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A twist induced instability : sproing
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e Helical deformation of the mean filament.

e Slow rotation of the center of rotation in a given plane.



A theoretical puzzle

Keener (1988): Equations for the slow motion of the core of a weakly
curved (k) and weakly twisted scroll wave in the normal plane (1<T, ]§),

using averaging techniques,

Biktashev, Holden, Zhang (1994): all the other coefficients

coupling the core motion to the twist vanish by symmetry.



Different instabilities in different parameter regimes

- Extension of spiral instabilities:

e 3D induced meander (Aranson et Mitkov)

- Instabilities specific to scrolls:

e Negative line tension (Panfilov and Rudenko, Brazhnik et al,
Biktashev et al,... )

e Twist-induced ”sproing” (Winfree et al.)



The stability spectrum of a scroll

helps to obtain a clearer view of the different instabilities
(H. Henry + V H, PRL 2000, PRE 2002).

e The excitable medium model: two coupled equations
(FitzHugh,1961; Nagumo et al.,1962),

ou = Viu+ flu,v)/e
0o = g(u,v)

o Specific choice here (Barkley, 1991):

flu,v) = u(l —u)lu = (v+0)/al, glu,v) =u—wv



The linear stability analysis

e Steadily rotating uniformly twisted straight scrolls (determined by a
Newton method):

(ug(r, 0 — wt — 7,2), Vo (1, 0 — Wt — Ty 2) (1)

e Computation of the linear stability spectrum
Translation invariance along the z-direction

= the eigenvalues appear in bands parameterized by the

wavenumber k., along the z-direction



Outcome of the linear stability computation

e Negative line tension instability = small &
(long-wavelength) instability of the translation bands;
directly linked to spiral drift direction in an electric field.

e Twist-induced ”sproing” = twist-induced finite &
instability of the translation bands.



”Negative line tension instability” of large core
non-meandering spiral

a=.44, b= .01 and € = .025
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Eigenvalue bands: (+) translation, the real part of o(k,) is
positive for small k.: instability

( (e) rotation, (o) meander)



Non-linear evolution: no restabilization
a=.44, b= .01 and € = .025
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The instability existence is determined by the direction of

spiral drift in an external field
(A Karma +VH, PRE 1999; also H. Henry, PRE 2004).

o (k,) = Fiwy + (—oy Ziay) kI + O(k3)
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Twist-induced instability of the translation bands
(a =.8, b= .01, e = .025)

a)0.05 SR

0.00- _.

Re(Q)

-0.05

| L l.ix | L l\ ‘\.1 -‘-.
010715 05 ko.o 05 1.0

e Instability above a threshold twist.
e The translation modes (Re(o(k,)) = 0) remain local extrema of
Re(o(k,)) (consequence of 3D rotation invariance);

e The unstable modes are a finite k. away from the translation modes.



Dynamics of twisted scrolls:
difficulties for theoretical descriptions

e The instability appears above a finite threshold twist and a finite k,
away from the translation modes : it is invisible with small twist

approaches (Keener; Biktashev et al).

e the twist-induced deformation of the translation modes can be
analytically captured in the large core regime but untwisted scrolls
are already unstable in this regime (negative line tension).



A ribbon model of twisted scroll waves

(a phenomenological extension of Keener’s approach).
B. Echebarria, H. Henry and VH, PRL (2006).

The scroll is reduced to
e the line of rotation centers R(o, ¢) with tangents T(o, t)

e the ribbon vectors in the direction of the spiral tip p(o,t)
withp-p=1,T-p=0

An important quantity: the local twist:

op. -
Tw = (P X 8—p> T, (s curvilinear abscissa).
S



Dynamics of the mean filament

The filament velocity in the normal plane is written as a gradient

expansion
R = a1Rs + a2T x Ry + Tw{_dZ[ﬁsss]J_ +d; T x ﬁsss}
—by [ﬁssss]J_ —boT X Rigos + -
(Notation:[R;] | = R, — (R;) - T)T)
First two terms: motion induced by curvature (= spiral drift ).

Other terms: beyond lowest order averaged equations (Keener),

involve the coupling of filament motion with twist.



Kinematics of twist evolution

The twist characterizes the spatial rotation of (o, t) around T(o,t).
A deformation of the center line induces kinematic changes in the

twist .
Global conservation

For a closed ribbon, the linking number L between the center line and

the ribbon edge is conserved.
L =Wr+ [dsTy

The ”writhe” Wr only depends on R(o,t). Well-studied in DNA
context (White, Fuller,...))

Here, the local form is more useful (Klapper and Tabor,...).



