COMPOSITE HICCS COMPOSITE MEDIATOR

Flip Tanedo

UC Riverside Particle Theory
with Javi Serra and Alex Wijancgo

KITP CONFERENCE ON Dark matter detection and detectability: paradigm confirmation or shift?

Dark Sectors with Light Mediators

Dark Matter
 Mediator
 Standard Model

In Standard Model, these are totally different fermions

$$
\varphi \bar{f} i \gamma^{5} f=i \varphi f_{L} f_{R}-i \varphi \bar{f}_{L} \bar{f}_{R}
$$

See, e.g.
Bell et al. 1503.07874 Kahlhoefer et al. 1510.02110 Bell et al. 1612.03475 Ko et al. 1701.04131

+ many others

How to UV complete?

1. ≥ 2 Higgs Doublet Model

 for example, the next-to-minimal SUSY SM e.g. Ipek et al. 1404.3716, Berlin et al. 1502.06000
2. Heavy Vector-lilke Fermions

... then decouple them
Fan et al. 1507.06993

How to UV complete? This talk.

3. Non-minimal composite Higgs

Gauge-singlet pseudoscalars
... predictive, but heavy states decouple
... connects to Hierarchy problem

Composite Higgs

Kaplan \& Georgi '84 (Phys. Lett B136 \& Phys. Lett. B145)

Composite Higgs + Singlet Gauged symmetry in blue

Minimal Composite Higgs

Next-to-Minimal Composite Higgs

Singlet as DM: Frigerio et al. 1204.2808, Marzocca et al. 1404.7419, Fonseca et al.

 1501.05957, Carmona et al. 1504.00332, Antipin et al.1503.08749, Related: Poland \& Thaler 0808.1290; Asano and Kitano 1406.6374 Kaplan \& Georgi '84 (Phys. Lett B136 \& Phys. Lett. B145)
Explicit \& Electroweak Breaking

 tuning parameter decoupled: $\xi=0$
misalign vacuum

Loops of gauge bosons, fermions generate electroweak-breaking Higgs potential

Partial Compositeness

$$
6=4+1+1=(2,2)+(1,1)+(1,1)
$$

DOUBLET

$$
\mathcal{L} \supset \lambda \bar{\psi} \mathcal{O}_{\psi}+\text { h.c. }
$$

Elementary fields are not SO(6) multiplets, mix with composite operators.

Non-linear realization

An SO(6) basis $\quad \Sigma_{0 \in v}=(0,0,0,0,0,1)^{T}$

$\Sigma=\frac{1}{f}\left(\begin{array}{llllll}0 & 0 & 0 & h & \eta & \sqrt{f^{2}-h^{2}-\eta^{2}}\end{array}\right)$

BROKEN

$T_{2}^{\alpha}=\frac{i}{\sqrt{2}}$	
$T_{\eta}=\frac{i}{\sqrt{2}}$	$\left(\begin{array}{cccc:c}0 & & & & \\ & 0 & & & \\ & & 0 & & \\ \\ \hdashline & & 0 & \\ \hdashline & & & \\ & & & & \end{array}\right)$

Reminder: SO(6) ว SO(4) $\simeq \operatorname{SU}(2)\llcorner\times \operatorname{SU}(2)$ R (custodial symmetry)

What the theory looks like

 Use Σ and spurions to write invariants
dark matter embedding

visible matter embedding

CHOICES LEAD TO

- HIGGS POTENTIAL
- MEDIATOR POTENTIAL

CHOICES LEAD TO MEDIATOR POTENTIAL

OUTPUTS:
MEDIATOR MASS AS A
FUNCTION OF DISCRETE
CHOICES AND DM MASS
COMPOSITE HIGGS
SPECIFY BREAKING SCALE f GIVES MEASURE OF TUNING

