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The transitions in cardiac arrhythmias
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Clinical trials on arrhythmia prevention

CAST Trial

(Echt er ol NEJM 324:781, 1991)

o1
Days after Randomization

SWORD Trial

(Waldo er sl Lancet 348:8, 1996)

2=-2-18, p = 0-008

120 180 240
Time from randomisstion {days)

In the CAST trial, encainide and flecainide were
used to suppress PVCs in patients of post-
myocardial infarction, and were shown to be
effective in suppressing PVCs, however, “During an
average of 10 months of follow-up, the patients
treated with active drug had a higher rate of death
from arrhythmia than the patients assigned to
placebo. Encainide and flecainide accounted
for the excess of deaths from arrhythmia and
nonfatal cardiac arrests (33 of 730 patients
taking encainide or flecainide [4.5 percent]; 9
of 725 taking placebo [1.2 percent]; relative

risk, 3.6.”

The SWORD trial “FINDINGS: After 3121 of the
planned 6400 patients had been recruited, the trial

was stopped. Among 1549 patients assigned d-
sotalol, there were 78 deaths (5.0%)
compared with 48 deaths (3.1%) among the
1572 patients assigned placebo (relative risk

1.65 [95% CI 1.15-2.36], p = 0.006). Presumed
arrhythmic deaths (relative risk 1.77 [1.15-2.74], p =
0.008) accounted for the increased mortality.”




Induction of reentry by strong electrical stimuli
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Single, strong electrical stimuli delivered through a rela- g w0l coooooooouoosnans
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low intensity usually do not.! ® Even when two to five suc-
cessive low-intensity premature stimuli (i.e., sttmuli with
shorter coupling intervals than that of the basic rhythm) are
applied to the normal ventricle, ventricular fibrillation 1s
rarely induced.!” 17
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Programmed electrical stimulation was performed in eight normal dogs using a stimulator and endocardial
electrode catheters identical to those used in human studies. The right and left ventricular apex were paced at a
drive cycle length of 400 ms and, in some cases, 500 ms, with a pacing sequence of single (S1S2), double
(S1S2S3) and triple (S152S3S4) premature impulses introduced after eight paced complexes. Pacing sequences
were performed using combinations of pulse width (1, 2 and 4 ms) and current strengths of 2, 5 and 10 times
diastolic threshold, and in three dogs, 15 times diastolic threshold. Twenty-two episodes of ventricular fibrillation
were initiated in five dogs in 170 pacing sequences using current strengths up to 10 times diastolic threshold, and
six episodes of ventricular fibrillation in the two of three remaining dogs tested at 15 times diastolic threshold.
Ventricular fibrillation was reproducible on seven of nine occasions. Ventricular fibrillation was never induced by
S1S2 at up to 15 times diastolic threshold; it was induced by S1S2S3 in 3 (1.8%) of 170 sequences, but only at 10
times diastolic threshold. It was induced by S152S354 in 19 (11.4%) of 167 sequences using 2 to 10 times

diastolic threshold, although 20 of 28 episodes only occurred with S1S253S4 at 10 or more times diastolic
threshold.



The pinwheel experiment (Coined by A. T. Winfree)
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Examples of heterogeneities in the heart
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A critical repolarization gradient is needed
for induction of arrhythmias by low-intensity stimuli

LQT (Akar et al, Circulation 2002)
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Figure 3. QT interval, maximum transmural repolarization gradi-

ent VRmax, and TdP induction rate for each condition. C indi-
cates control; B, bradycardia; S, d-sotalol; and S+B,
d-sotalol+bradycardia. Each condition significantly (*P<0.01)

prolonged QT interval and VR TdP induction rate was mark-

edly increased by the synergistic effect of S+B.

HF (Akar et al, Circ Res 2003)
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In contrast,

in the absence of a barrier over the same range of S1S2
coupling intervals tested (ie, control hearts), unidirectional
block of the S3 beat was observed only once for 12 coupling
intervals tested despite the presence of repolarization gradi-
ents (3.8X1.3 m/sec) 3.2 ms/mm.

Ischemia (Restivo et al, Circ Res 1990)

Arrhythmias was induced
for ERP gradient between
10 ms/mm and 100ms/mm.



