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Winfree et al., Chaos 6, 617 (1996);

U. Storb et al, PCCP 5, 2344 (2003).



A new degree of freedom in 3D : the twist

A. Pertsov et al Nature 345 419 (1990); J. Phys.Chem. 100 1975 (1996).



A twist induced instability : sproing

Henze, Lugosi and Winfree (1990).
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• Helical deformation of the mean filament.

• Slow rotation of the center of rotation in a given plane.



A theoretical puzzle

Keener (1988): Equations for the slow motion of the core of a weakly

curved (κ) and weakly twisted scroll wave in the normal plane (~N, ~B),

using averaging techniques,

~Rt · ~N = a1κ + · · · ,

~Rt · ~B = a2κ + · · · .

Biktashev, Holden, Zhang (1994): all the other coefficients

coupling the core motion to the twist vanish by symmetry.



Different instabilities in different parameter regimes

- Extension of spiral instabilities:

• 3D induced meander (Aranson et Mitkov)

...

- Instabilities specific to scrolls:

• Negative line tension (Panfilov and Rudenko, Brazhnik et al,

Biktashev et al,... )

• Twist-induced ”sproing” (Winfree et al.)



The stability spectrum of a scroll

helps to obtain a clearer view of the different instabilities

(H. Henry + V H, PRL 2000, PRE 2002).

• The excitable medium model: two coupled equations

(FitzHugh,1961; Nagumo et al.,1962),

∂tu = ∇2u + f(u, v)/ǫ

∂tv = g(u, v)

⋄ Specific choice here (Barkley, 1991):

f(u, v) = u(1 − u)[u − (v + b)/a], g(u, v) = u − v



The linear stability analysis

• Steadily rotating uniformly twisted straight scrolls (determined by a

Newton method):

(u0(r, θ − ωt − τwz), v0(r, θ − ωt − τwz) (1)

• Computation of the linear stability spectrum

Translation invariance along the z-direction

⇒ the eigenvalues appear in bands parameterized by the

wavenumber kz along the z-direction



Outcome of the linear stability computation

• Negative line tension instability ⇒ small k

(long-wavelength) instability of the translation bands;

directly linked to spiral drift direction in an electric field.

• Twist-induced ”sproing” ⇒ twist-induced finite k

instability of the translation bands.



”Negative line tension instability” of large core

non-meandering spiral

a = .44, b = .01 and ǫ = .025
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Non-linear evolution: no restabilization

a = .44, b = .01 and ǫ = .025



The instability existence is determined by the direction of

spiral drift in an external field

(A Karma +VH, PRE 1999; also H. Henry, PRE 2004).

σ±(kz) = ±iω1 + (−α‖ ± iα⊥) k2
z + O(k4

z)

0.0 20.0 40.0 60.0 80.0 100.0
x

0.0

20.0

40.0

60.0

80.0

100.0

y

E

∂tu = ∇2u + f(u, v)/ǫ − E.∇u, vdrift = α‖E + α⊥ω1 × E



Twist-induced instability of the translation bands

(a = .8, b = .01, ǫ = .025)
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• Instability above a threshold twist.

• The translation modes (Re(σ(kz)) = 0) remain local extrema of

Re(σ(kz)) (consequence of 3D rotation invariance);

• The unstable modes are a finite kz away from the translation modes.



Dynamics of twisted scrolls:
difficulties for theoretical descriptions

• The instability appears above a finite threshold twist and a finite kz

away from the translation modes : it is invisible with small twist

approaches (Keener; Biktashev et al).

• the twist-induced deformation of the translation modes can be

analytically captured in the large core regime but untwisted scrolls

are already unstable in this regime (negative line tension).



A ribbon model of twisted scroll waves
(a phenomenological extension of Keener’s approach).

B. Echebarria, H. Henry and VH, PRL (2006).

The scroll is reduced to

• the line of rotation centers ~R(σ, t) with tangents ~T(σ, t)

• the ribbon vectors in the direction of the spiral tip ~p(σ, t)

with ~p · ~p = 1, ~T · ~p = 0

An important quantity: the local twist:

τw = (~p×
∂~p

∂s
) · ~T, (s curvilinear abscissa).



Dynamics of the mean filament

The filament velocity in the normal plane is written as a gradient

expansion

[~Rt]⊥ = a1
~Rss + a2

~T × ~Rss + τw

{

−d2[~Rsss]⊥ + d1
~T × ~Rsss

}

−b1[~Rssss]⊥ − b2
~T × ~Rssss + · · ·

(Notation:[~Rt]⊥ ≡ ~Rt − (~Rt) · ~T)~T)

First two terms: motion induced by curvature (≡ spiral drift ).

Other terms: beyond lowest order averaged equations (Keener),

involve the coupling of filament motion with twist.



Kinematics of twist evolution

The twist characterizes the spatial rotation of ~p(σ, t) around ~T(σ, t).

A deformation of the center line induces kinematic changes in the

twist .

Global conservation

For a closed ribbon, the linking number L between the center line and

the ribbon edge is conserved.

L = Wr +
∫

ds τw

The ”writhe” Wr only depends on ~R(σ, t). Well-studied in DNA

context (White, Fuller,...))

Here, the local form is more useful (Klapper and Tabor,...).



