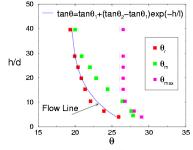

Rheology of Granular Flow

Gary Grest, James Landry, Leo Silbert
and Steve Plimpton
Sandia National Laboratories

Deniz Ertas and Thomas Halsey, ExxonMobil, NJ Dov Levine, Technion, Haifa, Israel



Chute flows

Packings

Flow down an inclined plane

- Simplest dynamical system to relate stress and structure
- Three distinct regimes of flow depend on tilt angle θ :
 - $-\theta < \theta_r(h)$: No motion
 - $-\theta_r < \theta < \theta_{max}(h)$: Steady state flow
 - $\theta > \theta_{max}(h)$: Avalanching flow
- Steady state flow depends on material properties: μ and ϵ
- Dimensional analysis expect $\sigma \propto \gamma^{-2}$
- For constant density this leads to <v>∞h^{3/2}

Physical Interests in Granular Systems

Granular materials are ubiquitous in everyday life
Ceramics in a die
Sand on a beach
Grains

• STATICS

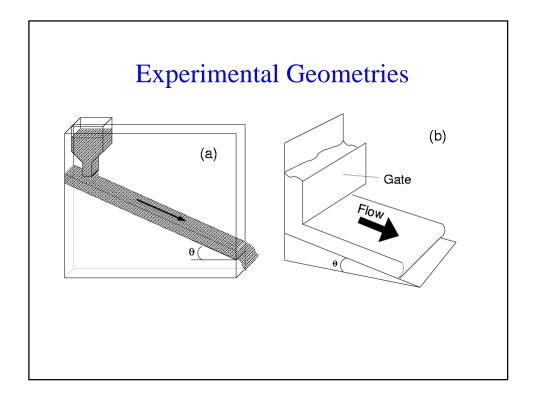
• **DYNAMICS**

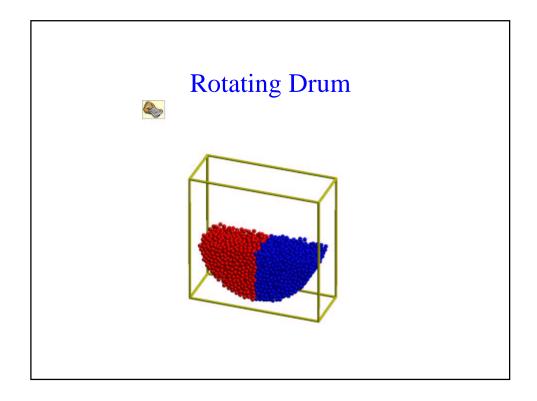
- Grains in a pile
- Rock debris flows

- Silos

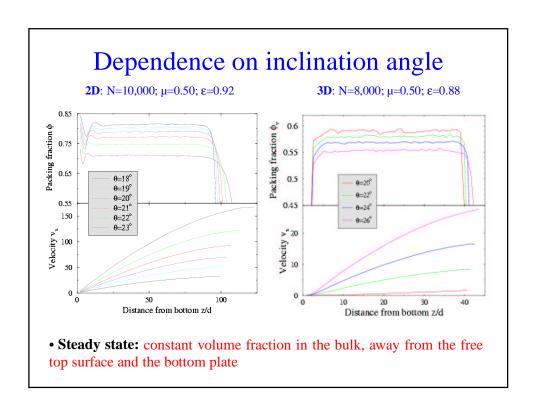
- Avalanches
- Coffee-grounds
- Coal on a conveyor belt
- Pills in a bottle
- Flow in a hopper
- Storage, transport, and handling of granular materials is of immense industrial importance

