But what do they see?

Functional consequences of abnormal visual system topography in ephrin-A⁻/⁻ mice

Jenny Rodger
School of Animal Biology
University of Western Australia
The visual system

Topographic organisation
Normal

Ephrin-A2-/-
Some temporal axons incorrect

Ephrin-A5-/-
Some temporal and some nasal axons incorrect

Ephrin-A2/A5-/-
Few axons correct
Visually-evoked behaviour

• Placing response
• Visuomotor response
• Pupillary mobility
• Visual acuity

Visual pathways

• Retino-collicular projection
• Retino-pretectal projections
• Ipsilateral and contralateral projections
Visuomotor response:
Head tracking movements in response to moving stripes

Light conditions

![Graph showing tracking movements in light conditions.]

Spatial frequency

- 0.03
- 0.13
- 0.26
- 0.52

Dark conditions

![Graph showing tracking movements in dark conditions.]

Lack of sensitivity to light?
Pupillary mobility, light dark avoidance tests

Reduced visual acuity?
Visual acuity
Forced choice learning task
Visually-evoked behaviour

Normal:
• Placing response
• Pupillary mobility (pretectal, non-topographic)
• Visual acuity (geniculocortical)

Abnormal:
• Visuomotor response
 (pretectal, superior colliculus, binocular, but also tecto-olivary, cerebellar, neck muscles…)

Normal EphA
Ephrin-A2-/-: Some temporal axons incorrect
Ephrin-A5-/-: Some temporal and some nasal axons incorrect
Ephrin-A2/A5-/-: Few axons correct
Electrophysiological mapping

- Supernumerary non-topographic projections can evoke a collicular response
- The “strongest” RF is not necessarily the most topographically appropriate
- Similar amount of functional disorder in ephrin-A2/- and ephrin-A2/A5/- mice
Quantification of disorder

• Calculated the predicted location of RF based on the electrode recording location
• Disorder value represents the distance between predicted and actual RF location

![Graphs showing disorder value and receptive field size for different groups]
Non-correlation between visually evoked behaviour and functional retinocollicular topography:

Behaviour:
WT > ephrin-A2-/- > ephrin-A2/A5-/-

Functional topography:
WT > ephrin-A2-/- = ephrin-A2/A5-/-
Binocular input

Less than 10% of RGCs, project to rostral 1/3rd of the SC
Binocular input

Monocular field

A
B
C

Contralateral eye

1
2
3
4
5
6

Ipsilateral eye

D
E
F

6
5
4
3
2
1

Binocular field

Superior colliculus

F
E
D
C
B
A

1
2
3
4
5
6
Intact visual system

Monocular field

Binocular field

A B C

D E F

Contralateral eye

Ipsilateral eye

1 2 3

4 5 6

Superior colliculus

Monocular enucleation

Monocular field

Binocular field

A B C

D E F

Ipsilateral eye

Superior colliculus

Intact visual system
Relationship between contralateral and ipsilateral input
Visuomotor response
Monocular occlusion (left eye)

Light conditions, 0.32 cpd
Comparing anatomical and functional topography: Limits of activity dependent refinement?

Integration of binocular input: role for ephrin-A5?

Other projections to the SC?
Acknowledgements

Daniel Haustead, Sherralee Lukehurst, Carole Bartlett, Gen Clutton, Catherine Arrese

School of Animal Biology, UWA
Lyn Beazley, Sarah Dunlop
Michael Archer, Marissa Penrose

Department of Anatomy, UWA
Rachel Sherrard, Alan Harvey

Animal Care Unit
Helen Moulder and Simone Ross