Kinematics of twist evolution

The local twist-writhe conversion (Klapper and Tabor,...):

• Spatial evolution of ~p(σ, t) (along the filament):

∂~p

∂σ
= τw

∂s

∂σ
~T × ~p−

∂~T

∂σ
· ~p ~T

• Time evolution of ~p(σ, t):

∂~p

∂t
= α~T× ~p−

∂~T

∂t
· ~p ~T

• Comparison of cross-derivatives ⇒ compatibility condition:

∂

∂t
(τw

∂s

∂σ
) =

∂α

∂σ
+ (

∂~T

∂σ
×

∂~T

∂t
) · ~T



A simple illustration of the kinematics

An helical deformation of a straight twisted filament with periodic

boundary conditions. Center line : ~R = (R(t) cos(τz), R(t) sin(τz), z)

Local twist τw(t) :
∂

∂t
(τw

∂s

∂σ
) =

∂α

∂σ
+ (

∂~T

∂σ
×

∂~T

∂t
) · ~T ⇒

d

dt
[τw

√

1 + (Rτ)2] = −
Rτ3

(1 + (Rτ)2)3/2

dR

dt

The final twist τw is determined by the initial twist τ
(0)
w and by the

geometric parameters of the final deformation

τw =
τ

(0)
w

√

1 + (Rτ)2
−

τ
√

1 + (Rτ)2
[1 −

1
√

1 + (Rτ)2
]

The initial twist is decreased both by the length increase and the

writhe of the helical deformation.



Dynamics of twist evolution

∂

∂t
(τw

∂s

∂σ
) =

∂α

∂σ
+ (

∂~T

∂σ
×

∂~T

∂t
) · ~T

The rotation velocity α of ~p around ~T entirely characterizes the twist

dynamics. When

α = ω1 + c τ2
w + D∂sτw + (~T · ∂t

~R)τw

the twist dynamics is identical to that given by Keener’s phase

equation. Two effects : rotation velocity increases with τ2
w and with

the gradient of twist. The coefficients c, D are given as scalar

products with the adjoint rotation mode (Keener) and have been

computed as a by-product of the linear stability analysis.



Increase of scroll frequency with twist
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First-order perturbation theory:

ω1(τw) = ω1(0) − τ2
w

〈ũφ, ∂φφu0〉

〈ũφ, ∂φu0〉 + 〈ṽφ, ∂φv0〉
+ O(τ4

w)

(Full agreement with numerics : ω1(τw) = ω1(τw = 0) + 0.72τ2

w
)



Sproing of a twisted scroll

Linear stability of a twisted straight ribbon:

Wt = aWzz + idτwWzzz − bWzzzz, W = x + iy

and the dispersion relation (W (t, z) = A exp(σt + ikz)):

σ = −ak2 + dτwk3 − bk4

a1, b1 > 0, stable untwisted filament.

Threshold twist : τ
(c)
w = 2

√

a1b1/d2
1
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Non linear evolution of a helix of pitch k:

Rt = d1k
3[τw − τ (c)

w (k)]R

the twist decreases as the radius increases:

d

dt
τw = Re[W zz(τw − i∂s)Wt)] ⇒ τw(t) = τ (0)

w −
1

2
(τ (0)

w + k)k2R2

Supercritical Hopf bifurcation;

Rt = d1k
3

{

[τw − τ (c)
w (k)]R −

1

2
(τ (0)

w + k)k2R3

}

R-D equations:
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Conclusions (I)

• The ribbon model (a phenomenological extension of Keener’s

approach) helps to understand sproing and appears to describe well

some of the essential features of twisted scroll wave dynamics.

• Is it also useful in more complicated cases? (twist has to be

generated in some way for open scrolls...)

⇒ the case of an excitability gradient.



U. Storb, C. R. Neto, M. Bär and S. C. Müller, PCCP 5, 2344 (2003).

Oxygen gradient leads to a gradient of excitability. Origin of the

instability?



Twist distribution in an excitability gradient

∂tτw = ∂s(D∂sτw) + ∂s(cτ
2

w
) + ∂sω0
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Instability for a large enough excitability step
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The critical twist does not correspond to the previously computed

sproing threshold.



RD vs. ribbon model
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Very similar phenomenon in the ribbon model: different thresholds.



Linear stability: different spectra

Convective vs. absolute instability.

Simpler linear problem:

Wt = aWzz + idτwWzzz − bWzzzz

• Fourier: σ = −ak2 + dk3 − bk4

σ = aq2 + idq3 − bq4 ⇒ 4 roots Re(q1) ≥ Re(q2) ≥ Re(q3) ≥ Re(q4).

For a large domain with W = Wz at z = 0, L,

• Spectrum: σ such that Re(q2) = Re(q3). (Kulikovskii, 1966).

• Critical points dσ/dq = 0 belong to a branch Re(qi) = Re(qj) but

not necessarily the right one.



Different spectra

• Fourier: σ = −ak2 − idk3 − bk4

• Spectrum: σ such that Re(q2) = Re(q3). (Kulikovskii, 1966).

• Critical points dσ/dq = 0
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Conclusions (II)

• The reduced model seems helpful to study more complicated

phenomena.

• Sproing (+ collision with the boundaries) appears to explain the

instability seen in BZ reaction with an excitability gradient.

• The results highlight the influence of boundary conditions in

non-potential problems even for large domains.