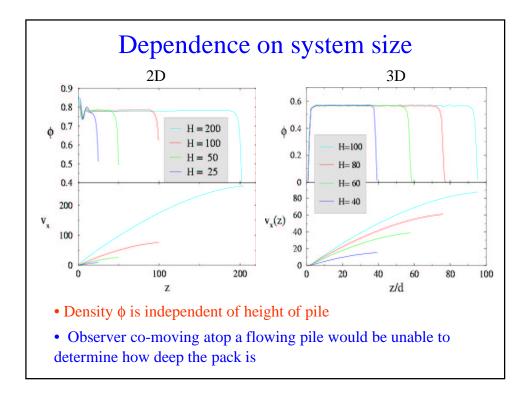
Current Issues in Granular Matter


- Theoretical understanding of the basic phenomena is needed:
 - Granular matter: macroscopic particles of different shape, size, and material properties
 - Friction and plastic deformation dissipate energy
 - Standard methods of statistical mechanics *not* applicable
 - Need constitutive equations for continuum calculations
- There are few *well-controlled* experiments to test theoretical models


Granular Simulations - Recent Developments

- An efficient, highly parallel molecular dynamics code has been developed to simulate granular materials
 - Mono or polydispersed particulates
 - Arbitrary materials properties: hardness, coefficient of restitution, and friction coefficients
 - Arbitrary shaped container: smooth or rough wall
- Maximum number of particles in range 1-2 million
- Variety of analysis codes have been developed
- Results for gravity driven flow and geometry of frictional sphere packings will be focus of this presentation


Simulation Technique

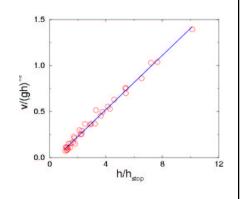

- Molecular Dynamics Solve Newton's Equation
 - translational and rotational degrees of freedom
- Interaction forces depend on particle-particle overlap δ
 - μ particle friction coefficient (Coulomb criterion)
 - ε -coefficient of restitution (determine inelasticity)
- Dry limit purely repulsive forces which act only on contact F=F_n + F_t
 - $\ \mathbf{F_n} = f(\delta/d) \ (k_n \delta \mathbf{n} + \gamma_n m_{eff} \ \mathbf{v_n}), \ f(\delta/d) = 1 \ or \ (\delta/d)^{1/2}$
 - $\mathbf{F_t} = f(\delta/d) (-k_t \Delta \mathbf{s_t} \gamma_t m_{eff} \mathbf{v_t})$, $\Delta \mathbf{s_t}$ is integral over relative displacement of two particles in contact
 - Coulomb proportionality $|\mathbf{F}_t| \le \mu |\mathbf{F}_n|$

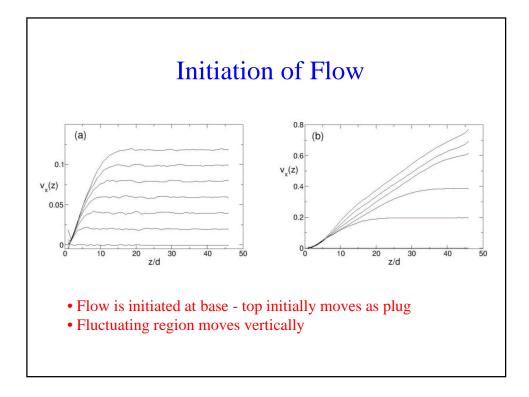
System size scaling

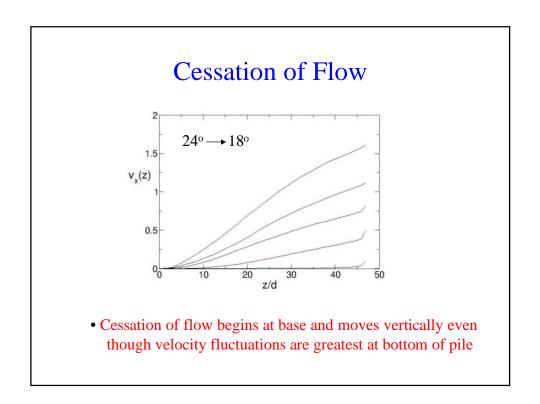
• Force balance:

