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models that you ighore the microscopic details.
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We are so used to the success of simple models that we
seldom think (any more) about why they work ...



“coarse-graining”
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What does “real space” coarse-graining mean?

microscopic variable at site j

coarse-grained variable at site | l
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could be identity, or

restore normalization, or
majority rule to restore binary

sum over neighborhood
surrounding site i

How do we do this for neurons,
where locality isn’t much of a guide?

Try “neighbors” = maximally correlated pairs



Optical recording from hippocampal neurons as a
mouse moves Iin a virtual environment
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Simplest version
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Keep continuous signals

Normalize so that mean nonzero signal = 1

Add together signals from most correlated pair, then the next ...

Arrive at N/2 coarse-grained variables
Iterate

K = 2“of the original microscopic
variables are grouped together
after k stages of coarse-graining

Ll

=
—
>i L
e

Follow the distribution of
individual coarse-grained variables
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For independent neurons,
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Can also discretize to a binary (Ising) activity
variable for each neuron
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Correlations inside the clusters

(small excursion to blackboard)



eigenvalue

Correlations inside the clusters

Find the eigenvalues in

Cij = (0i05) — {0i)(0j) clusters of different sizes
(be careful about sampling problems!)

10°; cluster size
' o K=32
- *K=64
101+ ®* K=128
5 4K * | estimation error
_ rank from a single
10_2_E / experiment
| 1= 0.76 4 0.05 & 0.06
10731 I
- standard deviation
104 across three

102 10 10° experiments/mice

rank/K



Larger clusters have but these

slower dynamics ... dynamics scale.
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Thing to discuss, or worry about

We can do it all again in “momentum” space
Finite sample effects on eigenvalue spectra

Connection to place fields, biological function
New analysis, new artifacts

Some things suggested by the data

Self-similarity of correlation structures

Distributions of coarse-grained quantities approach fixed form
Connection to earlier discussions of criticality

Dynamic scaling - network accesses a wide range of time scales






We can do this all again in “momentum” space ...
O = (o) (o) S Cyu® = Al
ij = (0103) — (0i)(0]) iU U

y

(pause for a reminder about momenta as eigenvectors of C)



Distribution of
coarse-grained variables
approaches a fixed,
non-Gaussian form
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