Dynamics of whisking and touch responses in layer-4 cortical barrels with several types of interneurons

David Golomb

Depts. of Physiology and Physics, Ben-Gurion Univ., Be'er-Sheva, Israel

with

Karel Svoboda

Diego Gutnisky

Andrew Hires

Jianing Yu

Janelia Research Campus, HHMI, Ashburn VA

Tommer Argaman

Dept. of Physiology, Ben-Gurion Univ., Be'er-Sheva, Israel

Content

- The whisker somatosensory system.
- Theory: dynamics of strongly-coupled cortical circuits.
- Electrophysiological results.
- Models of cortical networks with excitatory (E) and PV inhibitory neurons.
- Models of cortical networks with E, PV and SOM neurons.

The whisker somatosensory-motor system

Object (pole) localization by head-fixed mice

The flow of information underlying tactile sensation

- Mice move their whiskers to detect, localize and identify objects by touch.
- Information from each whisker is processed in one barrel in Layer 4.
- Experiments:
 Video recording of whisker movement.
 Recording from neurons in thalamic barreloids and cortical barrels.

The thalamocortical circuit

The layer-4 (L4) circuit in the barrel cortex is relatively simple because:

- Neurons in different barrels are hardly connected.
- E and PV neurons in each barrel are synaptically innervated by other neurons in the barrel and VPM thalamic (T) neurons only.
- SOM neurons mainly target L4. They preferentially inhibit L4 PV neurons (Lee... Rudy, Neuron, 2013).

Connectivity diagram – chemical synapses

Recording from behaving, head-fixed mice

Response to baseline (non-whisking) and whisking

Yu et al., 2016.

Yu and Svoboda, unpublished.

Neurons tends to fire more during maximal retraction. Modulation depth ~0.25.

Response to touch

Hires et al., 2015; Yu et al., 2016; Gutnisky et al., 2017.

Examples

SOM neurons respond to touch with delay

Electrophysiology: summary of results

	Firing rate NW, v (Hz)	Firing rate W, $ {\it U}$ (Hz)	Spikes/Touch R
T (VPM)	5±6	14±13	0.6±0.5
L4 PV	9±9	21±16	1.9±1
L4 SOM	3.2±4.3	4±5.7	0.7±0.7
L4E	0.4±0.6	0.6±0.9	0.3±0.4

The L4 micro circuit enhances touch representation and suppresses self-movement signals

Dynamics of cortical circuits

Conditions:

- Localized networks:
 Probabilities and strengths of synaptic conductances do not depend on distance between neurons.
- Strong coupling: total excitatory (inhibitory) synaptic conductance >> threshold.
- Asynchronized firing patterns is obtained if connectivity is very sparse.

Measures of population firing activities

- Population firing rate, v_{α} , α =T, E, P, S, V.
- Population coefficient of variation $CV_{ISI,\alpha}$.
- Synchrony measure $-\chi_{\alpha}$: Normalized temporal fluctuations of the population voltage.

$$\chi = 1 \qquad \text{Full synchrony} \\ \chi \sim 1/\sqrt{N} \qquad \text{Asynchrony} \qquad \qquad \text{Golomb and Rinzel, 1993;} \\ \text{Golomb, Scholarpedia, 2007.}$$

• Population touch response, R_{α} .

Theory: balanced state

(van Vreeswijk and Sompolinsky, 1996; 1998)

Constant or slowly-varying stimulus.

$$\alpha, \beta = T, E, P$$

$$p_{\alpha\beta} = K_{\alpha\beta} / N_{\beta}$$

probability of coupling from population β to population α .

$$1 \square K_{\alpha\beta} \square N_{\beta}$$

$$G_{\alpha\beta} = g_{\alpha\beta} / \sqrt{K_{\alpha\beta}}$$

$$K_{\alpha\beta} = Kk_{\alpha\beta}$$

$$\boldsymbol{J}_{\alpha\beta} = \sqrt{k_{\alpha\beta}}\,\boldsymbol{g}_{\alpha\beta}\Delta V_{\alpha\beta} \quad \Delta V_{\alpha\beta} = V_{\mathrm{syn},\beta} - V_{\mathrm{rest},\alpha}$$