Kinematics of twist evolution

The local twist-writhe conversion (Klapper and Tabor,...):

e Spatial evolution of p(o,t) (along the filament):

op 05 - oT _ -
— =7,—TITxp—— -pT
Oo T Oo P Oo P
e Time evolution of p(o,1):
L — XD——--D T
ot “ P ot P

O 0O0s. Oa OT OT. -
51 ) =90 T X3 ) T



A simple illustration of the kinematics

An helical deformation of a straight twisted filament with periodic
boundary conditions. Center line : R = (R(¢) cos(7z), R(¢) sin(72), 2)

) 0s oo oT OT. -

el 7y = 2= T

5 ™0 T o T s X e T
R73 dR
. 2] — _

pm [Tw \/1 + (RT) ] (1 + (RT)2)3/2 dt

Local twist 7, (%) :

The final twist 7, is determined by the initial twist 7 ( ) and by the
geometric parameters of the final deformation

7'(0> T 1
\/1 + (RT1)2

Tw — = — [1 o
The initial twist is decreased both by the length increase and the

V14 (R7)?2 /14 (R7)?

writhe of the helical deformation.



Dynamics of twist evolution

. ds. Oa T IT. -
(T o) = —— it W
™50 = 90 TG X o)
The rotation velocity « of p around T entirely characterizes the twist

dynamics. When
o= wi + CT,LQU + DOyTy + ('f : 8tﬁ)7'w

the twist dynamics is identical to that given by Keener’s phase
equation. Two effects : rotation velocity increases with 72 and with
the gradient of twist. The coefficients ¢, D are given as scalar
products with the adjoint rotation mode (Keener) and have been

computed as a by-product of the linear stability analysis.



Increase of scroll frequency with twist
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(a=0.8, b=0.01, e =0.025)

First-order perturbation theory:

ey OppU )
w1 (Ty) = w1 (0) — 72 — (s, P00 +O(715
H(T) = O =T G ) + (G0, vy T

(Full agreement with numerics : w1 (7w) = w1 (7w = 0) + 0.72772)



Sproing of a twisted scroll

Linear stability of a twisted straight ribbon:

Wi =aW,, +idr, W,

- bWZZZZ) W =ux+ Zy

and the dispersion relation (W (¢, z) = Aexp(ot + ikz)):

o= —ak? + dr k> — bk*

ai,b; > 0, stable untwisted filament.

Threshold twist : 7% = 2+/a1 b /d?
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Non linear evolution of a helix of pitch &:
Ry = di k31 — 7\9(K)|R

the twist decreases as the radius increases:

! w 1

Supercritical Hopf bifurcation;
1
Ry = dik* {[Tw — 7(K)R — 5(79 + k)k2R3}

R-D equations:
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Conclusions (I)

e The ribbon model (a phenomenological extension of Keener’s
approach) helps to understand sproing and appears to describe well

some of the essential features of twisted scroll wave dynamics.

e Is it also useful in more complicated cases? (twist has to be

generated in some way for open scrolls...)

= the case of an excitability gradient.



U. Storb, C. R. Neto, M. Bar and S. C. Miiller, PCCP 5, 2344 (2003).
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Oxygen gradient leads to a gradient of excitability. Origin of the
instability?



Twist distribution in an excitability gradient

Oy = O05(DO,Ty) + O4(cT2) + Ogwo

Q)og Db
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Instability for a large enough excitability step
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The critical twist does not correspond to the previously computed

sproing threshold.



RD vs. ribbon model
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Very similar phenomenon in the ribbon model: different thresholds.



Linear stability: different spectra
Convective vs. absolute instability:.

Simpler linear problem:

Wt — asz + idT’wWZZZ — bszzz

e Fourier: 0 = —ak? + dk> — bk*
o = aq® +idq® — bg* = 4 roots Re(q1) > Re(qa) > Re(qz) > Re(qy).
For a large domain with W =W, at z =0, L,

e Spectrum: o such that Re(gs) = Re(qs). (Kulikovskii, 1966 ).

e Critical points do/dq = 0 belong to a branch Re(q;) = Re(g;) but

not necessarily the right one.



Different spectra
e Fourier: o = —ak? — idk® — bk*
e Spectrum: o such that Re(gs) = Re(qs). (Kulikovskii, 1966 ).
e Critical points do/dg =0

Spectra and critical points

t,=1.2,25 Spectrum and critical points
\ ‘ \ ‘ ‘ t,=2.33,2.34
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Conclusions (II)

e The reduced model seems helpful to study more complicated

phenomena.

e Sproing (+ collision with the boundaries) appears to explain the

instability seen in BZ reaction with an excitability gradient.

e The results highlight the influence of boundary conditions in

non-potential problems even for large domains.



