Rheology of Dense Granular Flow

Rhed ogy d Ganu a How

Gary Grest, James Landry, Leo Silbert
and Steve Plhimpton
Sandia National Laboratories

Deniz Ertas and Thomas Halsey, ExxonMobil, NJ
Dov Levine, Technion, Haifa, Israel

§ 8

Chutefl ows Packi ngs

Flow down an inclined plane
» Simplest dynamicd system to relate stress and structure

» Threedistinct regimes of flow depend ontilt angle ©:
_ 9 < 9 (h) NO mtion — tan6=tan®,+(tant,~tan®,)exp(-h/)
r ) 40 = .
- < 6<6,,[(h): Seady state flow
- 6> 6,,(h): Avalanching flow

h/d

» Seady state flow depends on © iowtine "

material properties: L and € R R

e Dimensional analysis exped o] y 2

 For constant density
this leads to <v>[h32
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Physicd Interestsin Granular Systems

Granular materials are ubiquitous in everyday life
Ceramicsinadie

Sand on abeach
Grains
e STATICS « DYNAMICS
— Grainsinapile — Rock debris flows
— Silos — Avalanches
— Coffeegrounds — Coal ona wmnweyor belt
— PRillsinabattle — Flow inahopper

» Storage, transport, and handling of granular materials is of
immense industrial importance

Current Isauesin Granular M atter

» Theoreticd understanding of the basic phenomena is
needled:

—Granular matter: maaoscopic particles of different shape,
size, and material properties

—Friction and dastic deformation dsspate energy

— Standard methods of statisticd medhanics not applicable

—Nedl constitutive equations for continuum cdculations

* There ae few well-controlled experiments to test
theoreticd models
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Granular Simulations - Recent Devel opments

* Ané€fficient, highly parallel moleaular dynamics code
has been developed to simulate granular materials
— Mono a polydispersed particul ates

— Arbitrary materials properties. hardness coefficient of
restitution, and friction coefficients

— Arbitrary shaped container: smoaoth or roughwall
e Maximum number of particlesin range 1-2 million
» Variety of analysis codes have been developed

« Results for gravity driven flow and geometry of frictional
sphere padkings will be focus of this presentation

Simulation Tedhnique

* Moleaular Dynamics - Solve Newton's Equation
— trandational androtational degrees of freedom
* Interadionforces depend on prticle-particle overlap o
M - particlefriction coefficient (Coulomb criterion)
€ -coefficient of restitution (determine inelasticity)
* Dry limit - purely repulsive forces which act only on
contad F=F, + F,
— F,=f(0/d) (k.0n +y,my Vv,), f(8/d) = 1 or (&/d)*/2
— F.=1(d/d) (-kAs - yimg V,), As isintegral over relative
displacement of two particles in contad
— Coulomb propartionality | F, | < p| F,, |
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Experimental Geometries

Rotating Drum
&
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Gravity Driven Flow
&

2D: N=10,000; p=0.50; £=0.92 3D: N=8,000; p=0.50; £=0.88
0.85 f
& & 06|
g g :
2 . g 055 hy
2 ‘s
2087 0-18° S 05 A
& o=19" n% e
055 — ti?ﬂ 045 —
150 - 822 b | 0=
. 8227 "
B = 20t
£ 100 B
- 2
& o E ni |
0 ! . o Lt . : .
0 50 100 0 10 20 30 40
Distance from bottom z/d Distance from bottom z/d
« Steady state: constant volume fradion in the bulk, awvay from the free
top surface ad the bottom plate
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Dependenceon system size
C: N 3
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* Density @isindependent of height of pile
» Observer co-moving atop aflowing dle would be unable to
determine how deep the pad is

System sizescding

e Forcebaance

0o. Jdo .
—Z = —% = gsing
oz pgcod) oz = B

e Foragiventilt ange
0, (2) =0,(2)tanb 10
» Bagndd's momentum-collision
analysis propaoses that for
constant density, EE/&EZ .
oz
e Dependence of the velocity on Yo a4 s iz
the height of the pile #3p
Vo (2)0[h**(h-2)¥]
» Velocity v scdeswith height h as
<v> ~ h¥2
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Initiation o Flow