$$
\xi=\left(\frac{v}{f}\right)^{2}
$$

Non-linear \sum Model

П-SM coupling: right-handed embed

$$
\begin{aligned}
(2,2)_{\frac{2}{3}}: & Q \\
(\mathbf{2}, \mathbf{2})_{\frac{2}{3}}: & \\
& T \\
= & =\left(0,0,0,0, i \delta_{t} t_{R}, t_{R}\right)^{T}\left(i b_{L}, b_{L}, i t_{L},-t_{L}, 0,0\right)^{T} \quad \psi \rightarrow-\mathcal{O}_{\psi} \\
\Sigma & =\frac{1}{f}\left(\begin{array}{llllll}
0 & 0 & 0 & h & \eta & \sqrt{f^{2}-h^{2}-\eta^{2}}
\end{array}\right)
\end{aligned}
$$

$$
\mathcal{L} \supset y_{t} f(\bar{Q} \Sigma)\left(\Sigma^{T} T\right)=-\frac{y_{t}}{\sqrt{2}} h \bar{t}_{L} t_{R}\left(\sqrt{1-\frac{h^{2}}{f^{2}}-\frac{\eta^{2}}{f^{2}}}+i \delta_{t} \frac{\eta}{f}\right)
$$

Dark matter: same thing again?

Introduce dark matter as elementary Dirac fermion

Why not use this again?
Why should such a particle be stable?

Better option: bilinear mixing
TECHNICOLOR-LIKE MASS GENERATION
Doesn't work for visible matter (flavor) But preserves $\chi \rightarrow-\chi$

Sets the mass scale to f

Dark Matter: bilinear coupling

$$
\begin{array}{r}
\mathcal{L} \supset-y_{\chi}^{\prime} f \underset{\substack{\text { SiNGLET } \\
\chi_{R}}}{ } \\
\mathcal{L} \supset-y_{\chi} f\left(\Sigma^{T} \mathbb{X}\right)
\end{array}
$$

VECTOR

$$
\begin{aligned}
\mathbb{X} & =\left(0,0,0,0, i \bar{\chi}_{L} \chi_{R}, \delta_{\chi} \bar{\chi}_{L} \chi_{R}\right)^{T} \\
\Sigma & =\frac{1}{f}\left(\begin{array}{lllllll}
0 & 0 & 0 & h & \eta & \sqrt{f^{2}-h^{2}-\eta^{2}}
\end{array}\right)
\end{aligned}
$$

+ HIGGS COUPLINGS

What does this buy us?

dark matter embedding

visible matter

 embedding
CHOICES LEAD TO

- HIGGS POTENTIAL
- MEDIATOR POTENTIAL

COMPOSITE HIGGS

SPECIFY BREAKING SCALE f GIVES MEASURE OF TUNING

$$
\xi=\left(\frac{v}{f}\right)^{2}
$$

Dark Sector Couplings

These are determined once you specify the order parameters of explicit breaking.

Mediator Coupling

So finding a thermal relic is ... kind of a miracle.

Mediator Mass

CHOOSE ONE NON-TRIVIAL REP

Standard Model
Approximate contribution to m_{η}^{2} from fermion loops
$t_{R}\left(\mathcal{O}_{\mathrm{t}}\right)$
$b_{R}\left(\mathcal{O}_{\mathrm{b}}\right)$
$\tau_{R}\left(\mathcal{O}_{\mathrm{b}}\right)$

Dark Matter
Vector $\left(\mathcal{O}_{\chi}\right)$
Approximate cont-ibution to m^{2} from dark matter loops

Singlet $\left(\mathcal{O}_{\chi}^{\prime}\right)$

$$
\begin{array}{ll}
\text { Vector }\left(\mathcal{O}_{\chi}\right) & \left(1-\delta_{\chi}^{2}\right) \frac{y_{\chi}^{2} m_{*}^{2}}{8 \pi^{2}} \approx \\
\text { inglet }\left(\mathcal{O}_{\chi}^{\prime}\right) & \frac{m_{\chi}^{(1)} m_{\chi}^{(6)} m_{*}^{2}}{8 \pi^{2} f^{2}} \approx \begin{array}{l}
(70 \mathrm{GeV})^{2} \\
(10 \mathrm{GeV})^{2}
\end{array} \\
\begin{array}{l}
\left(\frac{m_{*}}{3 \mathrm{Tel}}\right. \\
\left(\frac{m_{*}}{3 \mathrm{TeV}}\right.
\end{array} \\
\delta=1 \quad \text { corresponds to unbroken } U(1)_{\eta}
\end{array}
$$

