Wavelets, Wavebreaks and Ventricular Fibrillation

Guy Salama University of Pittsburgh

Supported by NIH RO1 HL70722, HL57929 and HL69097 and the Middle Atlantic American Heart Association

Mechanisms Underlying VF

Mother Rotor Hypothesis (Lewis, 1920)

• High resolution fluorescence imaging of perfused hearts show that VF is organized in discrete regions with dominant frequencies (Zaitsef et al., 1999, Chen et al., 2000, Samie et al., 2001).

Multiple Wavelet Hypothesis (Garrey, 1914; Moe et al, 1964)

- Dynamics of inter-activation interval are not compatible with mother rotor hypothesis (Evans et al. 1998, Garfinkel et al., 1997).
- Theoretical and experimental studies suggested that wave breaks may occur due to cardiac restitution (Karma, 1994; Weiss et al., 1999; Riccio et al., 1999; Qu et al., 2000).
- FFT analysis of VF showed complex multi-component peaks (Choi et al., 2001, Valderrábano et al., 2002).

VF is a Dynamic Process A Tale of Many Fibrillations?

- *In situ*, VF exhibits in distinct stages in the first 10 min, as ischemia sets in (Wiggers et al., Am Heart J, 1930; Huang et al., Am J Physiol., 2004)
- Initial phase of VF: multiple high frequency wavelets (type I VF) progresses to low frequency organized VF or dominant mother rotor (type II VF) in ischemic hearts (Chen et al., Circ. 2004)
- Experimental studies perfuse hearts under constant flow and induced VF by burst pacing. A quasi-static state of VF lasts up to 30 min. Multiple waves (12-18 Hz, type I) (Choi et al., Circ Res. 2001; 2002) and organized focal VF (up 32 Hz, type II) (Chen et al., Circ. Res. 2000) have been reported with VF frequencies higher on left than right ventricle.
- Global ischemia decreases the dominant frequency of VF (Mandapadi et al., Circ 1998); in severe ischemia, hearts rarely fibrillate.

Cellular Determinants of VF Evidence for the Wavelet Hypothesis

• VF Frequencies

- Spatial distribution-correlated with APDs and Refractoriness (Choi et al., Circ Res. 2001)

-Time-Frequency Distribution analysis revealed that numerous VF events co-exist, appear and disappear dynamically with brief lifespan $(0.39 \pm 0.13 \text{ s})$ (Choi et al., Circ Res. 2002)

- Time-Lag Cross correlation (CC_{max}) and Mutual Information (MI_{max})
 - Cell-cell coupling influences VF dynamics

- CC_{max} and MI_{max} did not detect clusters of high similarity, indicative of dominant rotors (Choi et al., JCE, 2003)

- Swelling Activated Cl⁻ currents in hypo-osmotic solutions alters VF dynamics. (Choi et al., Heart Rhythm 2006, in press)
- **Potential Limitation: Poor Spatial Resolution of diode arrays**-New data with CMOS camera: 100x100 pixels, up to 10k frames/s
- Analysis of Wave breaks Locations (Choi et al., submitted)

FFT Spectra of Optical Traces in VF

A. Orientation B. Optical Traces C. FFT spectra

Spatial Distribution of VF Frequencies

R ~ 0.7 Guinea Pig Heart

Mean APDs: Apex: 154 ± 9.1 ms Base: 189 ± 9.3 ms Lines 5 ms apart

Choi et al., Circ Res, 2002

Time-Frequency Distribution

A. Spectrogram

B. Cone shape kernel

Choi et al., Cir Res, 2002

$VF \rightarrow VT$ with Nifedipine (2 μ M)

Choi et al., Cir Res, 2002

Life Span of VF Frequency Blobs

Choi et al., Cir Res, 2002

Similarity of V_m Oscillations between sites in VF

A. VF Traces

prover hall prove the second and a second and the second second second second second second second second second prantitud)niklarinikikalanikikalanikalananikalaningkanalarkalarikalanikalanikalanikalanikalanikalanikalanikala naantidatriidpalaatiispäratispäratispäratelistella oksik synää alkala taalla taata taalla taalla taalla taalla preneperative nearbore for the second of t n, amala an salan ang kanaka pasalarika pasalarika kanaka kana dan kanaka darika kanaka darika darika darika k e de la constante de la constan _{ու բ}երու չեր ու հայտարարիներին անդանություններին հայտաներին անդանություններին հայտարարին ու հայտաներին հայտաների _{ու ո}ւթարան անական անկան անկա

B. Detail Traces

Rabbit Heart

Fiber Orientation and Correlation Map from LV

Similar results with MI_{max} , Choi et al, *JCE*, 2003.

