with frequency–dependent coherences

- high gamma (80-150Hz) coherence: 0.3-3mm
- theta (4-8Hz) coherence: 10-20mm

(from Canolty et al)
Brain networks communicate through oscillations.

ie: large-scale cell assemblies map into an overcomplete space: small assemblies (Lakatos, Schroeder, Canolty)

ie: small-scale cell assemblies map into an overcomplete space: neurons (Fries, Koepsell)

delta networks

theta networks

gamma networks

is this true? can we elaborate? what of alpha, beta?

delta to theta coupling (Lakatos et al)

theta to hi-gamma coupling (Canolty et al)

gamma to spike coupling (Fries et al)
Multisensory supragranular entrainment of delta in V1 by attention.

L II/III is pi out of phase when attending to auditory compared to attending to visual.

Theta and gamma amplitudes modulated in counterphase.

Summary

In the brain:

calcium is to networks of proteins
what voltage is to networks of synapses/protein complexes
what spike timing is to small networks of neurons (gamma circuits)
what oscillation-phase is to larger networks

Of course it is more complex than that, but this cartoon-view is a start.

These are not separate levels of organisation, but the same thing expressed at different spatio-temporal resolutions, as with an image pyramid:

(You could read my words from my calcium flows...)
Consequences of the Levels Perspective:

1. Biology consists of *networks within networks* with no “cutoff level”.
2. Modularity implies information flow is up and down, *not horizontal*.
3. The micro is an *overcomplete* space in which information can be stored.
4. A *question* is a macroscopic constraint.
5. An answer (a *memory*) is an emergence from the microscopic.
6. Emergence into *awareness* is probably emergence from the microscopic.
7. *Noise* is an experimental concept. It does not relate to reality.
 It is an emergence that is unwanted by an experimenter.
8. *Control* is a macroscopic b.c. disruptable by emergence or higher b.c.
9. What appear as loops are actually inter-level interactions.
10. The *sensorimotor loop* (eg) is inter-level and nested in the hierarchy.
11. *Reward* is an agent-centred concept which dissolves in the hierarchy.
12. *Sleep* is a chance for molecular and neural nets to converse without interference from the social network.
13. All processes are *the same thing* expressed at different resolutions.
14. There is thus *no friction* between explanations at different levels
 (for example, between evolution and self-organisation)

Scientific challenge:

To unify microscopic physics, biology and the modern theory of probabilistic learning/inference (density estimation?), in the light of these inter-level observations.
“Unfortunately, nature seems unaware of our intellectual need for convenience and unity, and very often takes delight in complication and diversity.” - Cajal

The levels perspective, which is diametrically opposed to the von Neumann view, which still dominates, should not be depressing.

Rather, it should alert us to a different set of questions:

- Are there invariant characteristics in inter-level information flows in biology?

- Is there a multiresolution density estimation scheme involved?

- Is there a connection to scale-invariant multi-level theories in physics (ie: Renormalisation Group)

- Are levels inter-defined? (in which case reductionism is wrong)
Thank you
Protein energy landscapes, wet and dry
Multivariate case 1: Independent Component Analysis.

\[u = W x \]

Make \(p(y) = \frac{p(x)}{|\partial_x y|} \rightarrow 1 \):

\[q(x) \]

\[\Delta W \propto (I - \langle f(u)u^T \rangle_p) W \]

Natural gradient infomax/maximum likelihood (Bell & Sejnowski (1995), Amari, Cichocki & Yang (1996))
Multivariate case 2: Dependent Component Analysis.

$u = Wx$

$q(u) = \text{whatever}$

but if it is a loopy graphical model, like

we get the gradient of the partition function (so we need to sleep)

$ΔW \propto \left(\langle f(u)u^T \rangle_q - \langle f(u)u^T \rangle_p \right) W$

Multivariate case 2:
Dependent Component Analysis.

\[u = Wx \]

The Gibbs distribution:
\[q(u) = \frac{1}{Z} e^{-E(u)} \]
gives us this very Boltzmann Machine-esque form

\[\Delta W \propto \left(\langle f(u)u^T \rangle_q - \langle f(u)u^T \rangle_p \right) W \]