$$
\left(1-\delta_{\chi}^{2}\right)
$$

$$
\left.\frac{m_{\chi}^{(1)} m_{\chi}^{(6)} m_{*}^{2}}{8 \pi^{2} f^{2}} \approx(10 \mathrm{GeV})^{2}\right)\left(\frac{m_{*}}{3 \mathrm{TeV}}\right)^{2}\left(\frac{1 \mathrm{TeV}}{f}\right)^{2}\left[\frac{m_{\chi}^{(1)} m_{\chi}^{(6)}}{(25 \mathrm{GeV})^{2}}\right]
$$

$$
\begin{aligned}
& \left(\delta_{t}^{2}-1\right) \frac{3 y_{t}}{8 \pi^{2}} \frac{m_{*}^{3}}{f} \approx(1 \mathrm{TeV})^{2}\left(\frac{m_{*}}{3 \mathrm{TeV}}\right)^{3}\left(\frac{\mathrm{TeV}}{f}\right)\left(\delta_{t}^{2}-1\right) \\
& \left(\delta_{b}^{2}-1\right) \frac{3 y_{b}}{8 \pi^{2}} \frac{m_{*}^{3}}{f} \approx(130 \mathrm{GeV})^{2}\left(\frac{m_{*}}{3 \mathrm{TeV}}\right)^{3}\left(\frac{\mathrm{TeV}}{f}\right)\left(\delta_{b}^{2}-1\right) \\
& \left(\delta_{\tau}^{2}-1\right) \frac{y_{\tau}}{8 \pi^{2}} \frac{m_{*}^{3}}{f} \approx \\
& (60 \mathrm{GeV})^{2} \\
& \left(\frac{m_{*}}{3 \mathrm{TeV}}\right)^{3}\left(\frac{\mathrm{TeV}}{f}\right)\left(\delta_{\tau}^{2}-1\right)
\end{aligned}
$$

Mediator Mass $\mathbb{X}=\left(0,0,0,0, i \bar{\chi}_{L} \chi_{R}, \delta_{\chi} \bar{\chi}_{L} \chi_{R}\right.$

$\delta=1$ corresponds to unbroken $U(1)_{\eta}$

Punchline

New completion of pseudoscalar mediator Connects dark matter and Higgs naturalneshs Small number of parameters + discrete choices In some sense, variant of "WIMP"

EXTRA SLIDES

Pseudoscalar Mediators

$$
\left(\bar{X} i \gamma^{5} X\right)\left(\bar{q} i \gamma^{5} q\right)
$$

see, e.g.
Kumar \& Marfatia 1305.1611

$\sigma_{\text {spin dependent }} \propto q^{2} \times q^{2} \quad$ suppressed

 direct detection
s-wave annihilation in s-channel or to three on-shell pseudoscalars

Indirect detection:
Boehm et al. 1401.6458
FT \& UCI folks 1404.6528, 1503.05919 Berlin et al. 1502.06000

SO(5)/SO(4) \& the Standard Model

 described by usual minimal composite Higgs

Naive Dimensional Analysis

 one scale, one coupling ansatzmass scale of
new resonances bosons fermions

$$
\mathcal{L}=\frac{m_{*}^{4}}{g_{*}^{2}} \hat{\mathcal{L}}\left(\frac{\partial}{m_{*}}, \frac{g_{*} \Phi}{m_{*}}, \frac{g_{*} \Psi}{m_{*}^{3 / 2}}\right)
$$

characteristic
resonance coupling

$$
g_{*}=\frac{m_{*}}{f} \text { breaking scale }
$$

scaling from: mass and \hbar dimensional analysis