Similarity Along the Fiber Orientation

Correlation length = 2.2 ± 0.2 mm

 $3.6 \pm 0.3 \text{ mm}$ Choi et al, JCE, 2003.

Anterior Region of Heart

A. Ref at LV

B. Ref at RV

0.1 level

Choi et al, *JCE*, 2003.

Maps of Maximum Cross Correlation

A. Left Ventricle

B. Right Ventricle

0.1 level

Choi et al, JCE, 2003.

Decay of Correlation with Distance

Choi et al, JCE, 2003

Clues To Different VF Dynamics

- Does ischemia explain multiple wavelets vs. dominant frequency? In these studies oxygenation and flow rates were normal.
- Swelling of myocardium under perfusion in constant flow rate and hypo-osmotic solution.
- Cell volume is well regulated by maintaining osmotic pressure.
- Ischemic condition: Break down of metabolic molecules such as glycogen → Increase of osmotic pressure → cell swelling.
- Cell swelling → Opening of Chloride swelling channel, I_{Cl,swell} blocked by: DIDS, IAA-94 (indanyloxyacetic acid-94)

VF Frequency in Hypo-osmotic Solution (± 45 mM Mannitol)

Time Frequency Distribution in Hypo-osmotic Solution

Spectrogram using 1.5 s Gaussian Kernel

A. Orientation B. Control C. Hypo-osmotic D. IAA-94

Modeling $I_{CI,vol}$ on VF

- CMV model of Fox et al., 2002
- Conductance of I_{Cl,vol} from the model by Vandenberg et. al. 1997

$$I_{Cl,vol} = \gamma_{Cl,vol} (E_m - E_{Cl}) \cdot \exp\left[\frac{steep_{Cl,vol} (E_m - E_{Cl} + shift_{Cl,swell})F}{RT}\right]$$

2-D sheet of 500×500 nodes, APDs short at the apex. ICI,vol high (25%) in the center of the sheet, decreasing gradually according to:

$$\gamma_{Cl,Vol}(x,y,t) = \overline{\gamma}_{Cl,Vol} \bullet \left(1 + 0.25 \bullet e^{-\frac{(x - Nx/2)^2 + (y - Ny/2)^2}{\sigma^2}}\right) \bullet (t/2)$$

Nx and Ny is the number of nodes in x and y (500), σ was set to Nx/3, *t* is in seconds

13 Hz

3

C. FFT

Experimental Confirmation of Mother Rotor in Hypo-Osmotic and Hypotonic Solutions

CMV model of VF

Control

Mechanism underlying Wavebreaks

A. Optical Apparatus

B. Optical Trace in VF

AP Propagation (10,000 f/s)

Spatial resolution : 100x100 μm²
Temporal resolution: 0.1 ms

 Can detect velocities of propagation as high as 0.5 m/s

between pixels at this magnification.

Raw Traces from Ultima CMOS

VF in guinea pig hearts

 $F \propto Vm$

dF/dt

D. Detection of Wave Split

Cumulative Plot of Wave Breaks dF/dt Binary Image

Wave-Breaks

Contour

Snap Shot

B. Split during decremental conduction

C. Split by refractoriness

28%

15%

 34 ± 4 sp/s

Examples of Wavebreaks and Vm in Neighboring sites discordant 1.40 1. **Time (sec)** 1.30 1.50 1.60 7.20 7.30 7.40 7.50 Time (sec) 2.6 2.9 2.7 2.8 Time (sec)

A

B

С

A. Raw Image

C. Bandwidth of VFF

D. Collision

E. Decremental

F. Wave breaks

Vessel and Wave Breaks

A. Raw Image

B. Vessel and WBs

< 25 % overlap

Distance between Wavebreaks

Acknowledgements

University of Pittsburgh

Carnegie Mellon University

Cell Biology and Physiology Bum-Rak Choi Carl Sims Tong Liu

Electrical Engineering Woncheol Nho

Cardiology Division Barry London Naomi R. Salama Laurie Kerchner *Statistics* Wonchul Jang

Molecular Biology and Imaging Center

Fred Lanni Lauren Ernst Alan Waggoner