The effects of Small scale CDM Cosmology on Thin Stellar Streams and Globular Clusters

Ray Carlberg

Thin stellar streams

- Streams are fragile (more fragile than low mass sub-halos)
 - MW streams found 15 kpc <R(galactic center) < 100 kpc
 - Baryonic erosion inside ~10 kpc
- About 20 known in the halo to about 35 kpc
 - Only 2 have known globular cluster progenitors
- GD-1 and Pal 5 high quality thin long streams
 - Over-density is about 10-30%
 - S/N per degree is a few

Pal 5

Streams have density variations

- Streams have variations around mean density with Chi²/dof~2-3
 - That is, not smooth at very high confidence
- Sub-halos produce gaps, e.g.
 - 10 km/s sub-halo that goes near/through a stream
 - Pulls stars toward the middle dv ~ 2 v_{sh}^2/v_{orb} ~ 2 * 10*10/200 ~1 km/s
 - Gap width ~ sub-halo ½ mass radius, grows with time
- Gap rate is about 1 gap of kpc size per 10kpc of stream per 10Gyr
 - Numbers go up inversely with size
 - Halos that make gaps are 10⁷⁻⁸ M_sun
- Picture is statistically consistent with CDM, not yet compelling

Streams in smooth potentials well understood (top view)

Cluster and Stream Counts.

Streams with and without GCs GCs at High Redshift

Start	M_c	$R_g \max$	N_0	N_f	Streams
z=3	$3 \times 10^5 \mathrm{M}_{\odot}$	$50~\mathrm{kpc}$	20	20	18
		$100~\mathrm{kpc}$	67	67	45
z=8	$3 \times 10^5 \mathrm{M}_{\odot}$	$50~\mathrm{kpc}$	78	0	28
		$100 \; \mathrm{kpc}$	87	0	29
z=3	$N \propto M^{-1.5}$	$35~\mathrm{kpc}$	50	45	28

- Simulations:
 - z=3 GCs all retained (~40% mass loss)
 - Z=8 GCs all evaporated
 - Evaporation has only weak mass dependence (tidal driving)
- In the sky: 2 of ~12 (3 of ~20) streams have GCs present
 - Suggests a much larger GC population beyond z=3
 - BBHs and reioinization both due to low metal, >20 M_sun stars