50

* Flow isinitiated at base - topinitially moves as plug
* Fluctuating region moves verticdly

Cesstion d Flow
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* Cessation d flow begins at base and moves vertically even
thoudh velocity fluctuations are greaest at bottom of pile
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Jamming Transition
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e System compads and codls as 0 isreduced
» Flow ceases at the angle of repase 6,=19.4°

» Emerging amorphous phase is e as a plitti ng d the second
pe& in gr)

Plastic-Elastic Transition
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 Forceratio: friction force/ maximal force= f,/uf

* Flowing states have a predominance of plastic contads, i.e.

contads exadly at yield

» Once6<6, plastic contads relax and convert to elastic ones

Dr. Gary Grest, KITP & Sandia (KITP Complex Fluids Program 6/04/02)
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Effed of Friction on Padking

Deposition With Friction No Friction

« Loose randam pading generated by J Cesarano (Sandia)
* Reducing particle friction increases particle mntad
-leading to denser, more ordered structures

Granular Padking

» Nature of granular padking depends drongy onits
history

* Cooardination nunber for a stable pading:
— z,=6 for frictionless pheres
— z=4for frictional spheres
— padkings with z,=6 or z=4 areisostatic

» We studied the packing d granular materials which
have settled under the influence of gravity - poued
into a container
— dependenceon herdnessk,,
— coefficient of friction

Dr. Gary Grest, KITP & Sandia (KITP Complex Fluids Program 6/04/02)
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No Friction

Simulated Pouring - Movie

Friction
Packing in Presence of Side Walls
Friction No Friction

Dr. Gary Grest, KITP & Sandia (KITP Complex Fluids Program 6/04/02)
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Pouring in Presence of Walls

Effed of Friction onPadking
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k.= 2x1Cmg/d

 Coordination z and density ¢ deaease smoathly as coefficient
of frictionu incresse

*Similar results obtained on cessation o flow oninclined plane

Dr. Gary Grest, KITP & Sandia (KITP Complex Fluids Program 6/04/02)
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Distribution o Coordination
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« Distribution shifts to lower values of z and 1 increases

Padking d FrictionlessSpheres

Effed of hardnesson locd coordination
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«z=6 in hard sphere limit
* Frictionlesshard sphere padkings are isostatic

Dr. Gary Grest, KITP & Sandia (KITP Complex Fluids Program 6/04/02)
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Radial Distribution Function

* Friction as snall effed on owerall pair correlations
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* As 1 increases, secondary peaksin g(r) diminish

Frictional Spheres - Effed of
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 Hard sphere limit padkings are hyperstatic, z; > 4
e Further crosver at extreme stiff nesscannot be ruled ou

- Stiffest spheres experience stains 8/d<10%

Dr. Gary Grest, KITP & Sandia (KITP Complex Fluids Program 6/04/02)
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Force Distributions
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« No Friction - P(F) has a maximum at f/<f> ~ 0.5
* Friction - pe& occurs at small f and grows as |1 increases
-tail shiftsto right as 1 increases

Plastic Contads

 Contads for which F, = pF,, are plastic
- Isostaticity condtionwould need to be modified if
there ae afinite fradion d plastic contads

o a.f\ﬂ"n n=0410
VW -0.25 . .
W woso o All contadsin the static
I/ N w0 padkings are below their
E] | N . .
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Summary

» Efficient moleallar dynamics algorithm has been
developed to study large systems for longtimes

» For gravity-driven flow, density is uniform and shea
stress stisfies sSmple scding result

» Jamming transition at the angle of repose has fedaures in
common with regular glasstransitions

e Padking d frictionless pheres is isostatic but frictional
spheres are not and strongy dependent on preparation

e Current/Future simulations will study:.
— Effed of side walls and complex geometries
— Flow in slosand hqopers
— Slurries

Dr. Gary Grest, KITP & Sandia (KITP Complex Fluids Program 6/04/02)
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