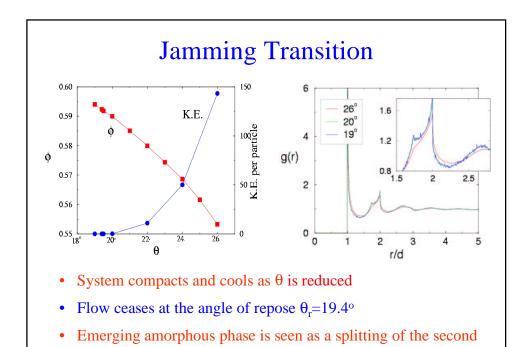
$$\frac{\partial \sigma_{zz}}{\partial z} = \rho g \cos \theta \qquad \frac{\partial \sigma_{xz}}{\partial z} = \rho g \sin \theta$$

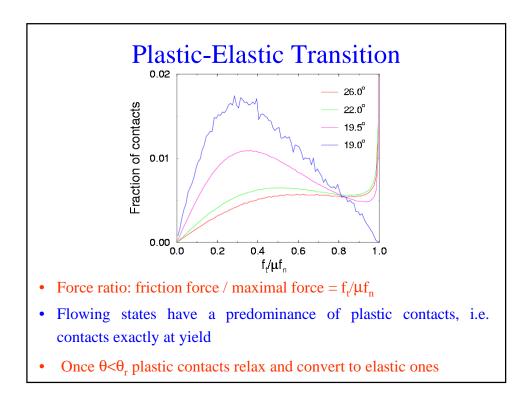
• For a given tilt angle

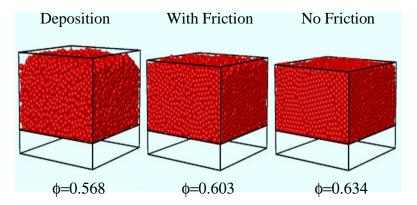

$$\sigma_{xz}(z) = \sigma_{zz}(z) \tan \theta$$


- Bagnold's momentum-collision analysis proposes that for constant density, $\left(\frac{dv_x(x)}{\partial z}\right)^2 \propto \sigma$
- Dependence of the velocity on the height of the pile

