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1. Hot spots in quasi-one-dimensional organic metals
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(b) Temperature dependence of the Hall effect and resistivity in
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2. Cold spots in cuprates — Two-τ interpretation of the ac Hall

effect in YBa2Cu3O7: Zheleznyak, Yakovenko, Drew, and Mazin,
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Umklapp Scattering in Q1D Conductors

Electron dispersion law in a Q1D conductor can be approximated as

ε±
k

= ±vF(kx ∓ kF ) + 2tb cos(ky ± ϕ).

The Fermi surface consists of two disconnected, warped sheets:
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The electron-electron umklapp scattering rate is
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The scattering rate can be written as

1/τ(ky, T ) = const T2 B(ky),

where B(ky) reflects the phase space available for scattering.



The function B(ky) =
∫ dk

(1)
y dk

(2)
y

(2π)2
δ[tbF (ky, ϕ; k

(1)
y , k

(2)
y )] has singularities

at certain values of ky, which are determined by the saddle points of

the function F (k1, k2) and are analogous to the van Hove singularities:

F (k, ϕ; k1, k2) = cos(k + ϕ) + cos(k1) + cos(k2) + cos(k + k1 − k2 − 3ϕ).

The contour plot of F (k1, k2) is shown below:



Calculated variation of 1/τ along the Fermi surface

Numbers 1, 2, 3, and 4 correspond to the phases ϕ = π/12, π/4, 0,

and π/2; letters a, b, c, and d define the temperature T = tb/240, tb/24,

tb/5, and tb. The normalizing coefficient γ is equal to (2π)4tbv
2
F/60g2

4.



Temperature dependences of 1/τ at different points
on the Fermi surface

Squares represent the results of numerical calculations, and the solid

lines are curve fits.



Hall effect in Quasi-One-Dimensional Conductors

For weak magnetic fields ωcτ � 1, according to Ong’s formula [PRB 43,

193 (1991)], the Hall conductivity is proportional to the area enclosed

by the mean-free-path curve

σxy ∝

∮
l × dl,

where l(kt) = τ(kt)v(kt) is the local mean-free path at a given point kt

of the Fermi surface. For a Q1D conductor, this formula gives

σxy = −
2e3H

(2πh̄)2c

∫
dky vy(ky)τ(ky)

d[vx(ky)τ(ky)]

dky
.

Non-zero contributions to the Hall conductivity have two origins:

• Dependence of vx on ky. This produces conventional temperature-

independent expression for the Hall coefficient RH =
σxy

σxx σyy
= 1

nec.

• Dependence of τ on ky. This term is very sensitive to the presence

of hot spots and produces strong temperature dependence.



Temperature dependence of the contribution to the

Hall coefficient due to hot spots in 1/τ

(a) ϕ = ϕ′ = 0, (b) ϕ = ϕ′

2 = π
8, (c) ϕ = ϕ′

2 = π
4, (d) ϕ = π

12 and ϕ′ = 0.



Comparison between theory and experiment for the

temperature dependence of the Hall coefficient in

(TMTSF)2PF6
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   UCLA:  α
T
 = 2.7; α

R
 = 2.3311e−007; R

H
(0) = 6.1354e−009; RMS = 2.0866e−010

Experimental points are the data from Jérome’s group [Phys. Rev. Lett.

84, 2674 (2000)], and the solid line is our theoretical curve (a).



Renormalization of umklapp scattering amplitude γ3

and temperature dependence of resistivity ρxx
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Temperature dependence of resistivity in

(TMTSF)2PF6: theory vs. experiment
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   Ris0:  φ=π/4; α
T
 = 1.3; α

R
 = 0.23434; R

xx
(0) = −0.0034563; RMS = 0.0042367

Experimental points are Jérome’s group data [PRL 84, 2674 (2000)],

and the solid line is our theoretical curve with ϕ = π
4, t′b = 20 K .



AC Hall effect in YBa2Cu3O7

does not follow a simple Drude model

Experimental points are from

Drew’s group [Phys. Rev. Lett.

76, 696 (1996)]. Red curve

represents the cold spots model.

σxx(ω)
σxy(ω)

→
cot θH(ω) = σxx(ω)/σxy(ω)

RH(ω) = σxy(ω)/Hσ2
xx(ω)

In a simple Drude model:

σxx(ω) ∝ τ̃(ω)

σxy(ω) ∝ τ̃2(ω)
,

1

τ̃(ω)
=

1

τ
− iω.

cot θH(ω) = 1
τ̃(ω)

= 1
τ − iω agrees

with experiment.

RH(ω) = const(ω, T ) does not

agree with experiment



Two-τ model with cold spots on the Fermi surface of

YBa2Cu3O7, at the Brillouin zone diagonals

σxx(ω) = A1τ̃1(ω) + A2τ̃2(ω)

σxy(ω) = B1τ̃2
1 (ω) + B2τ̃2

2(ω)

1/τ̃1,2(ω) = 1/τ1,2 − iω

τ2/τ1 = 4

A1,2 ∝

∫
1,2

v(kt) dkt

A1 : A2 = 9 : 1

B1,2 ∝

∫
1,2

v(kt) × dv(kt),

B1 : B2 = 7 : 3



Further developments of the cold spots model

Ioffe and Millis, PRB 58, 11631 (1998): 1/τ(kt) ≈ 1/τ0 + Γk2
t , where

1/τ0 ∝ T2 is the relaxation rate at the cold spot, and Γ is temperature-

independent.

van der Marel, PRB 60, R765 (1999): 1/τ(kt) = 1/τ0 + Γsin2(2θ)

Possible origins of the cold spots

• Geometry of the Fermi surface: the sides of the square vs. the

corners, flat regions vs rounded, 1D vs 2D.

• Fluctuations of a d-wave order parameter (superconducting or insu-

lating): connection to the pseudogap.

• Antiferromagnetic fluctuations at the wave vector (π, π), via merger

of the eight hot spots.



Conclusions

• Strong variations of electronic properties, such as relaxation time,

along the Fermi surface are common in metals and play important

role in electron transport.

• For Q1D conductors, we found hot spots resulting from singular-

ities of the phase space available for scattering. The calculated

temperature dependences of resistivity and the Hall coefficient are

in semiquantitative agreement with the experiment on the organic

conductor (TMTSF)2PF6.

• For cuprates, the phenomenological model of the cold spots at the

Brillouin zone diagonals has certain success in describing dc and ac

transport and magnetotransport.