The firing rate of the α th population is v_{α} .

$$\mu_{\rm E} = \sqrt{K} \left(J_{\rm ET} \nu_{\rm T} + J_{\rm EE} \nu_{\rm E} + J_{\rm EP} \nu_{\rm P} \right)$$

$$\mu_{\mathrm{P}} = \sqrt{K} \left(J_{\mathrm{PT}} \nu_{\mathrm{T}} + J_{\mathrm{PE}} \nu_{\mathrm{E}} + J_{\mathrm{PP}} \nu_{\mathrm{P}} \right)$$

To prevent saturation of the single-cell dynamic range, excitation and inhibition should adjust so as to nearly cancel each other.

$$J_{\mathrm{ET}}\nu_{\mathrm{T}} + J_{\mathrm{EE}}\nu_{\mathrm{E}} + J_{\mathrm{EP}}\nu_{\mathrm{P}} = 0$$

$$J_{\rm PT}\nu_{\rm T} + J_{\rm PE}\nu_{\rm E} + J_{\rm PP}\nu_{\rm P} = 0$$

Neuronal nonlinearities are effectively washed out.

Conditions for non-zero v_E and v_I : (existence and stability to rate fluctuations)

$$\left| rac{\left| J_{
m PP}
ight|}{J_{
m PT}} > \left| rac{\left| J_{
m EP}
ight|}{J_{
m ET}} \quad , \quad rac{J_{
m PE}}{J_{
m PT}} > rac{J_{
m EE}}{J_{
m ET}}$$

The solution of the linear equations is

$$u_{
m E} = rac{J_{
m ET} \mid J_{
m PP} \mid -J_{
m PT} \mid J_{
m EP} \mid}{J_{
m PE} \mid J_{
m EP} \mid -J_{
m EE} \mid J_{
m PP} \mid}
u_{
m T}$$

$$u_{ ext{P}} = rac{J_{ ext{PE}}J_{ ext{ET}} - J_{ ext{EE}}J_{ ext{PT}}}{J_{ ext{PE}} \left| J_{ ext{EP}} \right| - J_{ ext{EE}} \left| J_{ ext{PP}} \right|}
u_{ ext{T}}$$

 $v_{\rm E}$ and $v_{\rm P}$ are linearly proportional to $v_{\rm T}$.

Properties of balanced networks

van Vreeswijk and Sompolinsky, 1996; Pehlevan and Sompolinsky 2014

 $1 \square K \square N$

Linear response at the population level.

Fast tracking of external inputs.

 Heterogeneity in in-degrees threatens the balance of excitation and inhibition (Landau et al. 2016).

What happens in real cortical circuits?

Experimental system: T-L4 in whisker somatosensory cortex.

Differences from assumptions leading to "balanced networks":

- Modest N's, K's.
- Connectivity is not very sparse.
- Synaptic delays τ_{delay} ~1 ms.
- No SOM-to-SOM inhibitory synapses.

Questions

Circuit dynamics in response to (almost) constant inputs :

Does the barrel circuit behave similarly to balanced networks? What are the effects of heterogeneities in the levels of in-degrees?

Non-whisking to whisking:

T and PV neurons fire at ~10 Hz and more than double their firing rates during the transition. Why are the firing rates of E neurons so low? Why don't their firing rates substantially increase during the transition?

Whisking vs. touch:

 $v_{\rm E}$ (0.6 Hz) during whisking is much smaller than $v_{\rm T}$ (14 Hz).

The number of spikes/touch (R_T =0.6, R_E =0.3 spike/touch) are more similar for the T and E populations.

How does the L4 circuit filter out whisking response while transmitting touch response?

Activation SOM neurons:

How is the activity of SOM neurons controlled by thalamic input and cholinergic activation from the brainstem?

Can the E-PV-SOM circuit exhibit approximate balance states?

A network model of the thalamocortical circuitry

Argaman and Golomb, Neurosci. 2018; Gutnisky, Yu, Hires, To, Bale, Svoboda and Golomb, PLoS CB 2017.