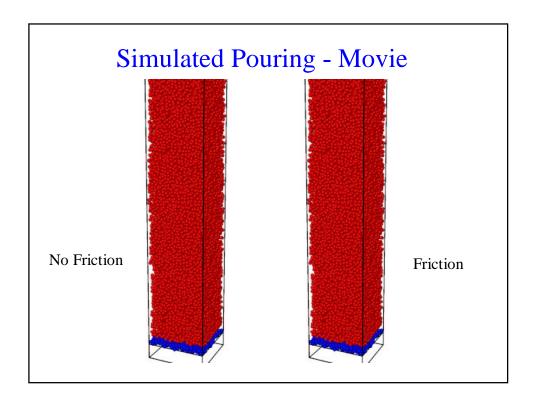

$$v_x(z) \propto [h^{3/2} - (h-z)^{3/2}]$$

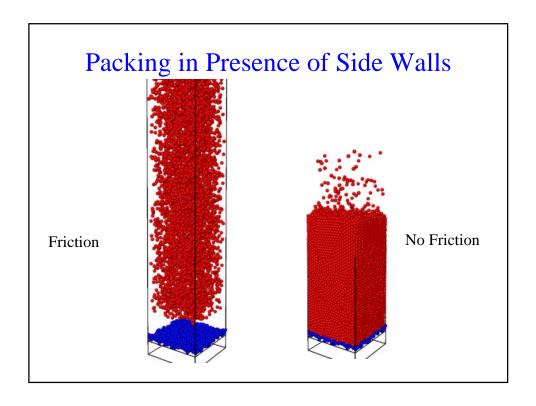

• Velocity v scales with height h as


$$<$$
v $> ~ h^{3/2}$

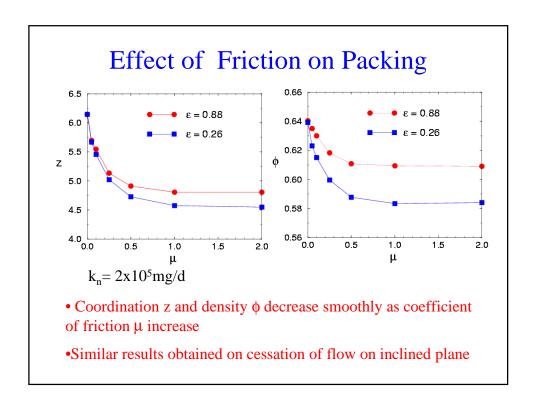


peak in g(r)

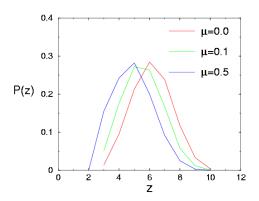

Effect of Friction on Packing

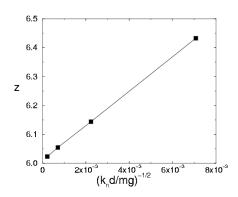


- Loose random packing generated by J Cesarano (Sandia)
- Reducing particle friction increases particle contact
 - -leading to denser, more ordered structures

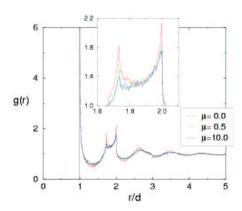

Granular Packing

- Nature of granular packing depends strongly on its history
- Coordination number for a stable packing:
 - $-z_n$ =6 for frictionless spheres
 - z_f =4 for frictional spheres
 - packings with z_n =6 or z_f =4 are *isostatic*
- We studied the packing of granular materials which have settled under the influence of gravity poured into a container
 - dependence on hardness \boldsymbol{k}_{n}
 - coefficient of friction μ




Distribution of Coordination Numbers

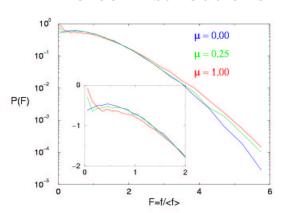
• Distribution shifts to lower values of z and μ increases


Packing of Frictionless Spheres

Effect of hardness on local coordination

- z=6 in hard sphere limit
- Frictionless hard sphere packings are isostatic

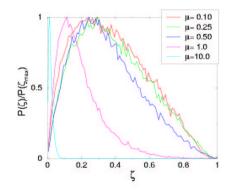
Radial Distribution Function



- Friction as small effect on overall pair correlations
- As μ increases, secondary peaks in g(r) diminish

Frictional Spheres - Effect of Particle Hardness $\mu, \ \epsilon \\ (0.50, 0.88) \\ (0.50, 0.50) \\ (0.50, 0.26) \\ (10.0, 0.26)$ • Hard sphere limit packings are hyperstatic, $z_f > 4$ • Further crossover at extreme stiffness cannot be ruled out

- Stiffest spheres experience stains $\delta/d<10^{-8}$


Force Distributions

- No Friction P(F) has a maximum at $f/<f> \sim 0.5$
- Friction peak occurs at small f and grows as μ increases -tail shifts to right as μ increases

Plastic Contacts

- Contacts for which $F_t = \mu F_n$ are plastic
 - Isostaticity condition would need to be modified if there are a finite fraction of plastic contacts

• All contacts in the static packings are below their frictional threshold $\zeta = F_t/\mu F_n$

Summary

- Efficient molecular dynamics algorithm has been developed to study large systems for long times
- For gravity-driven flow, density is uniform and shear stress satisfies simple scaling result
- Jamming transition at the angle of repose has features in common with regular glass transitions
- Packing of frictionless spheres is *isostatic* but frictional spheres are not and strongly dependent on preparation
- Current/Future simulations will study:
 - Effect of side walls and complex geometries
 - Flow in silos and hoppers
 - Slurries