Theoretical and numerical studies on vulnerability

There are several studies (mostly by Starmer et al) on vulnerability
to unidirectional conduction block in 1D homogeneous tissue with
one single PVC, and a finite size electrode.

Fox et al, Circ Res 2002, NJP 2003, Otani et al 2006

Henry & Rappel, PRE 2005

Comtois et al, PRE 2005

Sampson et al, AJP 2002
Clayton et al, Biomed Eng Online 2005a, 2005b
Qu et al, Circulation 2000, AJP 2003, AJP 2005

Qu et al, Biophys J 2006a, 2006b
Tran et al, unpublished data



1. Heterogeneous tissue
with a single extrasystole



Critical repolarization gradient for conduction block
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A kinematic equation of conduction in 1D cable
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Vulnerable window of conduction block in 1D cable:
Analytical results (1)
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Vulnerable window of conduction block in 1D cable:

H»’(Z) = 4

Analytical results (2)
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Vulnerable window of conduction block in 1D cable:

Numerical simulations

LR1 Model
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Vulnerable window of conduction block in 1D cable:
Effects of CV restitution
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Vulnerable window of conduction block in 1D cable:
Effects of dispersion of refractoriness
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Vulnerable window of conduction block in 1D cable:
Effects of cell coupling
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Vulnerable window of reentry in 2D tissue:
Refractory barrier and spatial dimension
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Vulnerable window of reentry in 2D tissue:
Effects of stimulation location
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Implications from the modeling studies

1. The critical gradient of refractoriness required for
conduction block is larger in transverse directions than the
longitudinal one; larger for diseased hearts than normal
hearts due to cell decoupling.

2. Since the sinus beat propagates from endocardial region
to epicardial region, a single PVC from endocardial region

may be easier to cause reentrant arrhythmias than the one
from the epicardial region. 3207
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2. Homogeneous tissue
with multiple extrasystoles



APD dispersion induced by a PVC and critical slope of
APD restitution for conduction block
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Vulnerable window of conduction block with two PVCs:

C0.(x) O,

S2 Failure

60 -

|
4 O ..
|
DD ...

225

Of{mmB

150

ATSZSB (ms)

=

o

o
1

182 Ifailure'

00 02 04 06 O

120
— o
= 40+ igi
| gt
om¥

00 02 04 06 08

(0

Simulation of the Kinematic equation
dld,(x)] 1 1

200

T T T T T 1
0 100 200 300
d (ms)

(Qu et al, Biophys J 2006b)



Vulnerable window of conduction block with two PVCs:
Simulation of the LR1 model in a 1D cable
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Vulnerable window of conduction block with Multi-PVCs
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Vulnerable window of reentry in 2D tissue with two PVCs:

Effects of CV restitution
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Vulnerable window of reentry in 2D tissue with two PVCs:
Effects of APD restitution

If the APD restitution curve is shallow, no reentry can be induced by
this S1S2S3 protocol. Reentry can be induced only when APD
restitution curve is steep enough. However, if the APD restitution
curve Is very steep, the vulnerable window may become even smaller.

5283 interval

(Tran et al, unpublished data)



Implications from the modeling studies

Pre-existing (intrinsic) tissue heterogeneity in refractoriness Is
not required for initiation of reentrant arrhythmias, as long as
the tissue has proper APD and CV restitution characteristics
and properly timed multiple PVCs.



3. Heterogeneous tissue
with multiple extrasystoles



Modulation of dispersion of refractoriness by a PVC
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Vulnerable window of conduction block with two PVCs:
Effects of stimulation location
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Implications from the modeling studies

Two consecutive PVCs (doublets) originated from the
epicardial region are more arrhythmogenic than the ones
from the endocardial region.



Conclusions

1. A critical refractory gradient is needed for conduction block,
which is determined by CV restitution properties; once the
critical gradient is reached, the vulnerable window is
proportional to the height of the refractory barrier.

2. In addition to the pre-existing gradient of refractoriness, APD
and CV restitution curves are two key parameters for

regulating the vulnerable window of conduction block and
reentry.

3. What about intracellular calcium cycling?

4. Where the PVCs occur in heart cannot be controlled,
however, the effects of stimulation sequence and locations
on vulnerabillity to reentry should be implicative for induction
of reentry in experiments, especially clinical EP studies.
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