Phase Behavior, Rheology, Erosion Kinetics and Biomedical Applications of Fluoroalkyl-Ended PEGs

Giyoong Tae

Julia A. Kornfield

Chemical Engineering, California Institute of Technology

Jeffrey A. Hubbell

Biomedical Engineering, Swiss Federal Institute of Technology

Jyotsana Lal

IPNS, Argonne National Laboratory

Diethelm Johansmann

MPI-Polymerforschung

Motivation: In-Situ Transforming Hydrogels

Materials and Phase Behavior							
Sample	type of behavior	equilibrium composition in water (wt %) C _{gel.eq.} C _{sol.eq.}		equilibrium composition in PBS (wt %) at 25 °C C _{gel.eq.} C _{sol.eq.}			
20KC8 20KC10	1 phase 1 phase	gene	ų. 301.6ų.	geneq	, 301.6q.		
10KC8 10KC10	2 phase 2 phase	6.5 ±0.2 6.8 ±0.7	0.075 ±0.005 0.019 ±0.008	7.8 ±0.2 8.1 ±0.7	0.055 ±0.002 0.011 ±0.003		
6KC6 6KC8	2 phase 2 phase	9.5 ±0.5 11.0 ±0.3	0.066 ±0.006 0.042 ±0.007	10.5 ±0.6 12.5 ±0.3	0.038 ±0.002 0.017 ±0.001		
6KC10	insoluble						
Fluoroalkyl (R _f ; -(CH ₂) ₂ -C _n F _{2n}		IPDU (lir O = H -c-N	nker):		← C _{sol.eq.}		

Implications for Theory

Rheology of single-phase systems:

- » Annable's could be improved by better description of bridge:loop and inclusion of micelle-micelle repulsion
- Phase behavior:
 - » Aggregation number is not the primary determinant of the phase behavior as Semenov and Russel assume; deeper understanding of the effect of chain length on micelle-micelle repulsion is needed.

Erosion Rates Correlate with Phase Behavior

Sample	phase behavior	composition (wt %)	dissolution rate (mg/cm²/hr)
5K-M-C10	lyotropic gel	12.8	0.201
20KC10	single phase	10.0	0.168
6KC8	sol-gel coex.	11.0	3.33 x 10 ⁻⁴
10KC8	sol-gel coex.	6.5	1.67 x 10 ⁻³
10KC10	sol-gel coex.	6.8	too slow to measure by SPR

Summary of Gel Properties in the Sol-Gel Coexistence Regime

- Mechanical properties (modulus, viscosity) can be controlled by the manipulation of hydrophilic and hydrophobic parts.
- Erosion of the matrix is achieved from the surface (heterogeneous type).
- Dissolution rates are much slower (~10⁻³ times) than systems with no phase separation.
- Dissolution is an activated process governed by end group length (10KC10 vs. 10KC8).

Human growth hormone (hGH)

- A single-chain polypeptide of 191 AAs with 2 disulfide bonds. M.W. ~ 22 KD
- Synthesized and secreted into storage granules as dimer with 2 Zn²⁺ ions and then released from the anterior pituitary.
- Deficiency prevents normal growth, so the recombinant form (rhGH) is used to treat hGH deficient children.
- Current clinical administration : daily injections for several years => need for sustained release systems.

Release of hGH from In-Situ Forming Hydrogels of PEG with Fluorocarbon Ends

- The equilibrium gel phase of PEG modified with fluorocarbon ends shows slow, surface erosion.
- Injectible state by dissolving in NMP.
- Gelation after injection by diffusion of NMP out and water in.

Sustained release of protein through the hydrogel.

Release experiment protocol for NMP formulation

- Dissolve PEG-R_f in NMP.
- Add protein powder (protein:PEG-R_f:NMP = 1:10:10).
- Inject the suspension into PBS
- Collect the supernatant at intervals and refill.
- Measure total protein concentration.

R_f-PEGs as surface-modifying materials for PTFE

- R_f-PEGs with long enough R_f showed slow (6KC8, 10KC8, 10KC10) or no (6KC10) erosion. → Adsorbed R_f-PEGs on PTFE can give a long-lasting surface-modifying coating.
- Suggests easy route to PEG surface layer on teflon:
 - 1.Immerse PTFE part in a solution of R_f-PEG in ethanol (1 wt %).
 - 2. Remove to leave a viscous liquid film on the surface, and
 - 3. immerse in water to induce association of the R_f groups with each other and the PTFE surface.
- Observe that PTFE surface is hydrophilic after adsorption.

Change of capillary rise of modified PTFE tube with time under flow (I.D =1.35 mm,varying shear rate (sec-1))

Results for PTFE modification

- Surface adsorption of R_f-PEGs onto PTFE effectively modifies the surface from being hydrophobic to hydrophilic.
- Capillary rise method is a sensitive tool to monitor the change in the surface properties of a narrow tube.
- Stability of this physisorption under flow correlates with the phase behavior and erosion rate of the bulk state of R_f-PEGs. In particular, an R_f-PEG that is insoluble in water provides the most stable modification.

Acknowledgment

- Thio E. Hogen-Esch (Synthesis) Chemistry, USC
- Diethelm Johannsmann (SPR characterization)
 MPI for Polymer Research, Germany
- Jyotsana Lal (SANS)
 Argonne National Lab, USA
- Ministry of Education, Korea Government