- The cortical network is composed of spiking neurons from the excitatory (E) and PV and SOM inhibitory types.
- N_E =1600, N_P =150, N_S =100, N_T =200 (C2 barrel).
- Modified Wang-Buzsaki conductance-based neurons (Hansel and van Vreewsijk, 2012).
- Random connectivity.
- Synaptic conductanced are in the ranges obtained in *in-vitro* experiments (within a range of 2-3).
- Synaptic delays τ_{delay} ~1 ms.
- No short-term synaptic plasticity.

• Thalamic neurons fire according to an inhomogeneous Poisson process with a generating function $\Lambda_{\rm T}(t)$.

$$\Lambda_{\rm T}(t) = A_{\rm T}(1 + B_{\rm T}\cos(2\pi t / T + \phi)) + C_{\rm T}\delta(t - t_c)$$

During non-whisking or whisking, $v_T = A_T$

Dynamics of L4 PV circuits

10

Thalamic firing rate, A $_{T}$ (Hz)

20

Renart et al., 2010

One PV neuron 50 V (mV) 0 Current, -I $(\mu A/cm^2)$ thr Current, -I $(\mu A/cm^2)$ syn,1 syn,1 syn,1 50 ms

Population of PV neurons

Dynamics of L4 E-PV circuits

Heterogeneity in in-degrees

In-degree: the total number of inputs from a neuronal population projecting to an individual neuron (Landau *et al.*, 2016, Pyle and Rosenbaum 2016).

Standard deviation: $\sigma_{K\alpha\beta} = CV_{K\alpha\beta}K_{\alpha\beta}$

In "larger" networks (N_1 ~1000, K_{11} ~250; Landau *et al.*, 2016), this heterogeneity threatens the balance of excitation and inhibition.

It increases the number of silent neurons and broadens the distribution of firing rates.

Heterogeneity in in-degrees

Same CV_K for all Inhibitory neurons Excitatory neurons synaptic populations. 0.8 0.15 queiscent queiscent Fraction Fraction 0.1 Exper. 0.05 30 L4I average firing rate, 4E average firing rate, $v_{\rm I}$ (Hz) (HZ) 20 SD of L4I firing rates, firing rates, SD of L4E $\sigma_{\nu I} \, (Hz)$ (HZ) o vE

0.1

CV of in-degrees, CV_K

0

For CV_K~0.3, the theoretically-obtained values of fractions of quiescent neurons are similar to experimentally-measured values, without the need for in-degree correlations and compensatory mechanisms.

0.3

0.1

CV of in-degrees, CV_K

0.3

0.2

0.2

Simulations: whisking and touch

PV-to-E synaptic delay is necessary for touch response.

An PV-to-E synaptic delay and a fast-rising stimulus allows a "window of opportunity" (Simons, 1989).

Expressing halorhodopsin in PV neurons

3 out of 4 PV (FS) neurons decreased their firing rate (and spikes/touch) in response to halo activation.

Halorhodopsin is a chloride pump.

Effects:

- 1. Negative "current injection".
- 2. Depolarization of GABA_A reversal potential (negligible).

Yu et al., 2016; Gutnisky et al., 2017.

Light activation of halorodopsin expressed in a fraction f_{halo} =0.5 of FS neurons

Hr⁺ neurons reduced their v_E if their ratio f_{halo} is below a certain value.

Dynamics of L4 E-PV-SOM circuits

- No SOM-to-SOM inhibitory synapses.
- E-to-SOM synapses are weak without facilitation.
- ACh drives the activity of SOM neurons via muscarinic receptors (Munoz... Rudy, 2017).

Beierlein, Gibson and Connors, 2003.

Conclusions

- Despite the relatively small size of L4 barrels and some synchrony among neurons, the dynamics of PV and E neurons in PV-E L4 circuits during nonwhisking and whisking states are consistent with balanced state ideas with finite-size corrections.
- The strong response of L4E neurons to touch is explained by the "window of opportunity" mechanism, and demands $au_{\rm delay}^{\rm EP} \sim 1 {
 m ms}$.
 - Brief thalamic stimulation breaks the balance between excitation and inhibition.